Orbital Stability and Chaos with Incursive Atgorithms for the Nonlinear Pendulum

p. 3-20

Abstract

This paper deals with the Euler and Incursive algorithms of the nonlinear pendulum. The Euler algorithm is unstable. The incursive algorithms show a stable solution as an orbital stabilify for small values of the time step. For larger values of the time step, the incursive algorithms show an orbital stability for small values of the initial conditions and a chaotic sea for larger initial conditions.

Text

Download Facsimile [PDF, 6.2M]

References

Bibliographical reference

Daniel M. Dubois, « Orbital Stability and Chaos with Incursive Atgorithms for the Nonlinear Pendulum », CASYS, 14 | 2004, 3-20.

Electronic reference

Daniel M. Dubois, « Orbital Stability and Chaos with Incursive Atgorithms for the Nonlinear Pendulum », CASYS [Online], 14 | 2004, Online since 08 October 2024, connection on 10 January 2025. URL : http://popups.lib.uliege.be/1373-5411/index.php?id=2424

Author

Daniel M. Dubois

asbl CHAOS, Centre for Hyperincursion and Anticipation in Ordered Systems, Institute of Mathematics B37, University of Liège, Grande Traverse, 12, B-4000 Liège 1, Belgium

By this author

Copyright

CC BY-SA 4.0 Deed