Precision and Stability Analysis of Euler, Runge-Kutta and Incursive Algorithms for the Harmonic Oscillator

p. 21-36

Abstract

This paper deals with a comparison from the precision and stability point of view of different discrete algorithms for simulating differential equation systems, applied in the case of a simple differential system: the harmonic oscillator. It points out the relation between the classical and incursive algorithms and shows the effect of incursion on the precision and stability.

Text

Download Facsimile [PDF, 5.7M]

References

Bibliographical reference

Daniel M. Dubois and Eugenia Kalisz, « Precision and Stability Analysis of Euler, Runge-Kutta and Incursive Algorithms for the Harmonic Oscillator », CASYS, 14 | 2004, 21-36.

Electronic reference

Daniel M. Dubois and Eugenia Kalisz, « Precision and Stability Analysis of Euler, Runge-Kutta and Incursive Algorithms for the Harmonic Oscillator », CASYS [Online], 14 | 2004, Online since 08 October 2024, connection on 10 January 2025. URL : http://popups.lib.uliege.be/1373-5411/index.php?id=2428

Authors

Daniel M. Dubois

Centre for Hyperincursion and Anticipation in Ordered Systems, CHAOS asbl, lnstitute of Mathematics, B37, University of Liège, Grande Traverse 12, B-4000 Liège 1, Belgium

By this author

Eugenia Kalisz

Department of Computer Science and Engineering "Politehnica" University of Bucharest Spl. Independentei 313, Bucharest, Romania

By this author

Copyright

CC BY-SA 4.0 Deed