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The paradigm of dynamical systems as frame of description has been extremely 
successful for a variety of controlled systems. The ingredients of such an approach are 
an (assumed or known) fixed number of degrees of freedom, a phase space, state 
variables, and a (usually differential) equation of motion governing the temporal 
evolution of the system, or its movement in phase space along certain trajectories. Our 
focus of investigation are forest ecosystems. We will argue that they constitute a kind of 
system which does not belong to this class. The presence of memory effects and 
evolutionary processes demonstrate that the local history of these systems, embedded in 
an environment which is also partially created by them, is of utmost inportance. There is 
no phase space for these systems. We therefore conjecture to characterize the system by 
its input-output mapping, considering it as a filter. Properties of this filter are quantified 
by time series analysis tools, identifying relevant time scales, correlations, periodicities, 
recurrences and other temporal structures. We show examples from hydrology and 
solution chemistry. 

Keywords: ecosystems, time series, nonlinear methods, complexity 

1 Introduction 

Dynamical systems are the paradigm of almost all natural sciences. The possible 
behaviors of such systems can be grouped into three classes. The most simple systems 
show a regular deterministic behavior; small changes in the initial conditions lead to 
small changes in the trajectories, the phase space is finite dimensional. The second class 
are the deterministic chaotic systems; the exact computation of single trajectories 
requires infinite precise knowledge of the initial conditions. However, ensembles of 
trajectories may still be predictable in a statistical sense. The phase space is finite 
dimensional; if it is actually low dimensional, a number of methods may apply to 
characterize the chaotic behavior quantitatively. The third class are the stochastic 
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systems with an infinite-dimensional phase space. Well-established methods exist to 
cope with such systems by direct modeling: numerical solution of the equations of 
motion, which are given (or assumed) a priori. 

The experimentalist, however, faces the opposite problem: the data are given, there is no 
equation of motion of whatever class. Judging from measurements, the distinction 
between deterministic chaos and stochastic behavior is often elusive. A finite amount of 
data with an unknown noise level can easily lead to spurious results concerning (e.g.) 
the dimensionality of the attractor. (Hardenberg and Provenzale, 1997). The data 
requirements for a reliable calculation of the largest Lyapunov exponent, say, can be 
enormous and are in most cases not matched by the experimental time series. The 
ambitious goal to reconstruct the underlying equations of motion from the data alone has 
worked up to now for artificial (completely controlled) systems only, for similar 
reasons. Inverse modeling in this sense seems currently out of reach. 

For our focus of attention, forest ecosystems, we will argue that the situation is even 
worse than that mentioned in the last paragraph. The crucial point is that in ecosystems, 
there is no fixed number of degrees of freedom. During evolution, generic innovations 
occur, leading to system variables simply not existent before, and extinction happens, 
the once-and-forever vanishing of variables (this has been called the "privileged" zero 
property (Kampis, 1991)). As there is no phase space for these systems, a partial 
differential equation approach is doomed to failure, as far as the whole ecosystem with 
all its parts (biological as well as abiotic) is concerned. Ecosystem theory has not come 
up with a single example of a successful reconstruction or prediction of both aspects for 
a given system. There are approaches to model the abiotic part explicitly - solving 
transport equations for matter and energy which are spatially distributed and notoriously 
overparametrized - and to model the biological part explicitly - population-biological 
models such as the Lotka-Volterra equation and its relatives, which notoriously ignore 
the important feedback of organisms onto th.eir abiotic environment. 

Whether this failure of process-oriented models for natural ecosystems is due to a lack 
of understanding of the relevant processes which will be overcome in the future or 
indicates a principal limitation is an open question. In cases where the biological 
situation is resetted from time to time via management interferences, as in agriculture 
and forestry, there exist empirical rules (e.g. yield tables) which work heuristically, but 
are unexplained from a scientific viewpoint. 

We conjecture a paradigm shift from the "matter and energy" picture to an informational 
one (Hauhs and Lange, 1998). Environmental signals are processed by the system and 
transformed into output. Thus, the system is characterized by its input-output mapping; 
it is considered as a filter (Lange and Hauhs, 1994). Properties of this filter are 
quantified by time series analysis tools, identifying relevant time scales, correlations, 
periodicities, recurrences and other temporal structures. In this way, the information 
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content, the randomness and the complexity of input and output data sets are compared. 
A general tendency is a randomness reduction (smoothing) and a complexity increase 
(structuring) of signals on their way from the input boundary to the outlet of the system. 

2 Ecosystems as Dynamical Systems 

2.1 Biological and Abiotic Perspectives 

The type of observer determines the perception of ecosytems. Traditionally, biologists 
concentrate on population aspects of the species to be found in a given geographical 
region, possibly delimited by natural boundaries (for migrating species). The abiotic 
environment serves as food supply and is otherwise structureless. There are only few 
approaches where e.g. the spatial resource distribution is explicitly taken into account 
(Rhodes and Odum, 1996). The boundaries perhaps relevant to the biota have no 
meaning for abiotic fluxes. Theoretical descriptions conceptualize populations as given 
by time-dependent densities, to which a differential equation approach applies. In the 
most simple cases (without any spatial structure), one constructs a set of coupled 
ordinary (nonlinear) predator-prey equations, with the Lotka-Volterra equations as 
prototypical example. Spatial spreading may be included in a diffusive manner (Murray, 
1990); however, intra-species interactions as well as feedback to the environment is 
excluded in almost every PDE approach to population ecology. Long-term effects, 
predominantly ongoing evolution, is completely outside the realm of this approach. 
There is, e.g., no formal possibility to include the historical path of the system which led 
to its current state. 

Complementary to that, a typical geophysicist or geochemist approach would be to 
concentrate on energy and matter fluxes across boundaries which are simply not existent 
for the inhabitants of the system. The latter are only relevant as sources or sinks of 
substances transported through and out of the system. A typical unit of study is the 
catchment (Moldan and Cerny, 1994). Thus, an ecosystem is considered as complicated 
chemo-physical factory or sophisticated thermodynamical machine. If such an 
assumption is a relevant abstraction, it should in principle be possible to investigate 
analytical tools from the theory of dynamical systems, which have been extremely 
successful in the past (may be this is an important reason for the appeal of the factory 
metaphor). Specifically, the transport processes are describable by appropriate nonlinear 
partial differential equations (like Richards equation and its relatives), and chemical 
reactions are described by sets of coupled algebraic equations. An obvious purely formal 
problem is the fixation of the appropriate number of initial and boundary conditions 
necessary to achieve unique solutions. In almost all field investigations, even the precise 
location of the boundaries is unknown, and the determination of the initial conditions 
(e.g. soil chemical or hydrological status) in such an extremely heterogeneous 
environment is elusive. In this situation, modellers rely on the assumption that the 
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system has a relatively short memory, rendering the precise structure of arbitrarily 
chosen initial conditions irrelevant at later times (prerun to equilibrate the system). 

But this is only part of the story. The PDEs require the selection of spatially distributed 
parameter functions, like soil hydraulic conductivities or temperatures, which are only 
loosely restricted by measurements, due to the existing heterogeneity even on 
microscales. In practice, direct modelling, i.e. the fixation of parameter functions prior 
to simulation without fitting, is a rare exception. Rather, they are fitted to (part ot) the 
data; as they are arbitrarily distributed continous-valued function, severe 
overparametrization occurs. Consequently, with more than enough degrees of freedom, 
most of the data fits work quite well. The problem with the transport equations in 
ecology is that they are too successful to be informative. Little can be learned from the 
fitting exercise. 

We hypothesize that a common source of these difficulties for both approaches is the 
neglection of historicity of the system. There are obviously long-term memory effects, 
the collection of (abundant) species at the location in consideration and also the 
structure of the abiotic environment is not arbitrary, but has a history. One cannot place 
a given ecosystem to another location and expect it to work also under the new 
conditions (this is sometimes called the "iron law of locus" in forestry) . The shaping of 
the environment by the biota, their anticipative and adaptive behavior must be 
considered. Ecosystem managers (as opposed to scientists) know very well that, from a 
practical viewpoint, ecosystems can be maintained with moderate inferences for quite an 
extended period (centuries), with predictable yields, if the "iron law" is respected. This 
is not reflected in the dynamical systems approach, which has its dominant successes for 
highly controlled (thus highly artificial) conditions, mostly in the laboratory. 

We therefore suggest to abandon the process-oriented approach for ecosystem 
description and substitute it by a data-oriented one. That is, considering the ecosystem 
(with catchments as prototypical examples) as functional unit which is described by the 
transformation they perform on their input to produce the observed output, one tries to 
characterize the type and details of the mapping, identify key variables and set limits to 
what can be learned about the systems interior from this outside perspective. This is not 
just a top-down approach, but also closely reflects the experimental situation of typical 
field investigations, making use of all types of information available from ecosystem 
monitoring programs. 

In the next section, an example will be given where the process-oriented approach is 
much too successful to be useful even in a highly controlled situation. 
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2.2 An Explicit Example for the Process-Oriented Approach 

One of the most common techniques to gain insight into transport characteristics (mean 
residence times, dominating flow paths) of natural catchments is the conduction of 
tracer experiments. We performed several such experiments for a very small (0.63 ha), 
spruce-covered catchment located in southwest Sweden (Lange et al., 1996, Lischeid et 
al. , 1998). The catchment is completely covered by a roof, and natural precipitation is 
replaced by a sprinkler system. The catchment was held at hydrological steady state 
conditions to make the interpretation of transport parameters possibly unique and to 
exclude common excuses. 

One of the experiments involved Deuterium as tracer, applied as a Dirac pulse. The 
observed breakthrough at the outlet was reconstructed with a relatively simple 
convection-dispersion model (Jury, 1982): 

(1) 

where the soil is visualized as one-dimensional column containing mobile and immobile 
fractions of water; c,,, and c;111 are the tracer concentrations in the respective fractions, /3 
is the ratio of water contents of the two fractions, D is the dispersion coefficient, v 

convection velocity and a is a transfer coefficient. 

The breakthrough curve observed together with model reconstruction are shown in 
Fig. 1. Two of the parameters have been fitted and fixed, and only /3 and v are allowed 
to vary. Obviously, these two (!) degrees of freedom are already too much for a unique 
solution: the two drastically different parametrizations lead to undistinguishable 
reconstructions. Thus, the output from the system contains so little information that an 
identification of internal transport parameters is impossible. The tracer substance is not 
processed by the system in a way that would leave recognizable footprints, e.g. from the 
biota, or reveal higher dimensionality like transverse flow. 

It seems obvious that the non-uniqueness or non-identifiability problems are much 
worse for complicated simulation models, solving e.g. three-dimensional transport 
equations for water, heat, and solutes under transient conditions. Calibration of these 
models are merely fitting exercises. On the other hand, the predictive power of this sort 
of ecosystem models is poor in many cases, for at least two different reasons. On one 
hand, the calibration to a specific data sets often renders the model inflexible; it loses its 
generalization capabilities ("overtraining"). It cannot "react" to input patterns never 
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Figure 1: Breakthrough curve for a steady-state Deuterium tracer experiment, together 
with two different best fits with two parameters. 

experienced before. On the other, there is clear evidence that there are limits in flux 
magnitudes below and above which the system does not process the signals properly or 
in the "usual" way. In hydrology, fluxes above the upper limit may appear as macropore 
flow (decoupled from the hydraulic potential) or even lead to catastrophic events 
(landslides). We are convinced that these so-called sensitivity limits should be 
incorporated in the formulation of an appropriate ecosystem theory (Hauhs and Lange, 
1996). 

3 Ecosytems as filters 

The reconstruction of observed output fluxes from the observed input is cum grano salis 
easy, whereas internal information is either impossible to get (considering input-output 
relationships) or ambigous (considering small scale measurements of arbitrarily 
heterogeneous local quantities). Consistent upscaling to ecosystem level is a major 
theoretical challenge (Wood et al., 1988). 

It seems to be a consistent property of ecosystems with a well-defined output boundary 
( catchments in our case) that the spatiotemporal heterogeneity observed inside is not 
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reflected in the output. We have formalized this observation by hypothesizing that 
ecosystems act as filters (Hauhs and Lange, 1996). They transform random input into 
structured output, reducing the randomness. This should be reflected by calculation of 
appropriate randomness measures (cf. eh. 4.2). The output is also redundant to the 
input, as the over-success of curve fitting demonstrates. This is also confirmed by neural 
net simulations (Lischeid et al., 1998), where the input always contains enough structure 
to make the output learnable for the net. It is conceivable that this randomness (or 
information) reduction performed by the system is used for structure formation inside. 
In short, ecosystem act as information filters in their environment; the dampening and 
smoothing of signals makes the identification of internal structures impossible and 
unnecessary if one is interested in the functioning of the whole system as it is embedded 
in its abiotic environment. 

4 The time series approach to ecosystems 

4.1 Possible goals of a time series analysis 

The arbitrariness of process-oriented approaches leads to the question how an effective 
characterization of ecosystem behavior with as few parameters as possible could be 
achieved. Our approach is by time series analysis of the input and output data. Our aim 
is not so much a detailed reconstruction of the output time series, but a characterisation 
of the mapping which the ecosystem performs, or to quantify the filter operation. This is 
accomplished by a detailed comparison of the same investigation methods for input and 
corresponding output fluxes; the most important example for our type of systems is 
precipitation as input and stream runoff as output. Possible goals include the 
identification of trends and periodicities, the quantification of information content, 
randomness and complexity of data, analysis of short- and long-range correlations and 
determination of the effective number of degrees of freedom. A possible implication is 
an answer to the question how complex a model of the data should be. It is obvious that 
spatially distributed highly parametrized models are not justified by the data, but a 
minimal number of parameters are surely required (the example in eh. 2.2 shows an 
extreme case). The complexity of models should be oriented by that minimal number. 
For its determination, principal component analysis or its nonlinear extension (Uhl et al. 
1995) may be used. 

4.2 Methods of investigation 

We apply standard as well as non-standard techniques to selected data sets. Linear 
dependencies among variables are elucidated by calculating their cross-correlation 
function . The presence of periodicities and/or long-range correlations is exhibited by the 
calculation of periodograms. Possible instationarities, trends, extreme periods, 
periodicities and many other (nonlinear) features of the time series are visualized by 
recurrence plots. The phenomenon of high persistence is revealed by calculation of the 
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Hurst exponent, using the rescaled range statistics (Montanari et al.,- 1997). 
Concentrating on short-term structures and complexity considerations, we use symbolic 
dynamics to calculate two candidates for randomness and complexity, resp.: the Mean 
information gain (Wackerbauer et al., 1994) and the Fluctuation complexity (Bates and 
Shephard, 1993). A short technical description of the last two methods follows for the 
interested reader. 

4.2.1 Calculation of Hurst exponents 

Given the time series X(t;) , we define partial sums 

Y" = I, X(t;) (2) 

and deviations from a linear increase of the partial sums within a given range or time 
scale k: 

D(n,i,k)=Yn+i-Yn -f<rn+k -Yn) 

The range statistics then is 

R(n,k) = maxD(n,i,k)- minD(n,i,k) 
OSiSk ~iSk 

The dependence of R(n,k) from the (arbitrary) scale is factored out: 

I Ln+k - 2 S(n,k)= - . (X(t;)-X(n,k)) k ,~n+I 

_ J n+k 
with X(n,k)=- 2,X(t;) 

k i~n+I 

such that our test statistics is 

q(n,k) = R(n,k)I S(n,k) 

(3) 

(4) 

(5) 

(6) 

This quantity is plotted versus k for various values of n (e.g. 20 different realizations), 
and the expected persistence behavior q oc k H · is fitted to the results. 

4.2.2 Complexity measures 

Their calculation is performed by first constructing a symbol string from the data X via 
partitioning: 

(7) 

where A is the alphabet for the symbol sequence. In the examples presented, we have 
chosen a binary alphabet, and the partitioning was performed in a static manner: the 
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values of the observed quantities were cut at the median of their distribution, and all 
values below (above) the median were assigned the symbol O (1). 
Then, one defines a word L length to group symbols together (in this article, L=4). The 
relative word frequencies P ;L and conditional (or transition) probabilities Pt are 

calculated. These are the ingredients to calculate the generalized Shannon entropy 

and our measure for randomness, the mean information gain 
MIGL= Hl -Hl-1 (9) 

Finally, the fluctuation complexity (Bates and Shephard 1993) is given by (index L 
suppressed for simplicity) 

a}c = LP;;(log Pi )2 
(10) 
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Figure 2: MIG and FC as a function of p for a binary Bernoulli sequence. First order 
quantities essentially measure randomness; second order ones have minima both at zero 
as well as maximal randomness and show a maximum at intermediate values. 
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The behavior of first and second order complexity measures, mean information gain 
(MIG) and fluctuation complexity (FC) in our case, is demonstrated in Fig. 2. Here, the 
probability of a simple Bernoulli binary sequence is varied as randomness parameter. 
The two measures can be calculated analytically in this case for infinite sequences. 
Whereas MIG is nonlinearly proportional to randomness, being more sensitive to 
structural changes in the region of low randomness, FC exhibits a maximum and 
vanishes for constant as well as completely random sequences. Thus, FC is closer to our 
intuition of what a "true" complexity measure should be. 

5 Examples 

5.1 Cross correlations 

Figs. 3 and 4 show the linear dependence of three major ions in precipitation and runoff 
water from air temperature for the catchment Lange Bramke, Harz, Germany. 

0.8 --- pH with temperature 
- S04 with temperature 

0.6 
- N03 with temperature 
-- 95 % confidence interval 
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Time lag [months] 

Figure 3: Cross correlation functions of precipitation solute series with air temperature. 
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Figure 4: Cross correlation functions of runoff solute series with air temperature. 

Besides the annual cycle, the input solutes are dominantly positively correlated around 
lag zero, although there are significant delays for S04 and N03 (temperature rises first). 
The transformation by the system changes the situation drastically: now, these two ions 
are anticorrelated with temperature around lag zero, demonstrating biological uptake 
and (in the case of N03) microbial activity in the system. 

5.2 Periodograms 

In Fig. 5, normalized power spectra of N03 and S04 from input (throughfall) and output 
(again from Lange Bramke) are compared. There are two main effects generated by the 
system: a yearly cycle is imposed, which is mainly a temperature effect, and at high 
frequencies, the power law behavior changes from 1/f to approximately 1/f, indicating 
that now long-range correlations are present in the signals. These are due to memory 
effects such as microbial turnover of nitrogen or soil accumulation of sulfate. 
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Figure 5: Power spectra for nitrate and sulfate solutes in precipitation and runoff. 

5.3 Recurrence plots 

0.1 

Figs. 6 and 7 show two examples for recurrence plots of runoff signals from two 
different catchments located in Bavaria, Germany. Both plots span the same time period 
of 2.5 years 1• Dry periods are recognizable as regions with higher pixel densities. 
Periodic patterns appear as rectangles and are dominated by a yearly cycle. Although 
size, geology and climatic conditions are not too different for the two catchments, the 
visual impression of the two figures exhibits strikingly different behavior. The main 
difference is that one of the catchments (Lehstenbach) is completely covered by spruce 
trees, whereas the other has a mixture of beeches and oaks as dominant vegetation. 

1 For completeness, the technical details were as follows: embedding dimension two, threshold radius = 
30% of the mean distance; delay one time step (daily values). 
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Figure 6: Recurrence plots for runoff from the Steinkreuz catchment. 
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Figure 7: Recurrence plots for runoff from the Lehstenbach catchment. 
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