

APPENDIX 1:

Computation Methods of Population Effective Size

Two alternative methods of computing the overall effective size for the last generation (Ne_{16}) in the Muzeina tribe are here presented. Three different parameters were taken into consideration: Ne_s = the effect of sex ratio on Ne size; Ne_p = the effect of polygamy; and Ne_m = the effect of migration.

Method A

$$Ne_{16} = Ne_1 + Ne_2$$

When Ne_1 takes into account the effect of polygamy on Ne :

$$[1/8 Ne_p = (3/32 N_f + 1/32 N_m)]$$

in proportion to its frequency (f_p) in the tribe:

$$(Ne_1 = Ne_p \times f_p),$$

and where Ne_2 takes into account the sex ratio in the population:

$$([1/Ne_s = 1/4 N_f + 1/4 N_m])$$

in proportion to the percentage of monogamy ($100-f_p$) in the tribe:

$$Ne_2 = Ne_s \times (100-f_p).$$

Next we subtract the influence of immigration on the Ne :

$$Ne_m = Ne_{16} \times (1-m)^2.$$

The value of Ne_m is the effective size of the population with which we shall deal hereafter.

For the Muzeina tribe, we have the following data:

The sex ratio: $N_m/N_f=106.9$; the population size: $N_{16}=3000$; polygamy rate: $p=12.1\%$; migration rate: $m= 3\%$.

Normally, in a population of 3000 individuals, 1000 will be in their reproductive period. Considering the sex ratio (106.9), this group is composed of 515 males and 485 females.

Interpolation of these data into the formula yields for polygamy:

$$\frac{1}{8} Ne_p = \frac{3}{16,480} + \frac{1}{15,520} = 507.23$$

$$Ne_1 = 507.23 \times 0.12 = 60.86;$$

for the sex ratio:

$$\frac{1}{Ne_s} = \frac{1}{4} \left(\frac{1}{515} + \frac{1}{485} \right) = 999.11$$

$$Ne_2 = 999.11 \times 0.88 = 879.21;$$

$$Ne' = 60.86 + 879.21 = 940.07;$$

and for migration rate:

$$Ne_m = 940.07 \times (1-0.03)^2 = 884.51$$

Method B

Let us use the formula for differential fertility in such a manner that the polygamy problem will be indirectly bypassed. We shall compute the Ne from the two components Nem and Nef (see chapter on "Factors which affect the genetic composition of the Bedouin tribes".) Clearly in a polygamous society, where there are probably more mothers than fathers, the values of vtw (variance in number of children per mother) and vtt (variance in number of children per father) will not be identical. After we obtain the values of Nem and Nef we shall compute the Ne from the sex ratio formula. We should mention that the sex ratio must be used whenever Ne is computed since changes in the sex ratio diminish the heterogeneity of the population proportional to it.

For the Muzeina tribe we have the data:

sex ratio = 106.9; the effective population size N_e = 1000.

$kw = 3.06$ $vtw = 4.19$

$kt = 3.83$ $vtt = 7.42$

$$N_{em} = \frac{Nmkt-2}{kt-1+vtt/kt}$$

$$N_{ef} = \frac{Nfkw-2}{kw-1+vtw/kw}$$

$$N_{em} = 423.17$$

$$N_{ef} = 422.43$$

Where kw and kt are the mean number of children per mother and father, respectively, N_{em} and N_{ef} are the estimated number of males and females, respectively, in relation to the effective size (N_e) of the tribe in the 16th generation. The values obtained for N_{em} and N_{ef} enable computation of the N_e in the following way:

$$1/N_e = 1/4 (1/423 + 1/422);$$

$$N_e = 846.15.$$

The difference between the value of the N_e obtained by the first method and that obtained by the second is relatively minor, having only marginal effect on the fixation index (influence of genetic drift).

APPENDIX 2:

Stages of Coefficient of Inbreeding (F) Computation in the Bedouin Population based on Muzeina data:

Computing $F_{xi_{16}}$

A. We compute F_{xe_i} for the tribe in the last generation as related to breeding patterns only:

$$1. F_{xe_i} = \sum_{i=16}^{16} \left[\frac{1}{2}^{n'+n+1} \right]$$

The mean result obtained is 0.003978.

B. We compute the effect of genetic drift during the last generation. In determining Ne we elected to use the result obtained by the second method (see Appendix 1), which is based mainly on the differential fertility and sex ratio formulas.

C. We compute F_{xi} for the 16th generation:

$$2. F_{xi_{16}} = 1/2Ne + [(2Ne-1)/2Ne \times F_{xe_i}] = 0.004566$$

Computing FA

The computation of FA, the contribution of the previous generations to the the F level, is problematic owing to the uncertainty which exists regarding the biological processes occurring in early generations. Hence, most investigators prefer to ignore this factor. However, in the present case it is mandatory to consider the FA because of the considerable effect it may exert on the final value of F. Ideally, the computation is done by the following formula:

$$3. FA_{15} = 1 - (1 - \Delta F)^{15}$$

$$4. \Delta F = (1 - M)^2 \times [1/2\bar{Ne} + [(2\bar{Ne}-1)/2\bar{Ne}] \times \bar{F}_{xe}]$$

$$5. 1/\bar{Ne} = 1/(t-1) \times [1/2Ne_1 + 1/2Ne_2 + \dots + 1/2Ne_{t-1}]$$

$$6. \bar{F}_{xe} = \sum_{i=1}^{16} \left[\frac{1}{2}^{n'+n+1} \right] 15$$

In as much as various factors (e.g. M = immigration rate, Ne = effective size, Fxe = breeding patterns, t = number of previous generations to common ancestor) exert a differential effect on F , we discuss each separately and show the necessary steps in their computation.

Computation of the different variables (M , Ne , Fxe)

Immigration rate (M): In the last three generations the immigration rate in the Muzeina tribe ranged between 2-4%. We have no information on immigration rates in earlier generations and therefore we must use the mean value of the immigration rates in the last three generations (3%) as a constant for all the tribal generations except the first five. Since the mean size of the Hams (blood feud group) starting from the 6th generation will thus remain constant (see below), the number of possible consanguineous marriages per generation will also remain constant.

Effective size (Ne): Computing the average weight or effect which genetic drift exerts on the F value in the Muzeina tribe was done in several stages: a) we calculate the rate of natural increase (P), the rate of population growth (r) and the doubling time (Dt) for previous generations; b) we calculated the population size per generation to a depth of 16 generations; c) we took a third of the population size and computed the breeding size of the population per generation; d) we computed the effect of differential fertility and sex ratio on the breeding size of each generation and on the effective size.

Coefficient of inbreeding (Fxe): The simple and easy way to achieve a partial solution of the problem would seemingly be to compute the coefficient of correlation between the group size and the frequency of the various breeding patterns, with emphasis on first-cousin marriages, and then construct a regression equation and use it to predict the Fxe values for the various generations. This system, however, has two main drawbacks. First, there is no linear correlation between the two variables and second, even more important, the structure of Bedouin society is such that the number of individuals in the Hams (blood feud group) after the first five generations (from the tribe's foundation) remains more or less constant regardless of the number of generations. Having assumed that neither the mean number of children per family nor the sex ratio changed in the last generations, we may justifiably argue that the number of first cousins in each generation remains fairly constant as well. What does vary is the number of second, third and fourth cousins who,

however, as previously shown, exert little influence on the \bar{F}_{xe} . The number of blood feud groups in each generation will increase and so also will the tribe, but the mean number of individuals per blood fued group, regardless of generation, will remain more or less constant.

Method of computation. On the basis of the preceding, it is clear that the computation of F_{xe} is to be made for two periods of genealogical time: the first extending from the founder's generation to the 5th generation, and the second, from the 6th generation to the penultimate one, that is the generation of children examined by us (G5 in Hams records). Hence the computation of F_{xi} for the last 10 generations is:

$$\bar{F}_{xi_{6-15}} = 1/2\bar{N}_{e_{6-15}} + [(2\bar{N}_{e_{6-15-1}})/2\bar{N}_{e_{6-15}}] \times \bar{F}_{xe}$$

and computation of \bar{N}_e for the last 10 generations yields: $\bar{N}_{e_{6-15}} = 113.63$.

Therefore the mean effect per generation of the genetic drift on the $\bar{F}_{xi_{6-15}}$ will be:

$$\bar{F}_{in_{6-15}} = 1/2\bar{N}_{e_{6-15}}$$

$$\bar{F}_{in_{6-15}} = 0.0044$$

The effect of the breeding patterns on $\bar{F}_{xi_{6-15}}$ is estimated only on the basis of first cousins, since: 1)each individual in each of the 10 generations has, on average, an identical number of first cousins; 2)the relative contribution of this breeding pattern (from the overall contribution which marital patterns have) in determining the value of F_{xe} exceeds 95% and therefore it is unnecessary to compute all the components of the breeding patterns, in this case $F_{xe} = F_{xe1}$; and 3)since the number of first cousins per individual is identical in all generations, we can employ the rate of first-cousin marriages which was determined for the blood feud groups, with the 16th generation taken as a constant for the other 10 generations (6-15). Thus:

$$\bar{F}_{xi_{6-15}} = [(2\bar{N}_{e_{6-15-1}})/2\bar{N}_{e_{6-15}}] \times \bar{F}_{xe}$$

$$\bar{F}_{xi_{6-15}} = 0.9556 \times 0.003834 = 0.003817$$

Now we can compute the mean value of F for the last 10 generations thus:

$$F_{6-15} = (0.0044 + 0.003817 \times (1-0.03))^2 = 0.007731$$

And from this, to compute the FA₆₋₁₅:

$$FA_{6-15} = 1 - (1 - F)^{10} = 0.07468$$

Determining the contribution of the first five generations to the overall coefficient of inbreeding (F) of the tribe is problematic mainly because the social frameworks in the tribe during this period are not yet consolidated. And in the absence of any guiding principle to follow its social development, we must inspect each generation and learn its possible behavior, with respect to marital patterns, migration, etc., and then try to evaluate the overall contribution of these generations to the overall coefficient of inbreeding (F).

As a rule one can continue to compute the Ne for the first five generations in the same way it was done for the later generations. However, we must exclude the first generation since it is responsible for introducing the primary genetic background into the group. Our computation of the average effective size for the first five generations therefore becomes:

$$\overline{Ne}_{1-5} = 22.49$$

and the mean effect per generation of the genetic drift on the F_{xi₁₋₅} will be:

$$Fin = 1/2Ne_{1-5} = 0.0222.$$

Computing immigration rate (M) for the first five generations.

The potential for consanguineous marriages is largely reduced in the first generations mainly because of the small tribal size, ranging from 46 individuals in the first generation to 187 in the sixth. Therefore, it is clear that many individuals in the first generations will take brides who are outside their Hams (blood feud group). Since the Hams is patrilineal in nature, all the males will always be of the same tribe, while the females can be either from inside or from outside the group. The role of immigration is therefore expected to increase, and can be estimated from the size of the tribe in those generation in which that value is similar to the size of the extended family or clan in the present generation. Since 68.7% of marriages are within the clan, the average rate of immigration for generations 4 and 5 is 32%, whereas for generations 1, 2 and 3 (extended family) it is 65%. Thus, the average migration rate for generations 1-5

is approximately 48%. The effective size of the group in the first generations is small, and hence, the influence of genetic drift may mask the impact of inbreeding. And since the fixation of genes cannot act twice, that is, once under the effect of genetic drift and again under the effect of breeding patterns, one cannot use breeding patterns in the first to fifth generations as a component in the final value of FA_{1-5} . Therefore, the influence of breeding patterns for the first five generations must be computed thus:

$$F_{1-5} = (1/2\bar{Ne}_{1-5}) \times (1-M)^2 = 0.022 \times 0.27 = 0.00594$$

and the FA_{1-5} computation is:

$$FA_{1-5} = 1 - (1 - 0.00594)^4 = 0.0236$$

After calculating the inbreeding coefficient of the tribe for two genealogical time periods, we computed the combined contribution to the value of F.

In the first stage, the mean \bar{Fxi} for 16 generations is computed by:

$$\bar{Fxi}_{1-16} = (FA_{1-5} + FA_{6-15} + Fxi_{16})/16$$

$$\bar{Fxi}_{1-16} = (0.0236 + 0.07468 + 0.004566)/16 = 0.006427$$

The final F value follows:

$$F = 1 - (1 - \bar{Fxi}_{1-16})^{16} = 0.09802$$

It is note worthy that the obtained value of F is relatively high compared to that recorded in other societies. The F value in the 16th generation, ignoring the contribution of previous generations, will be:

If: $Ne = 846$; $Fxi_{15} = 0.00398$; $M = 3\%$;

$$F = [1/2Ne + (2Ne-1)/2Ne \times Fxe] \times (1-M)^2$$

$$F = (0.000591 + 0.999 \times 0.00398) \times 0.041$$

$$F = 0.004297$$

APPENDIX 3:

Child populations compared with our South Sinai Bedouin boys, by place, group, and author(s).

Country of origin	Designation in graph	Origin of population samples studied	Authors
Egypt	Muzeina	South Sinai	Present study
U.S.S.R.	U.S.S.R.	Moscow	Vlastovskii, 1976
France*	France	Paris	Sempe et al., 1971
United Kingdom*	England	London	Tanner et al., 1966
Poland*	Poland-R	Rural	Wolanski, unpubl.
Poland	Poland-C	Cracow	Pawel, 1964
U.S.A.*	U.S.A.	Cincinnati	Rauh et al., 1967
U.S.A.	U.S.-W	White	Vital and Health Statistics, 1974
U.S.A.	U.S.-N	Negro	Vital and Health Statistics, 1974
Lebanon*	Lebanon	Various	ICNND, 1962
India*	India A	Well-off	Raghavan et al., 1971
India*	India B	National	Indian Council of Medical Research, 1972
India*	India C	Maharastrians	Sharma, 1970
Israel*	Israel-A	Arabs	Shiloh et al., 1959
Israel	Israel-E.E.	East Europe [^] (Jews)	Kobyliansky et al., 1985
Israel	Israel-M.E.	Middle East [^] (Jews)	Kobyliansky et al., 1985
Israel	Israel-N.A.	North Africa [^] (Jews)	Kobyliansky et al., 1985
Israel	Israel-G	Total (Jews)	Kobyliansky et al., 1985
Senegal*	Senegal	Dakar	Masse, 1969
Mozambique*	Mozambique	Lourenco	Martins, 1968
Tunisia*	Tunisia	Tunis (poor)	H. Boutourline-Young, unpubl.
Ethiopia*	Ethiopia	Addis Ababa	Eksmyr, 1971
Egypt*	Egypt-G	National	McDowell et al., 1970
Egypt*	E-1	Villages	Jasicki, 1965
Egypt	E-2	Kenouz	El-Nofely, 1978
Egypt	E-3	Arab	El-Nofely, 1978
Egypt	E-4	Fededji	El-Nofely, 1978
Egypt	Egypt-Si	Siwah	Pawel, 1964
Egypt	Egypt-Se	Seaside	Pawel, 1964
New Guinea	New Guinea	Kaiapit	Malcolm, 1970

* Material taken from Eveleth and Tanner (1976) and consequently these authors are mentioned as a reference point for the source of the material but are not included in the bibliographic list.

[^] Origin of parents.

APPENDIX 4:

Legend to tables and figures:

List of Tables:

Table No	page
Table 1 Number of South Sinai Bedouin boys examined, by tribal group*, and total number of boys, by age.	13
Table 2 Phenotype frequency of haptoglobins and of gene Hp1 in Bedouin populations of South Sinai, by tribe	29
Table 3 Chi-square differences in phenotype frequencies of 3 systems: haptoglobin, ABO and P and Hp1 gene frequency between Bedouin tribe pairs in South Sinai	29
Table 4 ABO gene frequency in various Bedouin tribes of South Sinai.	30
Table 5 Frequency of the gene Hp1 among diverse groups in different geographic regions	31
Table 6 Frequency of various genes in the Bedouin population of South Sinai: Towara* and Gebeliya (Bonne et al., 1971, pp.400-406).	32
Table 7 Frequency of gene T in Bedouin tribes of South Sinai	33
Table 8 Chi square differences in frequency of gene T between paired South Sinai Bedouin tribes	34
Table 9 Frequency of marital patterns within the Muzeina tribe in the last four generations	50
Table 10 Numerical growth and rate of growth of the Towara tribal suprastructure in South Sinai in the early 20th century compared to other tribal suprastructures of Bedouin tribes in the Negev	55
Table 11 Number of Bedouin families and individuals in the Towara of South Sinai in the early 1970's, by tribe and sub-tribe	56
Table 12 Percentage distribution of the Bedouin in South Sinai and the Israeli Negev, by age and sex	58
Table 13 Number of living, and deceased children after first year of life at various age intervals of mothers in the Muzeina tribe, 1980*; both sexes, based on 97 families	60
Table 14 Fertility rates in South Sinai Bedouin society compared to those in other populations*	60
Table 15 Mean number of living children per family, compared with total births in Bedouins of South Sinai compared with like data among Bedouins in the Israeli Negev and Israeli Arabs	61
Table 16 The average percentage of polygamous families in two last parent generations (G14; G15) of South Sinai Bedouins ¹ (based on 287 families, Muzeina tribe)	65
Table 17 Mean number of children per family and sex ratio in parental (G15) and offspring (G16) generations in accordance with relatedness of the parents	71
Table 18 Intertribal differences in frequencies of genes P1, Hp1 and T by the χ^2 method	96
Table 19 Differences in the ABO system between the Muzeina and Aleigat tribes	96
Table 20 Evaluation of Pearson's correlation coefficient vis-à-vis the three methods for determining age	103
Table 21 Age determination according to the specified criteria	103
Table 22 Single-variable prediction of age by linear equation in Bedouin boys	105

Table 23	Comparison of P_i values in stature among different boy populations ¹ , aged 5-11, and 5-13 years	113
Table 24	Comparison of P_i values in body weight among different boy populations, aged 5-11 and 5-13 years	116
Table 25	Mean head length (mm) in South Sinai Bedouin boys, by tribe and age	135
Table 26	Mean head breadth (mm) in South Sinai Bedouin boys, by tribe and age	135
Table 27	Cephalic index in South Sinai Bedouin boys, by tribe and age	136
Table 28	Mean bizygomatic breadth (mm) in South Sinai Bedouin boys, by tribe and age	136
Table 29	Mean bigonial breadth (mm) in South Sinai Bedouin boys, by tribe and age	137
Table 30	Mean morphological facial height (mm) in South Sinai Bedouin boys, by tribe and age	137
Table 31	Mean sitting height (1) (cm) in South Sinai Bedouin boys, by tribe and age	138
Table 32	Mean biacromial breadth (cm) in South Sinai Bedouin boys, by tribe and age	138
Table 33	Mean biiliac breadth (cm) in South Sinai Bedouin boys, by tribe and age	139
Table 34	Mean chest circumference (cm) in South Sinai Bedouin boys, by tribe and age	139
Table 35	Mean trunk length (cm) in South Sinai Bedouin boys, by tribe and age	140
Table 36	Mean Sitting Height (2) (Cm) In South Sinai Bedouin Boys, By Tribe And Age	140
Table 37	Sitting height (1)/stature index in South Sinai Bedouin boys, by tribe and age.	141
Table 38	Biacromial breadth/stature index in South Sinai Bedouin boys, by tribe and age	141
Table 39	Biiliac breadth/stature index in South Sinai Bedouin boys, by and tribe age	142
Table 40	Chest circumference/stature index in South Sinai Bedouin boys, by tribe and age	142
Table 41	Mean upper arm length (cm) in South Sinai Bedouin boys, by tribe and age	143
Table 42	Mean lower arm length (cm) in South Sinai Bedouin boys, by tribe and age	144
Table 43	Mean hand length (cm) in South Sinai Bedouin boys, by tribe and age	144
Table 44	Mean total arm length (cm) in South Sinai Bedouin boys, by tribe and age	145
Table 45	Mean total arm length/stature index in South Sinai Bedouin boys, by tribe and age	145
Table 46	Mean iliospinal anterior height (cm) in South Sinai Bedouin boys, by tribe and age	146
Table 47	Mean tibial height (cm) in South Sinai Bedouin boys, by tribe and age	146
Table 48	Mean upper leg length (cm) in South Sinai Bedouin boys, by tribe and age	147
Table 49	Leg length/stature index in South Sinai Bedouin boys, by tribe and age	147
Table 50	Mean foot length (cm) in South Sinai Bedouin boys, by tribe and age	148
Table 51	Mean foot breadth (cm) in South Sinai Bedouin boys, by tribe and age	148
Table 52	Foot breadth/length index in South Sinai Bedouin boys, by tribe and age	149
Table 53	Mean upper arm skinfold (mm) in South Sinai Bedouin boys, by tribe and age	149
Table 54	Mean subscapular skinfold (mm) in South Sinai Bedouin boys, by tribe and age	150
Table 55	Mean hand strength (L) (kg) in South Sinai Bedouin boys, by tribe and age	150
Table 56	Mean hand strength (R) (kg) in South Sinai Bedouin boys, by tribe and age	151
Table 57	Mean stature (cm) in South Sinai Bedouin boys, by tribe and age	151
Table 58	Mean acromion height (cm) in South Sinai Bedouin boys, by tribe and age	152

Table 59	Mean upper body segment length (cm) in South Sinai Bedouin boys, by tribe and age	152
Table 60	Mean body weight (kg) in South Sinai Bedouin boys, by tribe and age	153
Table 61	Weight/stature index in South Sinai Bedouin boys, by tribe and age	153
Table 62	Weight/stature index in South Sinai Bedouin boys, by tribe and age	154
Table 63	Weight/stature index in South Sinai Bedouin boys, by tribe and age	154
Table 64	Body surface area (sq cm) in South Sinai Bedouin boys, by tribe and age	155
Table 65	Body surface area/weight (cm ² /gr) in South Sinai Bedouin boys, by tribe and age	155
Table 66	Energy expenditure required to perform identical tasks (Kj/min) in South Sinai Bedouin boys, by tribe and age	156
Table 67	Comparison of morphological similarity and disparity between Muzeina and Gebeliya tribes by means of two-way analysis of variance, 41 traits; boys, 5-13 years	157
Table 68	Comparison of morphological likenesses and differences between the Gebeliya, Muzeina and four Bedouin tribes separately, by means of one-way analysis of variance based on 42 traits	161
Table 69	Comparison of morphological likenesses and differences between the Gebeliya sub-tribes by means of one-way analysis of variance based on 41 traits	164
Table 70	Comparison of morphological likeness and differences between the Muzeina sub-tribes by means of one-way analysis of variance	167
Table 71	Discriminant analysis stepwise procedure based on morphological traits: Muzeina vs. Gebeliya, F=1,4, boys 5-13 years	171
Table 72	Percent of individuals correctly identified by tribal membership, for F=1 and F=4	172
Table 73	Discriminant analysis stepwise procedure based on morphological traits of South Sinai Bedouin boys, 5-13 years, by tribe; F=1: Gebeliya (1), Muzeina (2), Aleigat and Hamada (3), and all other tribes (4)	173
Table 74	Percent of individuals correctly identified, by tribe, and F=1 and F=4, respectively	175
Table 75	Results of principal component analysis. First ten loading factors; All South Sinai Bedouin tribes combined; boys 5-13 years [^]	179
Table 76	Results of principal component analysis. First ten loading factors for 41 morphological traits; Muzeina tribe only; boys, 5-13 year	183
Table 77	Number of Muzeina boys aged 5-13 years, according to "blood relationship" (descendents) and place of residence (altitude)	190
Table 78	Number of traits for which a significant/non-significant difference was found between ethno-territorial Muzeina Bedouin groups by means of MANOVA, based on 42 traits	191
Table 79	Average monthly consumption by Bedouin families in South Sinai in the 60's and 70's (data from Perevolotzky and Perevolotzky, 1979)	196
Table 80	Support per month per capita received by South Sinai Bedouin from different welfare agencies including the Israeli government (kg)	196

Table 81	Number of South Sinai Bedouins receiving food support (full or partial) in 1979, according to data supplied by the Israeli Ministry of Work and Welfare	197
Table 82	Food consumption by Bedouin children in South Sinai: Percentage of children who obtain one of the enumerated food items per day	200
Table 83	Average daily caloric consumption and daily intake per person of protein, fat, and carbohydrates in five contrasting economies	201
Table 84	Kurtosis (K) and skewness (S) for some metric trait distributions in different Bedouin groups	207
Table 85	Kurtosis (K) and skewness (S) for some metric trait distributions in different Muzeina sub-tribes	210
Table 86	A correlation matrix between eight morphological traits in Muzeina boys, aged 5-13 years	212
Table 87	Changes in the frequency of "heterozygous"-modal individuals for some morphological traits, as affected by stabilizing selection and inbreeding	216

Legend to figures:

Figure no.	page
FIGURE 1 Population Centers in South Sinai Where Children Were Examined	10
FIGURE 2 Territorial Distribution of the Bedouin Tribes in South Sinai	11
FIGURE 3 Genealogical Tree of the Muzeina Tribe	39
FIGURE 4 Genealogical Tree of the Gebeliya Tribe	40
FIGURE 5 Territorial Distribution in South Sinai of the Muzeina Sub-tribes	45
FIGURE 6 A Scheme Describing the Process of Splitting of a Hams. All the living members appearing in the genealogical tree comprise a "Blood Feud Group". The members of the next generation will already form two such groups, that of Id Salem Aly and Aly Salem Aly- An Example from the Muzeina Tribe	47
FIGURE 7 Flow Chart Demonstrating the Main Factors Associated with Demographic Changes in South Sinai After 1967	54
FIGURE 8 Women Exchange in Marriage Between the Gsenat Sub-tribe and Other Sub-tribes of the Muzeina Tribe in South Sinai	82
FIGURE 9 Number of Generations of the Mates from a Common Ancestor in Various Types of Marriages	84
FIGURE 10 The Origin of the Hams of Haj Abdallah Khamid Awad and its Place within the Genealogical Tree of the Muzeina Tribe	85
FIGURE 11 The Genealogical Depth of the Various Marriage Types in the Hamid Aiyed Family	86
FIGURE 12 Genealogy of Inbred Individuals Originating from One Family (mates F and K)	88
FIGURE 13 Cluster Analysis of the Morphometric Traits of Boys 5-13 Years Measured in the Present Study: the Muzeina Tribe	107
FIGURE 14 Stature of Muzeina Boys Aged 5-13 Years Compared With That of Boys of Indian, Mediterranean and African Populations	109
FIGURE 15 Mean Stature of Muzeina Boys at Ages 6 and 13 Years Compared With That of Boys of Comparable Ages in Mediterranean, European, American and African Populations	109
FIGURE 16 Mean Stature of Muzeina Boys Compared With That of London Boys, by Age; Data "Smoothed"	110
FIGURE 17 Velocity of Growth in Stature in Bedouin Boys From South Sinai (Muzeina Tribe) Compared With Boys From Egypt, India, Europe (England) and Africa (Liberia), 6-18 Years of Age; Data "Smoothed"	111
FIGURE 18 Percentage of Mean Stature of Adult Males Attained by Bedouin Boys From South Sinai (Muzeina Tribe), Europe (England) and India, Ages 5-18 Years	112
FIGURE 19 Mean Body Weight of South Sinai Muzeina Boys Compared With That of Boys From India, Mediterranean and African Populations, ages 5-13	114
FIGURE 20 Mean Body Weight of Muzeina Boys Aged 6 and 13 Years Compared With Children of Other Countries at Like Ages	114

FIGURE 21	Mean Weight of Bedouin Boys From South Sinai (Muzeina Tribe) and London, by Age; Data "Smoothed"	115
FIGURE 22	Mean Annual Velocity in Weight of Boys between Ages 5-18 in South Sinai (Muzeina Tribe), Europe (England), African (Liberia), Egypt, and India; Data "Smoothed"	115
FIGURE 23	Percentage of Mean Male Adult Weight Attained by Boys From South Sinai (Muzeina Tribe), England, and India, at Annual Intervals, Ages 5-18	117
FIGURE 24	Ratio of Weight to Height in Muzeina Boys, 5-13 Years of Age, Compared with Like Data for Boys in England and India	118
FIGURE 25	Change With Age in Energy Expenditure Required to Perform a Defined Task, in Muzeina and Jewish Boys in Israel	125
FIGURE 26a	Body Surface Area in Muzeina Boys Compared With Russian Boys, Ages 5-13	127
FIGURE 26b	Body Surface Area/Weight in Muzeina Boys Compared With Russian Boys, Ages 5-13	127
FIGURE 27a	Body Surface Area in Muzeina Boys Compared With Israeli Jewish Boys, Ages 5-13	128
FIGURE 27b	Body Surface Area/Weight in Muzeina Boys Compared With Israeli Jewish Boys, Ages 5-13	128
FIGURE 28	Morphological Similarity and Disparity Between Seven Different Groups of Boys at Ages 7, 9 and 12, Respectively (groups are indicated in footnote)	131
FIGURE 29	Plot of Discriminant Scores for Four Bedouin Tribes	174
FIGURE 30	Morphologic Similarity Between Bedouin Tribes*: Cluster Analysis (F=4, Average linkage)	176
FIGURE 31	Standard Score Distribution of Body Height in Muzeina Boys, Compared to Normal Theoretical Distribution	212
FIGURE 32	Standard Score distribution of Upper Body Length in Muzeina Boys, Compared to Normal Theoretical Distribution	212
FIGURE 33	Standard Score Distribution of Facial Height in Muzeina Compared to Normal Theoretical Distribution	213
FIGURE 34	Standard Score Distribution of Head Length in Muzeina Boys, Compared to Normal Theoretical Distribution	213
FIGURE 35	Standard Score Distribution of Hand Length in Muzeina Boys Compared to Normal Theoretical Distribution	213
FIGURE 36	Standard Score Distribution of Lower Arm Length in Muzeina Boys, Compared to Normal Theoretical Distribution	213
FIGURE 37	Standard Score Distribution of Chest Circumference in Muzeina Boys, Compared to Normal Theoretical Distribution	214
FIGURE 38	Standard Score Distribution of Head Breadth in Muzeina Boys, Compared to Normal Theoretical Distribution	214