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Abstract 
The meaning of "Eigenbehaviour" is discussed under a philosophical and a mathematical 
point of view. We show that Eigenbehaviour characterises the turbulent behaviour of a 
fluid modelled by the Navier Stokes equations. Eigenbehaviour is therefore a concept that 
can be understood in the frame of deterministic systems. 
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1 Introduction 

An understanding in social sciences needs concepts that can not be realised in the 
mathematical theories used in natural sciences (Weiss, 1992). A closed framework for 
wider concepts is provided by constructivism (Glaserfeld, 1996), where fundamental 
ideas like selfreference and autopoiesis can be discussed. It is an open question which of 
the fundamental concepts of social sciences can also be realised into a mathematical 
framework (Puntel, 1991). This question will be answered here for one of the most basic 
concepts in social sciences, the idea of an "Eigenbehaviour". A behaviour of a system is 
called Eigenbehaviour, if it is independent from its design and from external influences. 
The Eigenbehaviour of a system impedes that an outer observer can forecast its future 
behaviour. It is a reason that makes anticipation difficult. Eigenbehaviour is therefore an 
important concept in a theory of anticipatory systems (Dubois, 1997). We discuss this 
concept in the view of constructivism and we recall that also practical engineers had used 
it in hydromechanics to distinguish between turbulent and laminar fluids. By an 
observation of the fluid around a profile, engineers have noted that the fluid in the 
turbulent region is largely separated from the main stream. A precise mathematical 
definition for this separation will be given and with a new solution method for the 
Navier-Stokes equations, an expression will be obtained that assigns to every point (r, t) 
a Fuzzy membership degree to the region of separation. Our discussion yields a new 
unclerstanding of turbulence. We show that turbulent behaviour can be understood as the 
emergence of an Eigenbehaviour in the fluid that can not be anticipated. 

2 Eigenbehaviour in the View of Constructivism 

Constructivism enables an understanding of selfreference and autopoiesis, concepts that 
characterise living systems and their differences to machines. Selfrefering systems are 
able to change the language and the basic laws that define the relation with their 
environment. Selfrefering systems question the frame that defines their live (Figure lA). 
In contrast to the constructivistic point of view, the foundation on a fixed language and 
on fixed basic definitions is indispensable for a mathematical theory. This basic 
foundations of the theory can not be discussed in the theory itself. (Goedel proofed that 
some questions concerning the wholeness of a theory can not be answered in the theory 
itself). For the formulation of a mathematical theory, a fixed frame is necessary, 
containing the description language and the definitions of the basic elements for the 
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(1A) Constructivistic view: Reality is (lB) View of mathematical 
formed by the environment and the meaning systems theory: The world is 
assigned to this environment by the beings. constructed with elementary elements. 

construction of the complex objects. Objects in a mathematical theory are determined by 
the elementary elements and the laws describing the relations between this elementary 
elements (Figure lB). The fixations made in the beginning of the construction of a 
mathematical theory are decisive for the whole theory. (It is one of the main goals of 
Fuzzy Logic, to make this fixations as little engaging as possible. But also Fuzzy Logic is 
a mathematical theory with basic definitions (Kiendl, 1997 ).) 
Self determination is one of the fundamental principles that marks the difference between 
artificial systems that can be described with mathematical systems theory and living 
systems that need wider concepts ( of constructivism) to make them understandable and 
investigable. The self determination of the knowledge of the beings in the constructive 
viewpoint has been formulated by Luhmann (1997): 
(LUl): "A constructivistic epistemology understands knowledge no longer as 

representation of environmental states of affairs (in any symbolic form whatsoever ) 
but as 'Eigenbehaviour' of a selfreferential system." 

The objects are therefore, in the constructive viewpoint, not only determined by the initial 
configurations and the dates, coming from the environment to the objects, but also by 
their 'Eigenbehaviour' that gives them some independence from the environment. We 
know from Hegel, that the faculty to discriminate gives us the capacity to build ideas, 
fixed in the words of our language. If this discriminations are not fixed but discussed by 
the beings in the time development of the world, then the world will be undetermined. 
Lumann formulates this effect: 
(LU2): "The result of a re-entry into the system of the distinction between system and 

environment is that such systems operate in the mode of selfproduced indeterminacy." 
An important difference between social sciences and natural science is the impossibility in 
social sciences to fix a priori the basic description elements over which a general theory 
can be constructed. This point had been stressed clearly in the book of J.Weiss over the 
work of Max Weber. Weiss shows that Weber does not offer a theory for social sciences 
but a framework to find methods to deduce a scientific understanding of social 
phenomena (Weiss, 1992). 

3 Emergence of an 'Eigenbehaviour' in Deterministic Systems 

The understanding of the relation between the wider concepts, necessary in social 
sciences, and the methods offered by mathematical systems theory is one of the most 
important problems. It is the challenges of mathematical systems theory to explain with 
its own methods as many phenomena as possible from constructivism. 
The objective of this article is to show that the emergence of an 'Eigenbehaviour' 
independent of fixed initial conditions and of the exterior influences on the system, is also 
possible in well-defined deterministic mathematical systems (compare statement (LUl)). 
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Due to the statement (LU2) this effect is only possible in systems with a re-entry of data 
produced by the system itself, or spoken in a mathematical language, by systems defined 
by nonlinear differential equations. 
The examined system is a fluid outside a boundary, defined by the Navier-Stokes 
equations: ( 1) 

dii(t, x, y, z) (- )- T] _( ) -( ) 1 ----+ u(t,x,y,z)•v' u(t,x,y,z)--~u t,x,y,z =F t,x,y,z --v'p(t,x,y,z) at p p 
and the continuum equation: V ii( t, x, y, z) = 0 (2) 

( ii denotes the velocity of the fluid at time t in r = (x, y, z), V := (¾x• ¾y• ¾z) T, 

~:=VT · V, F are the external forces, p is the pressure and 11, p are parameters.) 

By an observation of the fluid, two different behaviours can easily be distinguished. In 
the laminar case, the behaviour of the fluid is similar to the behaviour of a solution of a 
linear partial differential equation, but in the turbulent case, great instabilities in the 
behaviour of the fluid will be observed. It is an open question, how to give an exact 
definition of turbulence in a mathematical framework. In the following table, some of the 
proposals to specify turbulence behaviour will be repeated: 
(I) The fluid is called turbulent, if the behaviour of the fluid is to complicated to be 

calculated.(Oseen, 1930) 
(II) The fluid is called turbulent, if the behaviour of the fluid is chaotic.(Chaos theory) 
(III) The behaviour of the fluid is called turbulent if there are bifurcations in the time 

development of the solutions of equation (l).(Kirchgassner, 1975) 

But as it is very difficult to verify this effects for the solution of equation (1) (Ansorge 
Sonar, 1997), we examine here a simpler effect that is accompanied with turbulent 
behaviour. From a practical engineering viewpoint, Greiner and Stock (1978) 
characterise the turbulent regions of the fluid by the following properties: 
(IV) In a turbulent region there exist many vortexes and the fluid in the region is largely 

separated from the main stream of the fluid. 

In a mathematical language, a measure for the coupling between the parts of the solution 
in a region is given by the smoothness-degree of the solution. On the other hand, for 
smooth Eigenfunctions, the smoothness degree of a solution can be defined by the 
decrease of the coefficients, for the Eigenfunctions of large Eigenvalues, in the 
Eigenfunction expansion of the solution ii . A measure for the separation of the fluid is 
therefore provided by the increase of the coefficients, for Eigenfunctions of large 
Eigenvalues, in the Eigenfunction expansion of the solution ii. 
The Theorem postulates that this measure can be deduced from equation ( 1) for linear 
boundaries. The proof of the Theorem depends on a new solution method. 

Theorem: From equation (1) and boundary values on linear boundaries a mathematical 
expression <I>{ t, r) E [ 0, 1) can be derived that characterises the separation of the solution 
in a region from the main stream or from the influence of the boundary values. This 

expression «I>(t, r) E (0, 1] is a membership degree of a space point r E JR. 3 at time t 

to a region of separation. <I>( t, r) defines regions where the parts of the solution are 
disconnecting. 
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Consequences of the Theorem: 
(A) The function <I>( t, r) characterises a typical behaviour of the solutions of nonlinear 
partial differential equations, because (as shown in the proof) for linear partial differential 
equations, the function <I>( t, r) would be identical zero. 
(B) The region of separation, characterised by high values of the membership function 
<I>( t, r) ( <I>( t, r) "' 1 ), forms a frontier for the influence from the boundary values ( and 
from other parts of the fluid). Behind this frontier, the solution is no longer controlled by 
the boundary values. The fluid shows an Eigenbehaviour and exact anticipation is now 
impossible. The form of the solution behind the frontier is selected by the stability of the 
solution form under the action of the Navier Stokes equations (Figure 2). Stable parts of 
the solution are parts that are preserved (in a time interval) under the action of the Navier 
Stokes equations. The frequency of the observation of a solution form (the probability of 
this form) is proportional to its stability. There exist different methods to examine the 
stability (in this sense) of solutions of the Navier Stokes equations (Hopf, 1942), 
(Kirchgassner, 1975), (Heisenberg, 1948). 
(C) The connected regions in the complement of the region of separation form the 
granules in the fluid. 

boundary 

values 
action of the 

boundary values 

region controlled 

by the boundary values 

region where the solution 

depends on the stability 

of solution entities 

(2) Different behaviours of a solution of equation (1): The membership 
function <I>( t, r) defines parts of the fluid that are no longer controlled and formed by the 
bound values but b their own 'Ei enbehaviour'. 

(D) By the solution algorithm used in the proof of the Theorem, the smoothest solution 
of ( 1) is selected. It can be shown that this principle signifies a maximisation of the 
entropy of the solution. Our selection principle corresponds to the second theorem of the 
theory of heat, whereas in functional analysis the relevant solution is selected claiming the 
limitation of the energy of the solution and therefore uses the first theorem of the theory 
of heat (Hopf, 1951). 

4 Conclusion 

"Eigenbehaviour" characterises a turbulent fluid modelled by the Navier-Stokes 
equations. Eigenbehaviour is therefore not a property that characterises social systems 
and distinguishes this systems from deterministic systems. 
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Proof of the Theorem 
(I) Approximation of solutions of the Navier Stokes equations: 
The solution algorithm will be presented in four steps: 

Step 1: Elimination of the pressure term p: 
p - - 1 

With the denotations: 2.(ii) := --iiV + Liu , f := F - - Vp 
11 p 

equation ( 1) can be written in the form: 

a
a ii= ~E(ii)ii + f (3a) 
t p 

A solution of equation (3a) will provide us a solution of the system ( ( 1 )&(2)) due to 
arguments given by Ladyshenskaya (1965): 
The function space V of all possible solutions ii of ((1)&(2)) can be represented by the 

sum of two spaces: V = Vv EB V~ with 

Vv := { ii E Vjrot ii = 0, where rot ii is interpreted as a distribution in D'} 

and v~ .·-{ ii e V \fv e Vv : .f ;(f)U(f)df - 0} · 

Representing F as a sum F = Fy + F .l , with Fy E Vv and F .l E vJ, 
V Vv V Vv 

1 - -
and defining p such that : - Vp = Fy ( p exists because of rot Fy = 0) 

p V V 

th . (1). d d a - ll _(_)_ F- l n ll _(_)_ F-en equation 1sre uce to -au=-.:::. U u+ --vp=-=- U u+ .l· 
t p p p Vv 

The projection P .l : V ~ Vv .l is a continuos operator that does not produce any 
Vv 

separation of the parts of the flow ii or any chaotic effects. 
The following discussion can therefore be restricted to equation (3a). 

Step 2: Discretisation of the problem: To solve equation (3a), the problem will 
be restricted to very special boundary and initial conditions. 

ii(O,x,y,z)=O for t<O (3b) 

ii(t, 0, y, z) = iio(t, y, z) E C
00

(R 3, R 3) (3c) 

f(t, x, y, z) = 0 (3d) 

Fo, this boundary conditions, the Navier Stokes equations have the fonn for ii -(: J : 

~.£.[~]-u-~-[ ~i+~.£.[ ~i-v-~-[~]+2}_·£_·[~]-w•.!_·[ ~i = ~[ ~i 
p ax2 w ax w p ay2 w i)y w p az2 w az w at w 
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The substitutions A(u) := - · u and B(u) := --- - · v · - +--- - • w- - yield: p [ a
2 

p a a2 
P a ] 

11 ay2 11 ay az2 11 dZ 

-· v -A(u)-· v +B(u) • v =-·- v a2 ( u l _ 0 
( u l _ ( u l p 

O 
( u l 

ax2 w ax w w 11 at w 

a2 a 
and for the operator 3(u): 3(u) =-2 -A(u)-+B(u). 

dX dX 

To calculate an approximation of the solution of equation (3), a representation of the 
functions u( t, x, y) by sequences of step functions will be used. 

Let u A : Z 4 ➔ 1R ( ~ E IR + := { r E IR ir < 0}) denote a family of functions that 
satisfies the approximation property (5): 

(4) 

u( t, x, y, z) = u A ( it, ix, iy, iz )+ o(~) (5) 

for it,ix,iy,iz EZ with it:=[:}x:=[:}y :=[:}iz:=[:} [r]:=sup{zeZ Jz::;r}. 

a a a a 
The operators - , - , - and -a are replaced by discrete convolution operators at ax ay z 

{ 
¼ fori=O 

s6t *, s6 x *, s6Y * and s6z *with: s61;(i):= -¾
0 

fori=l 
else 

(l;=t,x,y, z), 

k(i) = l(i) *h(i) is defined by: k{i) := {j=~ h(i - j) · l(j) if this expression exists} 

undefined else 

and k *2 := k * k . 

The operator 2.(u(t, x, y, z)) is represented by the six dimensional matrix: 

=-11 (u 11)( ix , i~. iy, i;,, iz, i;) := 

(6) 

(7) 

s X;. (ix' i~. iy, i;,, iZ' i;) + A(u){ix· i~ . iy, i;,. iZ' i;) · s AX (ix, i~. iy, i;,, iZ' i;) + B(u)(ix, i~. iy, i;,. iz, i~) 

with A(u)(ix , i~.iy,iy,ivi;)= ~ u(it'ix,iy,iz), 

B(u)(ix , i~ . iY' iy, iz, i~) = s6 Y *2(ix, i~. iy, iy, iz, i~ )- v(ix, i~, iy, iy, iv i; ) · s ay(ix, i~. iy, i;,. iz, i~) 

+s Az *2( ix, i~. iy, iy, i2 , i~ )- w(ix, i~. iy, iy, i2 , i~ )· s &(ix, i~, iy, iy, i2 , i~) , 

s61;(ix, i~.iy,iy, i2 , i~):=s61;(i1;-i~) for ~=x,y,z, 

240 



The matrix S,1 (ii A)( ix , i~ , iy, iy, i2 , i~) is a block triangular matrix because of 

E,1(ii.1)(ix, i~ , iy, iy , i2 , i~)==o for ix< i~ or iy<iy or i2 <i~. 

For block triangular matrices, the root and the inverse in the space of block triangular 
matrices can be calculated. This calculations are explained in Example 1 for the simple 
case of a two dimensional block matrix (Sommer, 1977). 
Example 1: Calculation of the root of a block triangular matrix. 

· · . main diagonal 

a2 a [alO all a12 0 ] 
S(x, y) :==a(x,y)-2 +b(x, y)-a +c(x, y)H.s,1(i ,i ):= O aoo a01 aoz 

dy y x Y O O a_10 a_11 
0 0 0 a_20 

!"L(ix• i ) := .. . O boo bo1 bo2··· satisfies n,1(ix , iy)on,1(ix , iy) = 3,1(ix, iy) 
[ 

... b10 b11 b12 bz2·· · 1 
o y ... 0 0 b_10 b_n-•· 

... 0 0 0 b_20•·· 

if the elements of the matrices s,1(ix• iy) and n,1(ix, iy )2 are equal or if the following 

equations hold: 

(0) 

(1 ) 

(2) 

\ij E Z 

v'jE Z 

VjeZ 

From equation (0) calculate b .
0 

for j e J and then from equation ( 1) b jl for j E '7L. 
I 

and then from equation (2) bjz for j E z ... and then from equation (k) bjk for j E Z . 

Step 3: Reduction of problem (3) to a homogenious difference equation 

for the operator 3,1(ii.1)(ix, i~ , iy, iy , iz,i;): 

a 
The arguments given in this step show that the representation of - by a slightly 

at 
modified convolution operator s At * reduces problem (3) to a homogenious difference 

equation for the operator =-.1 (ii A )(ix, i~ , iy , iy, i2 , i~). 

For an approximation of ii by .the step functions ii !l , we obtain from (3) the equations: 

- (- )- p s- -:=.,1 U,1 U,1 == - dt *U,1 
TI 

(8a) 

§At *u,1(0, ix , iy, iz)=O (8b) 
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u11 (it'O,iy,iz) = u011 (it,iy , iz) (8c) 

where u110(it, iy , iz) is an approximation of u0(t, y, z) e c00 (R 3, R 3) by a step 

function with step length A and S At * is an approximation of the operator S At * defined: 

{ 
¼ fori=l 

S11t(i) := -¼ for i = 2. 
0 else 

The discrete problem (8) will be solved following the order of the time instants it. 
Because of (3b), in the first step we have to solve the equation: 

3 11 ( ii11 (o, ix, iy, iz ))u11 ( 1, ix, iy, iz) = 0 (9a) 

with the boundary condition : ii A ( 1, 0, iy, iz) = u011 ( 1, iy , iz). (9b) 

In step it + 1 ( it e N ) an inhomogenious difference equation has to be solved: 

s11 (ii 11 (it , ix , iy,iz))u11(it+l,ix,iy,iz)= ~ §At *ii11 (it+l,ix,iy,iz) 

depends on iit,.(it,ix,iy,iz) for i1=it,it-1 

3 11 ( u11 (it, ix, iy, iz)r 
1 

is a convolution operator that can be calculated with the methods 

of Example l from the operator :::11 ( ii11 (it, ix, iy, iz)) and therefore the last equation can 

be transformed into the equation: (10a) 

:::t..( ii.1.(it, ix, iy, iz)) iit,.(it + l ix, iy, iz )-::::.1.( ii.1.h· ix, iy , iz)f 
1 *s dt *U.1. (it+ 1, ix , iy, iz) = 0 

depends on ii,1(ii,i,i)y,iz) for ii =it,it -1 

where the boundary condition (10b) had to be satisfied: 

ii 11 (it + 1, 0, iy , iz) = iioA (it+ Uy, iz) (10b) 

As the function S 11 ( ii A (it, ix, iy , iz) r l ~ S At * ii A (it+ 1, ix, iy, iz) can be calculated 

from values ii t,. (i1,ix,iy, iz) for i1 =it, i1 -1 obtained in the steps before, it remains to 

solve an equation: 

s11(ii11(it,ix,iy,iz))(v 11(it +1,ix,iy,iz)) = 0 

with: 
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Step 4: The solution of the homogeneous difference equation (11) for the 

operator 3 ~ (ii~). Factorisation of the operator 3 ~ (ii~): 
The equation (1 la) is the discretisation of a homogeneous partial differential equation of 
second order. As shown in Example 2, the formal solution of such a differential equation 
is composed by two solution families . To transmit the solution method of Example 2 to 

the problem (3), the operator 3~(ii~) has to be factorised: 

a
2

2 -A(ii)~+B(ii)=(! +c1(ii))(~+c2(ii)) (12) 
~ ~ ~ ~ 

[

clx (ii) 0 0 l [c2x (ii) 0 · 0 l 
where c1(ii)= 0 c1y(ii) 0 and c2(ii)= 0 c2y(ii) 0 are 

0 0 c1z(ii) 0 0 c2z(ii) 

matrices with elements in a for fixed ix, iy E Z. 
The explicit form of (12) is: 

a2 _ a _ a2 _ _ a ac2(u) _ _ 
- 2 -A(u)~+B(u) =-2 +(c1(u)+c2(u))~+ :-. +c1(u)-c2(u) 
~ ~ ~ ~ ~ 

acz(ii) ac2(ii) ac2(ii) au 
The expression :-. · ii can be transformed: --'=---• ii = :-.- · - ·ii= 

oX dX oU dX 

(
ilc2,(ii). du+ ilc2,(ii). ilv + ilc2,(ii) . ilw) 0 0 

dudJ, civil,. ilwax 

(
ilczy(ii) . du+ ilc2y(ii). av + ilc2y(ii). ilw) 0 -(~) 0 c1uax avax awax w 

0 0 (ilc22(ii) .. ~+ ilczz{ii) . av + ilc2,(u) . ilw) 
auax avax awax 

ac2x(ii) ac2x(ii) ac2x(ii) ~~--u ~~--u ~~--u 
au av aw 

= dC2y(ii) _V ac2y(u) ·V ac2y(ii) · V aax(W~] 
au av aw 

ac2z(ii) ac2z(ii) ac2z(ii) 
-~--w ---•w -~--w 

au av aw 

xample . o ution o t e homogeneous partia I erenhal equation 

(
a:+ a2

2 + a: ]u(x,y,z)=O (El 
ax ay az 

A discretisation of the differential equation (El) provides the difference equation (E2): 

(sZ +s~~ +sZ)u~{ix,iy,iz)=o~--- (E2 

As shown in Example 1, the square root { s ~~ + s Z) of the operator { s ~~ + s Z) can 

be calculated and we obtain from equation (E2): ___ ~--- (E3 

(s6x -✓-t✓(s;.;+sz) }(s6x +✓-1 (s;.; +sZ) )ud =(s6x +✓-1 (s;.; +sZ) }(sd< -✓-t✓(si+sz) }A =0 
Equation (E3) can be split into two equations: 
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(sru- -✓-t✓(si +sZ) }A= 0 (E4+) and (sru- +✓-t✓(sZ +sZ) }A= 0 (E4-

The definition of s ru- together with (E4) yields: 

uA+(ix +l,iy,iz)=(id+~✓-1✓,..,.(s_;?_y_+_s_Z--c-) }A+(ix,iy,iz) (ES+ 

and uA_(ix + l,iy,iz) = (id-~✓-! (si +sZ) }A-(ix, iy, iz) (ES-

with the solution families: 

uA+(ix , iy,iz)=(id+~✓-1 (sZ +s,Z) yx uA+(O,iy,iz) (E6+ 

and 

For 

and 

uA+(ix, iy, iz) = (id+~✓-t✓(sZ +s,Z) )ix uA+(o, iy, iz) 

V ·- l e,_ is an Eigenvector of (s;?y +s~~)} A+.- span e,_ 
with Eigenvalue). and Re). :S 0 

v A- := span{e,_ e,_ is an Eigenvector of ✓( s i + s Z)} 
with Eigenvalue ). and Re).> 0 

(E6-

(ES+) provides a smooth solution u+ ( x, y, z) for boundary values approximated by step 

functions in V h.+ and (ES-) provides a smooth solution u_(x, y, z) for boundary values 

approximated by step functions in VA-. This statement is due to the following facts: 
(a) All possible boundary is values can be approximated by step functions from 
VA+EBV/J._for~ ➔ O , x= Lim ix·~,y= Lim iy ·~.and.z= Lim iz·~. 

h.➔0 h.➔O A➔O 

(b) For an Eigenfunction e,_ of the operator ✓(si +sZ) with the Eigenvalue A we 

obtain from equation (ES±) with h.= 1/n, ix = [ n · x] for n ➔ co :: 

u(x,y,z) = 
0
~m,_,(id± 1/n ✓-f✓(si +sZ) r·\A(y,z)=exp(±A✓-l ·x) ·e,,.(y,z) 

(c) From (b) follows that for the selected solution families and for the representation of 

u( x, y, z) by series of Eigenfunctions of the operator ( s i + s Z) , the coefficients are 

exponentially decreasing respective to x. As the Eigenfunctions of ( s i + s Z) are 

exponential functions the relation between the smoothness of a function and the decrease 
of the coefficients in their Eigenfunction-expansion can be deduced from a wellknown 
theorem from Fourier-Transformation F : 

f(x) n-times differentiable ⇒ Lim F(f(x), ro)/ n = 0 ⇒ f(x) (n-2)-times 
ro➔oo I co 

differentiable 
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H 

With the notation: ac:t) := the factorisation (12) 

is equivalent to the equation: 

[ 
H J a2 _ a _ a2 . _ _ ac2(ii) a _ _ 

- 2 -A(u)-+B(u) =-2 + c1(u)+c2(u)+--_ - -+c1(u)-c2(u) 
ax ax ax au ax 

(
1 0 OJ and a comparison of the coefficients yields ( Id := o 1 o ): 
0 0 1 

H 
. acz(ii) 

-A(u)Id = c1(u)+c2(u)+~ 

B(ii)Id = c1(u) -c2(u) 
H 

or ac~?) = -A(u)Id-c2 (u)- B(u)ld -c2(ur 1 

The initial conditions of equation (14a) for u = 0 are deduced from equation (3b): 

(13a) 

(13b) 

(14a) 

- - a2 a2 
A(o)=o and B(o)=-2 +-2 (14b) 

ay az 

a2 a2 a2 a2 a2 a2 
The operator - 2- +-2- +-2 has the factorisation: - 2- +-2- + - 2- = 

~ ~ ~ --- ~ ~ ~ 
= (}_ +✓-I -tz_+£_ J(_!___-✓-r £_+£_J=[}___ -✓-1 £_+£_ ][}___ +✓-1 £_+£_] ox ay az2 ox ay2 az2 ox ay2 az2 ax ay2 az2 

Therefore from equation (14b), we deduce the initial conditions for the operator 

c2(u) for ii=O: c2+(5)=[! +-J=f a:+ a
2

2 ] (14c+) 
ox cly az 

'2-(0)=[:, - +1 :> :2 J (14c-) 

Using this two initial conditions (14c), two solutions for c2(u) can be deduced from 

equation (14a). This solutions are called c2+(ii) and c2_(u) . 

In correspondence to the discretisation used for ii ,the solutions c2+(ii) and c2_(ii) can 

be approximated by step functions cli2+(u) and cli2_(u) with step size Li depending 
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on integer values iu, iv, iw E Z . For this step functions, we obtain from equation (14a) 

ilie illfference equation ( Mili e, -m . e, -m . 'w -G} 
c A2x(ii+ Lleu)-cA2x(ii) cA2x(ii + Llev )-cA2x(ii) c2x (ii+ Aew )-c2x(ii) 
-~~-~---·U -~--~---·U -~--~---·U 

Ll A A 
c A2y(ii + Lleu)-cA2y(ii) cA2y(u+ Llev )-cd2y(ii) cA2y(ii + 6ew )-cd2y(ii) 
-~----~--v -~----~--v -~-----~--v = 

A A A 
c A2z(ii + Lleu)-c A2z(ii) c A2z(ii + Llev )-c d2z(ii) c A2z(ii + dew )-c d2z(ii) 
~~~-~---·W -~--~---·W -~--~---·W 

A A A 

From equation (15) and the initial conditions (14c), we have the following consequences: 
c2x(ii) == c2x(u), c2y(ii) == c2y(v), c2z(ii) = c2z(w) (16) 

and c 62x (u+ Ll) = c A2x (u)-A· ( A6 (u)+c 62x (u)+ BA (ii)-c 62x (uf 1) (17a) 

c 62y(v+ A}= c 62y( v)-A ·(A6 (u)+c 62y(v)+ BA (ii) ·c A2y (u)-l) (17b) 

c L\2z (w + Ll} = c 62z (w )- Ll · ( All (u) + c A2z(w )+BA (ii)· c !12z( w )-l) ( 17c) 

The equations (17) are (for it and ix fixed) equations for infinite dimensional triangular 

four-dimensional matrices c62x(u+A), cA2y(u+A), c62z(u+Ll) with: 

and 

½2-¾-A v(it,ix,iy,i z)+ ½2-¾-A wh,ix,iy, iz) for iy = iy,i z = i~ 

-½2 + ¾ -A v(it'ix,iy,iz) for iy + 1= iy,iz = i~ 

- ½2 + ¾-A w(i1,ix,iy,iz) for iy = iy,iz + 1 = i~ 

½ 2 foriy+2=iy,iz =i~ 

½ 2 for iy = iy,iz +2 = i; 
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0 else 

foriy =iy,iz ==i~ 

else 



Equation (17) can be solved beginning with the main diagonal iy = iy,iz = i' and then 

calculating the first diagonals on the right of the main diagonal iy + 1 = iy, iz = i' and 

iy = iy, i z + 1 = i' and so on, using a similar procedure as shown for the calculation of 

Qt. {ix , iy) in Example l. This algorithm proves the existence of a solution of (17) and 

provides an approximation of this solution defined in bounded regions. For the two initial 
conditions (14c+) and (14c-) two solutions c2+(ii) and c2_(ii) are obtained. 

Remark: The solutions c2+(ii) and c2_(ii) of equation (17) may depend on the path 

from 6 to ii.This path dependence does not destroy the solution method. The operators 
c2+(ii), c2_(ii), and c1+(ii) c1_(ii) are not commutative. 

Using the operators c t,2+(ii) and c t,2_(ii), equation (1 la) can be divided into the two 

equations: (st.x +ct,2+(ii))v{it +lix,iy,iz) = 0 (18a) 

and (st.x +ct,2_(ii))v{it +1.ix,iy,iz) = 0 (18b) 

or equivalently: 

v{it + l ix+ l iy, iz) = (o+c t,2+(ii))v{i1 + l ix, iy, iz) (19a) 

v(i1 + l ix+ l iy, iz) = (o+c t,2_(ii))v{i1 + l ix, iy, iz) (19b) 

The equations (18) correspond to the equations (E4) ofExample2. The following Lemma 
shows that the solution decomposition method can also be applied for the equations ( 18). 
The only difference is that the operator S(ii) depends on ii and this entails the 

dependence of the space partition V t. = VA+ (ii)$ V t,_ (ii) from ii. As ii is changing in 

time and in the parameter x , in each solution step (for each pair i1 +1, ix), a new 
partition has to be calculated. 

Lemma: The space of all summable step functions V can be decomposed into two 
subspaces V t. = V t.+ (ii)$ V t,_ (ii) such that: 

V t,+(ii) c: span{e).,)e;., is an eigenvector for the operator ct.z+(ii) and the eigenvalue A with Re(A) Se} 
V t.- (ii) i;; span{ e}.,je}., is an eigenvector for the operator c ,..2_ (ii) and the eigenvalue A with Re(A) S 0} 

where the minimal value that can be chosen for 0 is bounded ( 0 < 00 ) • 

Proof: The lemma is a consequence of the following facts : 
(A) A change of ii does not imply a change of the type of the differential operator S(ii) 
( ii does not affect the coefficients of the second derivations (Tijonov 1983 p.24)). 
(B) The eigenfunctions of the operators c2+(ii) and c2_(ii) form a basis in the space V t. . 
This property is deduced from the arguments given in Example 2 for equation (6). 
Therefore Vt, =Vt,+(ii)EBVA_(ii) holds for some 0 . 0< 00 can be deduced from the 
statements: 
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(C) For IA.I ➔ 00 the eigenvector ei of c2+(u) ( c2_(u)) and the eigenvalue A tends to 

an eigenvector e). of a
2 

/ 2 + a
2 

/ 2 (- a
2 
/ 2 + a

2 
/ 2 ) and the eigenvalue A. . 

/ ay / az / ay / az 

For the operators a
2 

/ 2 +'i3
2 

/ 2 and - a
2 

/ 2 +a
2 

/ 2 the Lemma had been 
/ ay / az / ay / az 

proved in Example 2 for 0 =O ( compare the definition of V + and V _). 
(D) A very small change of the vectors of a basis does not destroy their linear 
independence.// 

Let PA+(u(it,ix,iy,iz)), PA_(u(it , ix , iy,iz))denotetheprojections 

PM( u(it , ix, iy, iz)) : V .i - V M( u(it> ix, iy, iz)), P.i-( u(it, ix, iy, iz)) : V .i - V .i-(u(it, ix,iy, iz)) 

Using equation (19), with the solution decomposition method, we find the equations (20) 

v A+( it+ 1, ix+ 1,iy, iz) = ( b +c Az+(u) )PA+( ii A (it, ix, iy, iz) )v A (it+ 1, ix, iy, iz) (20a) 

v A-( it+ 1, ix+ 1, iy, iz) = (o+c A2_(ii) )PA-( uA(it' ix, iy, iz))v A(it + 1, ix, iy, iz) (20b) 

v A(it + 1, ix+ 1, iy, iz) = v A+(it + 1, ix+ 1, iy, iz)+ v A-(it + 1, ix+ 1, iy , iz) (20c) 

From equation (10b) and equation (1 lb) we deduce the initial condition: (20d) 

v A (it+ 1, 0, iy , iz) = iioA (it+ 1, iy, iz )-.::A( ii A(it' 0, iy, iz) r 1.s At *ii A (it+ 1, ix , iy , iz) 

Equation ( 11 b) provides the sequence {u A (it + 1, i , i , i )} 1 by the equation: 
u x Y z A=-(neN ; 

n 

uA(it + I.ix. iy , iz) := ( V A(it + 1, ix , iy, iz)-:::A(uAh, ix, iy, iz)rl §At *uAh + 1,ix, iy, iz)) 

The sequence {ii A (it+ 1, ix, iy , iz )} 1 is a solution of (3) in the sense of Non-
A=- (neN) 

n 
standard Analysis (Laugwitz, 1977) or can be interpreted as an approximation of the 
solution by step functions . 

(II) Definition of the membership degree to the region of separation: 
The solution of the Navier Stokes equation defined in (I), had been obtained in complete 
analogy to the solution decomposition method presented in Example 2. But there is one 
important difference. In the linear case, the decomposition of the space V = V + ffi V _ 
could be chosen fixed for the complete solution algorithm. In the nonlinear case, in each 

solution step ix H ix + 1 the operator 3 A ( ii A (it , ix, iy , iz)) changes and- it is therefore 

necessary to calculate a new decomposition VA= V A+(ii)ffi V A_(ii) in each step. By 

reason of this change of the decomposition, the smoothness of the solution ii{ t, x, y, z) 
can no longer be deduced from the solution decomposition method as in the linear case. 

248 



The reason is that in each step, because of the change of the basis vectors, solution parts 
represented by eigenvectors of small eigenvalues can be transformed to parts represented 
by eigenvectors of large eigenvalues in the changed basis. The decrease for ix ➔ oo of 
the coefficients of the eigenvectors of large eigenvalues in the series can no longer be 
proved in the nonlinear case. This is the reason, why in general the smoothness of the 
solution of (3) can not be proved. 
From the previous discussion we deduce an idea for the definition of unsmoothness or of 
the membership degree to a region of separation: 
(RS): The strength of the transfer of solution parts represented by eigenvectors of 

c.!'12+(u(it+lix,iy,iz)) (c.!'12-(u(it+l,ix,iy , iz))> with small eigenvalues to 

eigenvectors of c.!'12+(u(it +1,ix +1,iy,iz)) (c.!'12-(u{it +1,ix +1,iy,iz)) with large 

eigenvalues, produced by the change of the space decomposition, is a measure for the 
unsmoothness of the solution. 

A formal expression for this measure will now be deduced. We call the value of this 
measure in ( t, x, y, z) the degree of separation of the solution in the time instant t and the 

space point (x,y,z). 

With a Taylor series expansion of c.!'12+(ii) and c .!'12-(ii) 

c .!'12±(ii + Llii) = c .!'12±(ii)+ ac .!'1::{ii) · Llii + terms of higher order 

and the eigenvectors eA, eA to the eigenvalue A for the operator c.!'12±(ii) res. 

c .!'12± (ii+ Llii) we obtain the equations: 

~ - (- A-)- (-)- dC.!'12±{ii) A- - f h' h d /1,eA. = C .!'12± U + ilU eA. = C .!'12± U eA. + dU · ilU · eA. + terms O 1g er or er 

and A.eA =c.!'12±(ii)eA. . 
Consequently we have 

~= ~- (-)(- ) ac.!'12+(ii) A- - fh' h d rv.;A. - rv.;A. = C .!'12± U eA. - eA. + dii · illl · eA. + terms O 1g er Or er 

A - (~Id (-))-1 dC.!'12+(ii) A- - f h' h d or ileA := e"- - e'A. = I\, - c .!'12± u aii' · ilU · e'A. + terms o 1g er or er. 

(For linear partial differential equations, from ac .!'1~(ii) = 0 we deduce Lle'A. = 0 . ) 

A formal expression that represents the idea formulated in (RS) is therefore: 

R(t, x) := max 
lliiiill=l 

eA± ,e~± eigenvectors of CA2±(ii) 
1
/( _ )-1acii2+(ii) _ \ -1 
\ Ald-cii2±(u) au ·L'1u ·e'),..,ei.. ( i... 

Rei...,Re'i..$0 (0 is defined in the Lemma of (AI)) 

(The multiplicator i. is necessary to guarantee the dominant influence of the transfer to 

eigenvectors of high eigenvalues. (•, • ) denotes the scalar-product of R 3) 
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To obtain also a dependence of y, z , the definition of R can be modified: R( t, x, Yo, z0):= 
max 

l6iij=l 
e,_± ,ei± eigenvectors of c,:1.2±(ii) 

1

/ ( i-1 ac,12±(ii) ( ) ) .-1 \ A.ld-c,12±(ii) au -ilii •e1,_,q> Yo-Y,Zo-z ·e£ ·•7 

Re 1'., Re £:se (9 is defined in the Lemma of section 3) 

where cp: R 2 ➔ R is smooth, q> ~ 0 and q>(x, y) = 0 for x2 +y2 > Eqi· 

Let \jf: [O, oo] ➔ (0, 1] denote a strict monotone continuous bijection. The membership 

degree to a region of separation is defined: <1>( t, x, y 0, z0 ) := 'l'( R( t, x, y 0, z0)) 

Remarks: (A) The solution algorithm (I) minimises <1>( t, x, y 0, z0 ) . 

(B) For linear partial differential equations from .!lei = 0 we deduce <1>( t, x, y 0, z0) = 0 . 

(C) The function <1>( t, x, y0, z0 ) defines in each time instant the solution-granules 
(Zadeh, 1997) by the connected regions in the complement of the whole space and the 
region of separation. 
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