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Abstract 

The stochasti c dynamical system with the states described by elements u of 
a Hilbert space is considered . There is a deterministic system considered as its 
nonperturbed variant. An outcome y is observed under random perturbations. The 
probability distribution P(y, u) of the measurements results in the fixed states u 
is analysed. A class of stochastic systems marked by the full determination of 
the law P(y, u) via equations of the nonperturbed system is found . We also find 
the distributions P(y, u) . These distributions prove to be similar to the quantum 
laws of probability distribution of observable quantities including the principles of 
superposition and uncertainty and the phenomenon of quantization. 
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1 Introduction 
We find in this paper a class of the stochastic dynamical systems and the observation 
procedures for which the probability distribution of observable outputs prove to 
be similar to quantum laws , including the quantum superposition principle (the 
summation law for probability amplitudes) and the principle of uncertainty. Such 
laws are new for traditional theory of stochastic systems. The latter supposes the 
input probability characteristics do not depend on system dynamics . Our results 
relate to the systems with strong interaction of these components. These systems 
are analized in the theories of random processes based on the non-commutative 
theory of probability (Ludwig, 1967), (Pool, 1968) and other, which above all deal 
with the problems of quantum mechanics foundations. Definition of the stochastic 
systems and the observation procedures considered here do not include explicitly 
the postulates of non-commutative probability. On the other hand, this result 
give a new matherial for discussion of the quantum mechanics foundations. The 
special and even mysterious , in some sense, quantum postulates mentioned above 
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can be explained in terms of the general system theory on the basis of sufficiently 
evident requirements imposed on the system and on the obsevarion procedure. These 
requirements, taken separately, stay within the limits of the conventional scientific 
experience related to systems of a quite different nature. 

2 Problem Statement 

We consider a stochastic dynamical system S with the states described by elements 
u of the set M. Let Y be an observable outcome of this system which takes real 
values y ER. 

We introduce an observation procedure for the outcome Y in the given state 
u, which consists in a sequence of measurements. Let the values of y in the 
measurements be random, and let the law of probability distribution be defined 
for every u in the form of the probability measure: 

P(Q,u) ~ 0, VQ C R,u EM; P(R, u) = 1, Vu. ( l) 

There is a deterministic system D considered as a non perturbed variant of system 
S. The equations of the system D, which determine the trajectory u(t) on a given 
segment of time t, are assigned, and the outcome Y is expressed in view of this 
equations as the functional 

y = J(u) (2) 

The challenge is to find a class of the systems and observation procedures 
characterized by the full determination of the law P( Q, u) via the system D 
equations. We also find the characteristic properties of these distributions P( Q, u). 
These distributions prove to be similar to quantum laws of probability distribution 
of observable quantities. 

The traditional problem of stochastic dynamics is to find the probability 
distribution P( Q, t) when the characteristics of the random perturbations are 
preassigned. The relation between the forms P(Q, t) and P(Q, u) is similar , to 
a certain degree, to relation between the program and feedback forms of control in 
the theory of controlled dynamical systems. 

Let the observation be organized so that the average result of the measurements 
coincides with the theoretical value (2): 

J(u) = j ydP, Vu E M. (3) 

Such an observation procedure is termed correct in the average. In this type of 
observation, a significant perturbation of system in each measurement is allowed. 
But these perturbations are filtered by averaging operation. 
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3 Infinitesimal Systems 
Let us assume that the states u are elements of a Hilbert space H , which is , 
generally, complex, with the product (ui, u2 ) . We postulate tbe infinitesimality 
of the considered dynamical system. Or more precisely, we suppose the following: 

• The representation 

J(u) = J(O) +Ku+ (u, Lu)+ O(u) (4) 

for all system characteristics Y is true. Here K is the linear functional, H ➔ R; 
L is the linear operator which is Hermitian due to the reality of the values of 
y = J(u) ; O(u)u- 2 ➔ 0, u ➔ 0. 

• The states u E M are small enough for the assumption O(u) = 0 and the 
linear representation of the system equations to be valid. We suppose also 
that these equations are homogenous. 

In what follows, we shall consider the observable physical quantities Y which are 
described by quadratic forms only, i.e., J (0) =Ku= 0, 

J(u) = (u, Lu) (5) 

For example, the energy and angular momentum in infinitesimal mechanics; the 
energy, momentum, and angular momentum of the electromagnetic field ; all physical 
observable quantities in quantum theory are represented by (5). True, the postulate 
of infinitesimality is not used in the electrodynamics and quantum mechanics but it 
does not contradict them , and there exist models that include such a postulate (see, 
for example, (Krotov, 1997)). The linear operator L will be called tbe operator of 
tbe observable outcome Y. 

Because of the infinitesimality postulate, the laws P( Q, u) at every fixed Q C M 
also have to be expressed similar to (4): 

P(Q, u) = P(Q, 0) + B(Q)u + (u , A(Q)u) + O(Q , u) (6) 

The representation (6) has to satisfy Eqs . (1) and (3). The minimal order which 
ensures the reality and nonnegativeness of P( Q, u) in His two, therefore B( Q)u = 0. 
Equation (3) can also be satisfied in the class of quadratic forms . However, there is 
no solution for Eq. (1) in this class. Let the conditions on the set M of permissible 
states include the equality 

!ul2 = b, (7) 

where b > 0 is a given sufficiently small real number. In other words, the permissible 
states are normahzed and the set M is a sphere of a sufficiently small radius in H . 
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The conditions (1), (3) can then be solved in the class of real (nonnegative) quadratic 
forms: 

P(Q,u) = (u,A(Q)u) , (8) 

where A(Q) for fixed Q is a linear Hermitian nonnegative operator. We assume here 
P(Q,O) = 0. The equations of the system are homogeneous, therefore we can set 
b = 1 not restricting the generality. Here we limit the analysis to this case. Similar 
to the quantum systems , a dynamical invariant of the system D can be considered 
here as the Hilbert's norm llu/1. Then Eq. (7) does not restrict the set of possible 
states . 

For example, we can consider the energy as llull 2 = ( u, u ), when observing a 
conservative mechanical system. 

4 Probability Distribution of Measurements Results 
4.1 Theorem 

We consider the dynamical system that satisfies the conditions mentioned above. 
Let the space H be of finite dimensionality n. Let there be a series of the pairs 
(Yk, uk), k = 1, ... , n, such that : 

where Py(( , u) = P(Q: y = (, u). Then: 

• The series { uk} forms an orthogonal basis of the space H . 

• The probability distribution for the observable values y in a state u has the 
following form: 

for any set Q C R whi ch does not include the points y = Yk· 

(9) 

(10) 

• The operator L of the observable outcome Y has eigenvalues and eigenvectors 
which coincide with Yk, tlk, k = 1, ... , n. 

4.2 Proof 

• Let us write a diagonal representation of the nonnegative quadratic form (8): 

m 

P(Q,u) = ~ a;(Q)lv;,ul 2
- (11) 

i=l 
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where a;(Q) are the positive eigenvalues of the operator A(Q) , m:; n , and 
v;(Q), i = 1, .. . , m, are its corresponding (orthogonal) eigenvectors. Let us 
denote by IT(Q) the subspace spanned by {Vi(Q)}. We have 

(12) 

From this it follows that , firstly, 

(13) 

and, secondly, Py(Y1 , uk) = 0, l f- k. 

But the latter means , by virtu e of Eq. (11) , that the vector U k is orthogonal 
to the spaces IT (yi). And by virtue of Eq.(13) , it is orthogonal to the vectors 
u1, l f- k . Therefore, the vectors U k ,k = l , ... , n , are mutually orthogonal and 
form a basis of the space H. 

• The space IT(yi) is orthogonal to the system of n - 1 orthogonal vectors { uk} , 
k i l. This means that it is one-dimensional , m = 1, and by virtue of 
Eq.( 13) its basis coincides with the vector u1. This eigenvector of the operator 
A(yi) corresponds by virtue of Eq (12) , to the unit eigenvalue. Therefore, 
Py(Yk, u) = i(uk , u)l2 . Then 

n n 

L Py(Yk, u) =L iu,., ul2 = lul 2 = 1. 
k=I k=I 

Therefore , P( Q, u) = 0 for all Q C R which do not include the points y = Yk , 
and 

P(Q, u ) = L Py( Y1:, u), Yk E Q. 

• By virtue of Eqs (3) , (4), (9) , and (10) we have 

n 

J(u) = (u , Lu)= L Ykiuk, ul 2
, 'r/u. 

k=I 

But the latter equality means that the condition (3) of the theorem is satisfied. 

We have proved the theorem . 

4.3 Remarks 

• It is easy to see that the requirement that the space H be finite-dimensional 
in the theorem can be replaced by the requirement that the set { uk} contain 
sufficient set of elements. Specifically, the states Uk must constitute a basis of 
the space H . The la~v (9) , (10) remains valid. 
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5 Relation to Principles of Quantum Mechanics 

A similarity between these results and the postulates of quantum mechanics is 
evident. The names assigned to the properties 4 and 5 emphasize this similarity. The 
state 'U of a quantum system is a complex wave function . The state is normalized and 
described by linear homogeneous equations. The functional representations J ( u) of 
the observable physical quantities are, in general, a consequence of these equations. 
For example, the representations of the momentum, energy, angular momentum, 
spin, and charge are their dynamical invariants related to the corresponding 
symmetry properties. The representat ions of the coordinates of a particle and the 
functions of these coordinates follow direct ly from the statistical interpretation of 
the wave function . By virtue of the same interpretation , the functionals J ( u) are 
interpreted as the averages of physical quantities. 

5.1 Superposition and Uncertainty Principles 

The main constructive postulate of quantum mechanics is the superposition principle 
(or the summation law for probability ampli tudes), which literally coincides with 
the property 5. In addition to the concrete representat ion J(u), it determines 
the probability distribution law P(Q , u) of the observable values. This special and 
even mysterious, in some sense, quantum postulate can therefore be explained in 
terms of the general system theory on the basis of sufficiently evident requirements 
imposed on the system and on the observation procedure. These requirements , taken 
separately, stay with in the limi ts of the conventional scientific exper ience related 
to systems of a quite different nature. These requirements are: the coincidence 
of the observable average and the theoretical value of outcome, the app licabi li ty 
of infinitesimal constructions and the presence of the states where the observable 
quant ity is deterministic. 

Systems possessing these properties are also subject to the uncertainty principle 
in its limited form cited above (the corollary 5) of the Theorem). More informative 
statements require that the eigenstates of observable quantities (the coordinates 
and t he momentum of a particle in quantum mechanics) be defined in more specific 
terms. 

5.2 Possible Interpretation of lnfinitesimality of Quantum Mechanics 

The thesis of infinitesimality of quantum mechanics have especially clear 
interpretation in the de Broglie conception frameworks. It is stipulated by smallness 
of the pilot wave, (Gueret, Vieger, 1980) , (Krotov, 1997). 

5.3 A Corollary 

We point out a corollary from interpretat ion of quantum systems as infinitesimal 
ones: the quantum models with nonlin ear equations of wave functions are incorrect, 
because t he superposition and uncertainty principles are invalid in this case. 
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• Let us consider the follow question: why the Theorem is not appli cable to a 
deterministic system. We have in this case: 

Y = J(u) 
y # J(u) 

Evidently, there is a series {Yk , uk} Py(Yk, uk) = 1 required by Theorem . But 
the function Py(Y, u) does not satisfy the infinitesimality condition (6) by its 
discontinuity. 

4.4 Corollaries 

Thus, there exists such a class of dynamical systems that the law of distribution 
of probability of the results of measurements of its outcome is determined by 
the equations of the nonperturbed system dynamics. This class is defined by the 
conditions of the Theorem. Let us point out some properties of these distributions 
P( Q, u) that appear as corollaries from the Theorem. These properties are 
determined by the properties of the operator L of the observable outcome Y. 

• Property 1. The results of the measurement are concentrated in the eigenvalues 
of the linear Hermitian operator L. In particular, if its spectrum is discrete , 
so is the set of possible values of the random quantity Y. 

• Property 2. The eigenvalues of the operator L form an orthonormal basis of 
the space H. The probability of the value y coinciding with the appropriate 
eigenvalue of L in a given state u equais the square of the absolute value of 
the projection of u onto the corresponding eigenvector. 

• Property 3. The result of measurements is certain in the eigenstates of the 
operator L, and only in these states, i.e ., a single measurement yields the true 
value of the observable quantity. · 

• Property 4. The principle of uncertainty. Let two physical quantities Yi and 
Y; be measured. Accompanied observation of the two quantities in a single 
measurement gives their true values only in the eigenstate of both operator £ 1 

and L2 . 

• Property 5. The principle of superposition. Let us form a normalized linear 
combination u = c1 u1 + c2u2 , where the deterministic values y1 and y2 

correspond to the states u1 , u2 . The result of measuring of y in this state 
u is a random quantity with possible values y1 and y 2 . The probabilities 
A = jc1 j2 and P2 = hl 2 correspond to these values. 
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6 Relation to Non-Commutative Probability 
The traditional theory of dynamical systems under random perturbations assumes 
that probability characteristics do not depend on system dynamics. Our results 
relate to the processes with strong interaction of these components. These processes 
are analysed in the theories of random processes based on the non-commutative 
theory of probability (Ludwig, 1967); (Pool, 1968), which above all deal with 
the problems of foundations of quantum mechanics. According to these theories 
the principles of superposition and uncertainty follow from the non-traditional 
probability postulates. According to our results these principles follow from the 
infinitesimality of the dynamical system and the presence of the states in which 
the observable quantity is deterministic. It is possible, that these results are not in 
conflict with each other. But this question is the topic of a special analysis. 

This paper develops an approach of (Krotov, 1991) . 

References 
Ludwig( 1967) G.Ludwig. Attempt of an axiomatic foundation of quantum 
mechanics and more general theories II, III. Communications of Mathematical 
Physics, 4, 331- 348, 1967; 9, 1- 12, 1968. 

Pool(1968) J.T.Pool. Baer-Semigroups and the logic of quantum mechanics. 
Communications of Mathematical Physics, 9, 118-141, 1968. 

Krotov(1997) V.F .Krotov. On foundation of Quantum Mechanics. Doklady 
Mathematics, 55(2), 286- 290,1997. (Transl. from Doklady Academii Nauk, 353(6), 
734-738,1997). 

Krotov(1991) V.F.Krotov. Observation of linear systems and principles of quantum 
mechanics. Soviet Physics Doklady, 36910, 18- 20, 1991. (Trans!. from Doklady 
Academii Nauk SSSR, 316(1) , 57-61 , 1991) . 

Gueret , Vieger(1980) Ph .Gueret , J-P.Vieger. De Broglie Wave-Particle Duality in 
the Stochastic Interpretation of Qua.ntum Mechanics. Physics Foundations, 11, 
1057- 1070, 1980. 

168 




