
A Systemic Environment for the Formulation and the
Solution of Hierarchical Models

Abstract

Vaccari Erminia and Scommegna Sabina
Dipartimento di Infonnatica, Universita' di Bari

Via Orabona 4, 70126 Bari, Italy
Fax+ 39-080-5443262 Email:vaccari@di.uniba.it

Assuming that a useful representation of anticipatory systems must be able to take into
account a hierarchy of conceptual and physical processes, the paper discusses how the
principle of hierarchy and modularity are incorporated in a specific simulation software
system.

Keywords: anticipatory systems, recursive simulation, structured models, modularity,
hierarchy

I.Introduction

Computing anticipatory systems whereby a change of a system' s state in the present
occurs as a function of some predicted future state (Rosen , 1979) entails that the
overall system is varying within the relevant support medium (space, time, etc.) The
change from one system/model to another requires a replacement procedure that is
invariant respect to the support employed, Such a procedure must act at an higher level
than the possible system dynamics. Further computing a predicted future state to be
used to compute a present system state necessitates the possibility to compute the
different system dynamics at different time scales i. e. a faster dynamic for the predicted
system/model.
In general, it is reasonable to assume that a useful representation of organised
complexity systems must be able to take into account a hierarchy of conceptual and
physical processes.
A model can be hierarchical in different senses, e.g.:
a) connections between certain sub-models may represent authority relations in the

real system, whereby subordinate sub-models are controlled by higher level sub
models;

International Journal of Computing Anticipatory Systems, Volume 3, 1999
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-9600179-4-3

b) a sub-system, S, may be represented twice in a modei once by a sub-model
representing S as a whole and once by a set of sub-models representing the
constituent sub-systems ofS.

TypicaUy sub-models at different hierarchical levels will represent phenomena
occurring on different time scales. ·
Hierarchical models are usually formulated and solved by using computational
heuristics since the classical mathematical formalisms, on which dynamic modelling is
based ,do not foresee hierarchical representations.
In the last two decades, several authors (Delaney and Vaccari, 1974,1979,1984,1989;
Oren and Zeigler, 1979 ; Zeigler, 1976a, 1976b, 1984) have stressed the importance of a
system theoretic basis for simulation algorithms.
In the following we will describe how the principles of modularity and hierarchy can be
incorporated into the system theory based design of simulation software systems .We
will use a specific such system, BDSIM.CPP, as an example.
Specifically, discrete event (DEVS) simulation is considered. In such simulations a
system is mode1led in terms of events occurring at irregularly spaced time instants. First
we discuss the formalisation of such simulations in the system theory paradigm. Then
the modularity and hierarchy criteria are discussed, and possible incompatibilities
between the criteria are pointed out. Finally a way of resolving these incompatibilities is
suggested and illustrated with reference to the BDSIM.CPP system.

2.DEVS Simulation in the System Theory Paradigm

DEVS simulation involves the simultaneous solution ofDEVS models. A DEVS model
is defined (Zeigler, 1976b) as a structure:

<U , :X, Y , f , g,h>
where
U= a set of input values
X= a set of model states
Y= a set of output values
f= a function for calculating a model's state in terms of its inputs and preceding state (at

the occurrence of an event)
g= a function for calculating a model's output in terms of its state (at the occurrence of

an event)
h= a function for calculating the time which must transpire until the next event (at the

occurrence of an event)

A set of interconnected DEVS models constitutes a Structured DEVS Model, definable
as the structure:

<[M(i)J,[I(i)J,[Z(i)J>
where:
-[M(i)J= a set ofDEVS submodels
-[I(i)]= the set of submodels which furnish input to submodel M(i)

112

-[Z(i)]= a set of functions which define the correspondences between the outputs of the
submodels inl[i) and the inputs to submodels M[i]. . . ·

J:hus, a Structured D~VS Model is essentially a set of generative models and a
coupling scheme (defined by functions I and Z)
Simulation of the operation of a system r~presented by a Structured DEVS Model
requires a program which is able to step through simulated time, from event to
successive event, arid, at each event time, to:
• · use ·the individual DEVS models (functions f, g) to calculate the models' states and

outputs;
• use the ind~vidual DEVS models (function h) to determine their "next event times";
• choose the. next .e~en_t time for the whole structured model as the ,Qlinimum of those

associated with the indiv~dual models.
The present discussion in large part regards how the above steps are realised in a
specific system simulator (BDSIM.CPP). Very synthetically, it performs them on the
basis of:
I. a declarative definition of a Structured DEVS Model obtained from an input file.

The . functi.onal subsyst~ms constituting the global system of interest and its
environment ~e referred to as bfqcks since they inay be represented as blocks in a
.functional bloc~ diagram of the system; the environment block will have po inputs
and its outputs represent_ the total system inputs. A block is labelled as being a
physical blpck (PB) or an abstract block (MB) in the program input. The distinction
is· important since· the order in which MB's ~e processed can be important. A PB
repre~nts a physical activity, involving time consuming state changes; its .output
relative ·to a certain ti.me cannot depend ,on its input relative to that time. An MB
does not consume time and thus its outputs relative to a certain time can depend on
its input at tfu\! time. _ _ . .

2 . user supplied . prp~uies defining the . individual DEVS models. The laws of
. behaviour (of the functional subsystems constituting the st~~red system) ·are
incorporated in C+;+- functions ca,l!ed J;3lock Processing Sections (BPS's) and .block
interactions are specified by 'inputting the following information : a list of
mnemonic identifiers of block outputs, each such output corresponds ·either to aI1
input or to a s_tate _ vaj-iab}~ of the tqtal system;' a, .list ~f ~~monic identifiers ·of
blocks and, for _ eacfi .block, a list of identifiers .. for its parameters and lists of

, iden(ifier!! of output and input variables· associated with the block. Essentially
- . BPS' s -represent_ form ~f relatipns., thu.s !(single BPS can be u~ed to simulate various

bloc~s 'perfoiming the-sari}e typ~ of activity. A .. ,definition of a block includes the
specification· of its associated, . BPS which , computes i:tew state and output values at,
~he .e.vent occurr~nce; for _physical block_s (PB's) also the· Hme to the next event is
computed . ·· . · ' ' . - · . · ·

3'. ,_ ~ec!~ative defj~ition' ~f.'_!he simul~tiq!), ~xpetjmep.t to be p~rfor:rned Experimental
frame <iefinition in its various aspects is a~hieved as follows:,; Initial state
specifk:ation, in Jhe' program input data,)nitiai' values for state· variables can _be

' assigned either ·as fixed numbers or a's possible values with associated probabilities.
•. _,.,..·

113

The user also sets a flag detenninirtg whether each replication initiates from the
same state or if it uses the final state of the previous replication as its initial state.
Input specification, exogenous inputs are generated by the BPS which simulates the
environment. Output specification and termination conditions, total system outputs
may be the outputs of blocks representing subsystems or they may be the outputs of
special Observation Blocks (OB's) whose corresponding BPS's have the specific
function of calculating such outputs. An OB may be an MB (for sampling outputs
at events determined by other blocks) or it may be a PB (for sampling at times
determined by the OB itself).

In the following we use the term Total DEVS Simulation Model (TDSM) to designate
the simulator (BDSIM.CPP) together with the entities described in points l) and 2)
above (i.e. it is everything except the experiment definition information).

3.Modularity and Hierarchy

Modularity is an obvious characteristic of Structured DEVS Models, in that they are
formed by combining together individual DEVS models according to well defined rules,
whereby outputs from certain DEVS models become the inputs to other DEVS models.
It is important to realise that this output/input relation is the only relation between the
DEVS models. Internally a single DEVS model has no knowledge of the existence of
the other DEVS models; it only "knows" its own inputs and outputs.
Modularity also extends to Structured DEVS Models as wholes; i.e., two Structured
DEVS Models can be coupled together by connecting outputs from one of them to
inputs of the other one.
Modularity is very desirable in that it is useful for managing complexity. A very
significant example regards the possibility of modularly combining already validated
Structured DEVS Models, known to provide valid representations of the systems they
represent. The overall structure will still need some testing, but much less than if its
parts were not already tested.
Hierarchy is another principle of well known utility in complexity management.
The combination (as discussed above) of two Structured DEVS Models (A and B) into a
more complex model (C) involves considerations of a hierarchical nature in that the
reason for the combination will often be a perceived hierarchical relationship between
real world systems. However it should be noted that the model C is a Structured DEVS
Model consisting of the DEVS models which were contained in A and B. The modeller
knows that C was constructed from A and B but these latter are not evident in the
resulting model. So called "authority hierarchies" can be conveniently represented in
this way; instead of representing the management - operations hierarchy present in a
real system as a hierarchy in the model, one simply foresees BOSS models at the same
level as "WORKER" models knowing that the outputs from the former will, in fact,
constitute "commands" in input to the latter, but this is not evident in the model
syntactical (I/O) form.

114

There are however situations in which it is convenient for hierarchy to be (syntactically)
explicit in the model. That this is the case is not at all surprising. Even if the real world
were not hierarchically organised in itself, it would be very convenient for us to
organise our knowledge of the world in hierarchical structures as a complexity reduction
technique. In general terms, we might find it desirable to explicate, in an overall model
(A), both a submodel (B) and its constituent sub-submodels (C(i)) (we call such a
hierarchy a "constitutive hierarchy"; note that the syntactical form of the model would
evidence such hierarchical structure). Three possible situations where such formulations
could be desirable are:

• studies involving "feedforward" phenomena where it would be useful to represent a
subsystem twice, once as an "actor" in the functioning of the system and once as a
"thinker" who imagines (mentally simulates) future reality as a means for choosing
actions to perform

• studies aimed at discovering examples of "emergent" phenomena; here again it will
be useful to represent a subsystem at two hierarchical levels to facilitate testing
whether a higher level (valid) model really contains something more than lower
level models can explain

• the hierarchical representation yields a significant amount of complexity reduction.

A problem with the introduction of hierarchical structures like those discussed in the
preceding is that (depending on the specific modelling context) they may not respect
the modularity principle; for example if it is necessary for the subsystem B in the
previous paragraph to "know about" its submodeJs (C(i)), e.g. so as to be able to
interrogate them about their "state variables". The best resolution of this problem we
have so far been able to identify is to implement an interface utility ofBSDIM CPP. A
C++ function manages the I/O couplings between levels following the strategy that the
higher level becomes the environment of its lower level.

4.A Simulation Example

A simulation environment (BDSlM. CPP) incorporating the above ideas has been
realised in the C ++ language. The aspect of the environment that we want to evidence
here is how it incorporates modularity and hierarchy. Very synthetically, it allows
Structured DEVS Models to be defined (in a declarative form) in correspondence with
different model hierarchical levels where the processing of a hierarchical level is
accomplished through a recursive invocation of the simulator.

115

To illustrate how BDSIM.CPP can simplify the simulation of systems exhibiting
various forms of hierarchical structure it is useful to discuss the simulation of an
hypothetical hospital division (HOSP), which is a good example of a hierarchical
system. For our purposes, the essential HOSP subsystems are a laboratory (LAB), a
radiological unit (RAD) and a WARD where patients stay, after arriving from the
hospital's environment (ENV). Progressively more complex models of the hospital will
be discussed.

Two types of model will be considered, descriptive models (with names beginning with
"D _ ") expressed in natural language and formal models (with names beginning with
"F _"). Model names also have a suffix(". I", ".2", etc.) to indicate alternative models of
the same physical system. In general formal models will be algorithmic formalisations
of corresponding descriptive models (e.g. F _WORLD.I is an algorithmic formalisation
of D_WORLD.l). Mention will be made of special kinds of formal models, having
particular structural forms and/or special functionality's (DEVS and TDSM's). The
hierarchical aspect of the above total reality can be evidenced by the system
decompositions:

WORLD= (HOSP, ENV)
where

HOSP= (WARD, LAB, RAD).

A simple TDSM (F _WORLD.I) of WORLD would incorporate formalisations of the
fol\owing simple descriptive models, D _ W ARD.1 ofW ARD, D _LAB.1 of LAB, D
RAD I ofRAD andD_ENV.l ofENV:

D _LAB.I = laboratory for analysis of blood, urine, etc. The time to complete an
analysis is a random variable following a Gaussian probability distribution with known
parameters (of course only positive values are considered).

D-RAD I = radiological unit performing different types of services like X-rays, TAC,
etc. The time to complete a service is given by known probability distributions
associated to the specific services.

D _WARD. I = set of patients. The patients pass through a sequence of phases from
entry into the ward to exit from the hospital. Duration of a phase is a random variable
with a known probability distribution generally conditioned both by a patient's "disease"
and by "disease phase". Waiting for LAB results is considered a phase. Patients do not
interact with each other.

D-VISIT I= the activity of a physician which (for each patient) determines the type of
disease, the disease phase , the eventual phase change and if laboratory analyses
and/or radiological services are required.

116

D-CHAMPI = the activity of a physician which decides the specific types of
laboratory analyses required.

D ENV.1 = the hospital's environment, which supplies patients at time intervals
distributed according to an exponential probability distribution.

In the following we will not consider the radiological unit D-RAD l since for our
purpose it is analogous to D-LAB L

A descriptive model D_WORLD.I of WORLD will incorporate D_LAB.l,
D_WARD.l , D_ENV.1 and descriptions of the interactions between LAB, WARD, and
ENV such as:

• the output ofENV is input to WARD
• outputs from WARD (samples to be analysed) are input to LAB
• outputs from LAB (analyses results) are input to WARD

The hierarchical aspect ofD _WORLD.I can be evidenced by the model decompositions
analogous to the above system ones:

D_WORLD.1 =(D_HOSP.l , D_ENV.l}
where

D_HOSP.l =(D_WARD.l, D_LAB.l}.

These decompositions are "constitutive" hierarchies.

The TDSM F_WORLD.l formalising D_WORLD.l will contain the formal models
(F-WARD.l, F-LAB.I, F-ENV.1) respectively based on (0-WARD.l, D-LAB.1 , D
ENY.I); i.e.

F _WORLD. I= (F _HOSP. I, F _ENV.1).

F_HOSP.l = (F_WARD.l, F_LAB.l).

The descriptive models evidence the characteristic aspect of discrete event (DEVS)
models, i.e., events separated by time intervals of random duration. This implies that
the simulation model F _WORLD.I will be a structured DEVS model (plus time
management).
In the context of F _WORLD.I, it is easy to envision simple DEVS models
(F_LAB.l, F_ENV.l) as · adequate formalisations of the descriptive models
(D_LAB.l, D_ENV.l), but the formalisation of D_WARD.l requires special
consideration. The basic question is whether F _WARD. I can also be a DEVS model,
which necessitates deciding on the formalisation ofa patient (PAT). The simplicity of

117

D _WARD. I suggests that an adequate formalisation of a PAT in the context of
F_WARD.1 might be

F _p AT. I =(DISEASE,PHASE, TIME_ LEFT)

which is a set of (random) variables where TIME_LEFT is the time a patient has to
remain in phase PHASE of disease DISEASE. The adequacy of such a formalisation
depends on the fact that the PAT's do not interact and their descriptions only evidence
the above variables as being significant, and as having known associated probability
distributions.
There is nothing atypical of mathematical entities such as F _PA T.1 existing in the
context of DEVS models, so one can still entertain the hypothesis that F _WARD. I
could be such a model.

However, to further clarify the nature ofF _WARD. I it is necessary to also evidence the
nature of its associated significant events. These events are patient arrivals and phase
changes. The time to the "next" such event is generally the shorter of the time to the
arrival of a new patient or the shortest time to a patient phase change. This implies that
F _WARD. I must manage and monitor the TIME_ LEFT variables associated with the
patients just as is done in a TDSM, which leads to the conclusion that F _WARD. I is
fundamentally such a model.

The nature of F _WARD .1 raises important issues regarding its implementation. Indeed
it practically constitutes a simulation model inside of the F _WORLD.I TDSM, which
suggests that it could be implemented in the F _WORLD.I context by means of a
recursive call to the same simulator which manages F _WORLD. I, which, in turn,
implies the advisability of using an object oriented simulator (such as BDSIM.CPP),
where such operations can be easily accomplished
This approach necessitates formalising the model F-W ARD. I as a structured DEVS
model formed by DEVS submodels F-VISIT 1 and F-CHAMP 1 respectively based
on D-VISIT I, D-CHAMP I i.e.

F-WARD 1 = (F-VISIT 1, F-CHAMP 1)
Let us note that the above formalises D-HOSP as a second order structured DEVS
model, and global modularity is maintained.

To illustrate another type of hierarchy easily manageable by BDSIM.CPP we consider
the following, more complex, descriptive model of LAB.

• D_LAB.2 = a set of analysis stations and a BOSS. Each station (STATION)
performs a specific type of analysis (e.g., blood analysis). Some stations require the
presence of a operator. The BOSS assigns operators and analysis samples to
machines. In general, the stations are not independent of each other; there is an

118

indirect interaction among them (through the BOSS) when the work load is large
and the number of operators is too low.

The relation between BOSS and the STATION exemplifies an "authority" relation; it is
hierarchical in that, in the real world, the BOSS has more authority than STATION do.

Using D_LAB.2 instead ofD_LAB.l (and keeping D_ENV.l and D_WARD.l), one
obtains a new descriptive world model with constitutive hierarchical structure:

D_WORLD.2 = (D_HOSP.2, D_ENV. I)

D_HOSP.2 =(D_WARD.l , D_LAB.2)

D_LAB.2 = (D_BOSS.2, D_STATION.2).

D _LAB.2 will also contain descriptions of the relations between the constituent
subsystems BOSS and STATION.
Also D_HOSP.2 will contain descriptions of the relations between D_LAB.2 and other
entities (likewise for D _HOSP. l) . These descriptions will be important in determining
whether to realise an implementation where D _LAB.2 is explicitly present or not.

5.Conclusions

The type of models foreseen by BDSIM CPP are structured dynamic models of first
and second order. (Delaney and Vaccari, 1989 ; Klir, 1985; Zeigler, 1976a,1976b)
The peculiarities of structured models, formed by a net of interconnected generative
models, are that it is possible to represent different hierarchical levels eventually at
different time scales and it is possible to manage descriptive complexity without a
drastic increase of uncertainty. These features, as discussed in Vaccari
(1998a, 1998b, 1998c), are very important when modelling aspects of self-referential,
anticipatory systems such as living systems (Maturana, 1981; Rosen, 1979) and social
systems (Luhmann, 1995, 1990),.

References

Delaney William, Vaccari Erminia. (1979). A Block Diagram Oriented Simulation
Software System. Proc. of the 101h Annual Pittsburgh Conference, April 1979.

Delaney William et al. (1984). A System Theory Based Simulation Language.
Cybernetics and Systems Research, vol.2 pp.111-115, R. Trapp]

Delaney William and Vaccari Erminia, (1989). Dynamic models and discrete event
simulation. Marcel Dekker. New York .

119

Klir George(1985). Architecture of Systems Problem Solving. Plenum Press, New
York.

Klir George (1991). Facets of System Science. Plenum Press, New York and London
Oren Tuncer and Zeigler Bertrand.(1979). Conceps for Advanced Simulation

Methodologies. Simulation, March 1979
Luhmann Niklas. (1995). Social Systems., Stanford University Press, Stanford .
Luhmann Niklas. (1990). Essays on Self-Reference. New York: Columbia University

Press
Maturana Humberto.(1981). Autopoiesis Milan Zeleny(ed) Autopoiesis: a Theory of

Living Organisation, New York
Rosen Robert(l 979). Anticipatory Systems in Retrospect and Prospect. Gen.

Syst. Y earb, 24
Vaccari Erminia and Delaney William.(1974a). Design Criteria for a General Purpose

High Energy Physics Experiment Simulation Program.: Computer Physics
Communications, vol.7, pp.135-144.

Vaccari Erminia and Delaney William.(1974b). Toward the general purpose-special
purpose simulation program. Proc. 5th Annual Pittsburgh on Modelling and
Simulation.

Vaccari Erminia (1998a). Knowing as Modelling. Cybernetics & Human Knowing
vol.5, n.2 pp 59-72

Vaccari Erminia (1998b).Some Considerations on cognitive modelling. In R. Trappl
(ed.), Cybernetics and Systems'98, vol.2 pp 663-668

Vaccari Erminia et al. (1998c). Hierarchical ModeUing: a Systemic framework. In G.
Farre and T. Oksala (eds), Acta Polytechnica Scandinavica, pp 179-184

Zeigler Bertrand (1976 a). The hierarchy of system specifications and the problem of
structural inference, PSA 1976 vol. I. F. Suppe and P.D Asquith (eds.) Philosophy
of Science Association, pages 227-239 Michigan

Zeigler Bertrand (1976 b).Theory of modelling and simulation. John Wiley and Sons
Zeigler Bertrand (1984). Multifacetted System Modelling and Discrete Event

Simulation. Academic Press, N. Y.

120

