
Life-long learning in 
incremental neural networks 

Fred Henrik Hamker1 

Technische Universitiit llmenau, Neuroinformatik, D-98684 Ilmenau, Germany 
http://cortex.informatik.tu-ilmenau.de/~fred 

e-mail: fred@informatik. tu-i/menau. de 

Abstract 
This approach presents a possible solution to the stability-plasticity dilemma in 
incremental neural networks with a local insertion criterion. The main advantages are i) 
the capability of life-long learning, i.e., learning throughout the entire lifetime of a neural 
network, ii) stability in a stationary environment and iii) plasticity in a non-stationary 
environment, but only if the current knowlege does not fit the need of the task. 
Thus, the network structures its internal representation not like a copy of the environment 
but in order to fulfill the current task. 
Keywords: Life-long learning, stability-plasticity dilemma, incremental neural 

networks, Growing Neural Gas, Dynamic Cell Structures 

1 Introduction 

Leaming is one of the main issues of artificial neural network design. It describes a 
mechanism by which a system obtains a representation of its environment. Recent 
research addresses the topic of on-line learning, incremental learning and life-long 
learning, which all discuss the same problem but emphasize different aspects. The 
necessity for on-line learning, in which the couplings of the network are updated after the 
presentation of each example, arises if not all training patterns are available all the time 
(Freeman and Saad, 1997; Heskes and Kappen, 1993). Most publications referring to on­
line learning focus on the role of the learning rule and the convergence of the learning 
process, but stop learning when a performance criterion is reached. For systems, like 
robots, which are faced with patterns during their entire lifetime, studying on-line learning 
in contexts such as a changing environment (Heskes and Kappen, 1993) encounters the 
problems of stability and plasticity. Incremental learning addresses the ability of 
repeatedly training a network with new data, without destroying the old prototype pattern. 
Life-long learning, or also called continuous learning, emphasizes learning throughout the 
entire life-time and has to cope with changing environments and overlapping decision 
areas. It is not sufficient to only follow a non-stationary input distribution like (Fritzke, 
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1997), life-long learning has to solve the stability-plasticity dilemma, which demands the 
adaption to new patterns and the preservation of old patterns. 
Networks with a local or distributed representation of knowledge appear to be good 
candidates for life-long learning scenarios. One type of a local representation of 
knowledge utilized in recent literature of on-line learning are RBF's (Freeman and Saad, 
1997) or similar networks (Gaussier and Zrehen, 1994). Nevertheless, they have a fixed 
number of nodes which has to be determined by the designer. 
Incremental networks have the advantage that the number of nodes is also a result of. 
learning by doing. The most important question in life-long learning incremental networks 
concerns the rule of insertion. ART networks, like FAM (Carpenter et al., 1992) insert 
new nodes based on a similarity measure. Other families of incremental networks use an 
error measure to insert new nodes. They can be subdivided into local error based insertion 
rules like Growing Cell Structures (GCS) (Fritzke, 1994), Growing Neural Gas (GNG) 
(Fritzke, 1995), Dynamic Cell Structures (DCS) (Bruske and Sommer, 1995) and global 
error based insertion rules like Cascade-Correlation (Fahlman and Lebiere, 1989). 
Inserting new nodes solely depending on the similarity of the input pattern leads to a 
purely sensor-based representation, which does not reflect the requirements of further 
processing stages. In contrast, an error-based insertion adapts the representation depending 
on the task and therefore leads to a task-based representation (Hamker and Gross, 1997). 
Compared to a global insertion criterion, a local criterion has the important advantage that 
insertion can be controlled locally. Summarizing, incremental networks with a local error 
based insertion rule are optimal candidates for life-long learning - but only if the insertion 
of new nodes can be managed properly. 

2 General approach 

On the one hand, incremental networks are not allowed to grow permanently. On the other 
hand, growing is an important feature to decrease the error of the net for the task and to 
adapt to changing environments. According to Grossberg (Grossberg, 1988) a switching­
off of plasticity is a problem in nonstationary environments. But for the type of 
incremental networks with a local error based insertion rule, like GCS, GNG and DCS, an 
error-based learning of the insertion parameters is proposed to dynamically and locally 
control the stability and plasticity in the network. For this reason, each node not only owns 
an averaged longterm error counter, it is also equipped with an insertion threshold and an 
averaged longterm error counter at the moment of the last insertion (insertion error). The 
learning of the insertion parameter can be explained by an insertion evaluation cycle 
(Figure 1 ). By adaptation of an insertion threshold based on the evaluation of previous 
insertions, the network learns locally when it is useful to insert further nodes or to stop 
insertion. 
The definition of the error counters as averaged error counters similar to (Ahrns et al., 
1995) leads to an error measure that is independent of the input probability density in 
contrast to the error measure in (Fritzke, 1994; Fritzke, 1995; Bruske and Sommer, 1995). 
It has the advantage that the error is independent of the input probability density, which is 
important for life-long learning. 
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Fig. 1. Insertion evaluation cycle. The average long time error 'L of the task is compared to the error at the 
moment of the last insertion r,. If this error is greater or equal, the insertion was not successful and the 
insertion threshold 'h is increased. If the threshold reaches the average long time error, a further insertion at 
that location is not possible. To permit exploration in the future, the threshold can be decreased with a large 
time constant. 

Another aspect concerns the adaptivity of the nodes. In (Ahrns et al., 1995), an error­
modulated Kohonen type learning rule was used to achieve a uniform approximation error 
independent of the input probability density. Here, the modulation depends on the ratio of 
the average long time error and the average short time error and aims at reducing 
fluctuations when the input probability does not change any more. This means a node 
learns more, if the input probability changes and new errors occur. 
Furthermore, a deletion criterion is introduced to remove redundant nodes. Candidates for 
deletion are located nearby in the input space and are responsible for similar outputs. For 
tasks with real-time demands the deletion criterion allows to restrict the number of nodes 
to an upper bound: By a simultaneous insertion of a new node and the deletion of the 
"worst" node, the nodes of the network are optimally fitted for static as well as for 
changing environments. 
Interestingly, learning and insertion in the Life-long Learning Growing Neural Gas 
(LLGNG) shows similarities to the reward-based control of the plasticity of activated 
Hebbian synapses in biology. While the reward is usually delayed, the ratio of the average 
long time error and the average short time error reflects very well changes of the expected 
error i.e., the average long time error. Similarly, the insertion of new nodes depends on the 
difference between the predicted error, i.e., the insertion threshold and the actual error, i.e. 
the average long time error. The basic rule ofleaming behind learning and insertion in the 
LLGNG is that 'organisms only learn when events violate their expectations', previously 
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assumed by (Rescorla and Wagner, 1972). 
The method, how an error measure is derived from the task, is not essential for the basic 
structure of the algorithm. In case of error-feedback, which is addressed as an example 
here, the error can be determined by an inter-module supervision or an external teacher 
and the output weights can be adapted according to the delta rule, as in (Fritzke, 1994). In 
case of reinforcement learning, which is most interesting for autonomous agents, the error 
can be determined by the interaction with the world. 

3 Description of the basic algorithm 

Although the previous statements are valid for all incremental networks with a local error­
based insertion rule, the algorithm of the LLGNG draws its origin from the GNG (Fritzke, 
1995) as well as the rather similar but independently developed DCS (Bruske and 
Sommer, 1995). This choice is underlined by the good results of the GNG in a benchmark 
on FAM, GCS and GNG in comparison to a MLP (Heinke and Hamker, 1998). 
Modifications in comparison to the GNG concern the local counters of each node (Figure 
2), the control ofleaming and insertion, and an explicit deletion criterion, which allows to 
steer the density of the nodes considering their output-weight similarity. The network 
consists of two layers. The input determines the representation layer, which is followed by 
an output or task layer. The representation layer is described by a graph G, in which the 
set of neighbors N; of a node i is defined by all nodes who share an edge with the node i. 

:3 Wid1h of the Gaussian: a \ 
Error counter: 

5 £l tL'tS ~ s .c s-0. .Q> .!2> E: ;j 
Q) Inherited error: ,, Cl) 0 3: 3: 
5 Insertion threshold: 'II 

5 
0. % £ 

Ao,,(youth): y 0 

Fig. 2. Node of the life-long GNG. Besides the width of the Gaussian each nodes owns a longtem error 
counter ' L• a shortterm error counter rs, the inherited error at the moment of insertion '" an insertion 
threshold 'h> and the youth of the node Y, which decreases exponentially with the time constant T r from one 
to zero when the node was best matching. Despite the inherited error, which remains fixed until the node is 
selected for insertion again, the error counters are defined as moving averages with their individual time 
constant. 

Adaptation of the representation layer 

• For all nodes i, calculate the Euclidian distanced; of the input x to the weight vector W ; 

and locate the best matching unit band the second bests (equal to (Fritzke, 1995 )): 

min ( ) d, . iEG,i,; b d, ; 't/iEG 

• Calculate the activation of all nodes Y; with a Gaussian function (Fritzke, 1994)): 
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• Determine the quality measure for learning Ji-- of the best node band its neighbors cENh: 
L 'fS(blc) ' } 

B(blc) • 
'f L(6/c) ' l 

• Determine the input learning rate 11; of the best node and its neighbors from the quality 
measure If, the youth Y, the learning rate of the winner 11 b and the neighbors 11 n and the 
input adaptation threshold b;L: 

I { O if 
'I (6/c) • 'I (6/o) if 

I& ;6/c). 'I (6/o) else 

I 
1&(6/c)-< O 

I 
I& (6/c) >- 1 

I 
I& (6/c) • 

L 
B(blcl -- . 
1. c~ 

and allow a minimal learning rate of the input weights determined by CM : 

• Increase matching for band its neighbors cENb (similar to (Fritzke, 1995)): 
I' 

4Wb . 'lb(x - w.) 
I ' 

4 w , . 'I .(x - w ,) Vee N 6 

Insertion and deletion of nodes in the representation layer 

After ).. ·nN steps: 
• Determine the quality measure for insertion B1 considering the insertion tolerance D;"': 

VieG 

• Find node q and its neighborffor insertion, if the following criterion is fulfilled: 

max , max 1 1 
0 -< K,.,,,, · ieG(K1,.,) ; B1 · ieN,,(B1 ) ; K,. ,., . B1 - Y1 

Vie G 

If q andf exist: 
► Delete the edge between q and/, insert a new node r, and connect r with q and/ The 

weights w,, w ,°"' and the counters 't s,, 't w •.,,. and 't 1, are determined by the 
arithmetical average of the weights and error counters of q and f. 

► If 
Vie{q,f,r} 

the last insertion was not successful. Thus, adapt the moving insertion threshold: 
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► Determine the new inherited error -r I of q and f 
Vi e {q ,f,r} 

• Check the deletion criteria considering a minimal age t t1eir and find node d, whose 
criterion K is lower than the deletion threshold ftd,t: 

with 
bow1 --;;; 

K4.,J - -_- • bow1 
I 

VieG 

the local similarity of the input weights: 

- 1 't"" 
bow 1 • --L.- lw,- w11 

IN,1 1.N, 

the average similarity of the input weights: 

and the local similarity of the output weights: 

-:--;,;; _1_ r I ••• •••1 ,..w1 • L,_ W 1 - WJ 

IN,l1•N, 

Adaptation of the output layer 

• In case of the error-driven example discussed here, determine the squared error. 

E1a,i(X} :. E •flla,..r(x} • IC - 012 

'""' 
• Determine the local output learning rates from the quality measure Ji-, the youth Y, the 

output adaptatio{n ra:e fl~and t:;"otput adaptation threshold {}
0
L: 

• B/ 
11: - 11

0 
if a ; ► t a, - --

0
- Y, - l VieG 

o } . ~L 
a 1 • 11 0 else 

• Adapt the weights of the nodes j of the output layer: 

'v'j e {l...m}, 'v' ieG 

Adaptation of the counters and edges of nodes in the representation layer 

• Adapt the long time error counter rL and the short time error counter r5 for the winner 
b with the time constant T and the error of the task: 
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I I -- --
T(L/S). (l T(LIS)) . ( ) 

"t (LIS)b ;. e "t (LJS)b . - e E talk X 

• Decrease the youth Yofthe best node b: 

• Compared to (Hamker and Gross, 1997) an advanced criterion for the decrease of the 
insertion threshold r: ~ is presented. It talces the changes of the errors into account and 
reduces the insertion threshold only, if the distribution of the data changes: 

• Adapt the edges as follows ( equal to (Fritzke, 1995)): 

► Increase all edges emanating from b by one. 

if 

if 
if 
else 

x~o 
X >- I 

► Set the age of the edge between bands to zero. If no edge between bands exists, 
create a new one. 

► Remove all edges older than f1 age· 

► Remove all nodes without an edge. 

4 Results 

For a demonstration of the above ideas, we previously perfonned simulations oflife-long 
error-feedback learning on an open data set containing overlaps but without changes in the 
environment. Results presented in (Hamker, Gross, 1997) showed that the network 
stabilizes and although due to overlapping classes a pennanent error occurs, no further 
insertion takes place. Furthermore, it was shown that in case of a changing environment, 
the network structure remains adaptive to insert new nodes and to change the weights. 
Here, we will focus on the internal dynamics of the algorithm in a changing environment. 
Mathematically speaking, a changing environment corresponds to a time-dependent input 
probability (Heskes and Kappen, 1993). For illustration purposes the 2D artificial data set 
in Figure 3 is chosen. 
Figure 4 shows the behavior of the algorithm. In the first 20000 steps the input contains 
two awfully overlapping classes which cause a high error (b).Nevertheless after 20000 
steps, the algorithm has learned by increasing its insertion threshold ( c) that a further 
insertion does not improve the squared error and stabilizes, as can be seen in ( d), and the 
amount of nodes. Now the environment changes, new errors occur and the algorithm tries 
to minimize them by changing its weights and inserting new nodes. Although the 
environment gets much easier, there is still an unsolvable overlapping between the ellipse 
and the line that would cause a further insertion of nodes. By increasing the insertion 
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Class Region Environment (probability) 

A B C 
1 2 3 4 

A I Rectangle 1 I 0 I 
B I Line I I I 0 
C 2 Ellipse 0 I 1 I 

D,E D 3 Circle 1 0 0 0 
E 2 Circle I I I 0 

Fig. 3. Changing environment based on five areas (A-E). The environment changes from l-6 after 
every 20000 steps. The two regions D and E are completely overlapped and the class I of the line 
has an overlap with class 2 of the ellipse. The used parameters are 11b = O. l; 11n = 0.01; 11

0 
= 0.1 S; 

11,,= 0.5; Ts = 20; TL = Ty= T,, = 100; ..l = 10; """=SO; 1'1L = 0.05; 1'0
L = -0.05 ; 1',,., = O.l ; o d,/ = 

0.05; 1'tk1r = 0.01. 

threshold ( c) of the relevant nodes, the algorithm learns to stop insertion in the 
overlapping areas. At least after 40000 steps it has adopted to the environment that no 
further learning is needed ( d). If the probability changes in some regions to zero, like in 
the environment from 40000 to 60000 steps, those remaining nodes, often called "dead 
nodes", play a major role in life-long learning. They are in no way "dead nodes", instead 
they preserve the knowledge of previous situations for future decisions. If the old 
prototype patterns were removed, the knowledge would be lost and the same, already 
learned situations will again cause errors. Due to a further insertion at the overlapping, 
still a bit learning takes place (d).In the environment from 60000 to 80000 steps, most of 
the neurons remain at their positions. Since the environment shows no overlappings the 
error dereases to zero. 
Sumarizing, the algorithm is able to cope with all life-long learning scenarios, like 
overlaps, never seen inputs and temporarily not appearing inputs. 

5 Conclusion 

A life-long learning incremental neural network was presented to coordinate insertion and 
learning. On an abstract level, it demonstrates a biologically feasible selective 
modification of plasticity induced by a "global teacher" signal. 
The experiments show that the network can learn to stop insertion in regions where the 
error can not be decreased. Furthermore, in changing environments the network remains 
stable for old prototype patterns and adaptive for new or different patterns. The neural 
network neither freezes by any decaying parameters nor switches between different 
learning modes, instead it is able to learn continuously by evaluating its own insertions. 
The results obtained indicate a good performance and are a promising step towards life­
long learning in neural networks. A performance evaluation on real data shows (Hamker, 
1998). 
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Fig 4. From left to right: internal parameters of every node before changing the environment 
(20000 steps). From the top to the bottom the: a) input weights, b) longterm error •L c) insertion 
threshold • 0 d) learning parameter a 1, the amount of nodes, and the errors are shown. 

73 



Acknowledgment 

I thank T. Vesper for his extremely fruitful discussions and for implementing parts of the 
algorithm in his diploma thesis. As a foundation, the combining of action and perception, 
a research orientation of Prof. H.-M. Gross is worth to mention. 

References 

Ahrns, I.; Bruske, J.; Sommer, G.: On-line learning with Dynamic Cell Structures. 
Proceedings of 5th International Conference on Artificial Neural Networks (ICANN'95), 
pp. 141-146, 1995. 

Bruske, J.; Sommer, G.: Dynamic cell structure learns perfectly topology preserving map. 
Neural Computation, vol. 7 (1995) pp. 845-865. 
Carpenter, G. A.; Grossberg, S.; Markuzon, N.; Reynolds, J. H.; Rosen, D. B.: Fuzzy 
ARTMAP: A neural network architecture for incremental supervised learning of analog 
multidimensional maps. IEEE Trans. on Neural Networks, vol. 3 no 5 (1992), 698-713. 
Fahlman, S. E.; Lebiere, C.: The cascade-correlation learning architecture. In: Advances 
in Neural Information Processing Systems 2, pp. 524-532, 1989. 
Freeman, J. A. S.; Saad, D.: On-line learning in radial basis function networks. Neural 
Computation (1997), vol 9, no 7. 
Fritzke, B.: Growing cell structures -A self-organizing network for unsupervised and 
supervised learning. Neural Networks, vol. 7 no 9 (1994), 1441-1460. 
Fritzke, B.: A growing neural gas network learns topologies. Advances in Neural 
Information Processing Systems, vol. 7 (1995). 
Fritzke, B.: A seiforganizing network that can follow non-stationary distributions. In: 
Proceedings of 7 International Conference on Artificial Neural Networks (ICANN'97), 
Springer, pp. 613-618, 1997. 
Gaussier, P.; Zrehen, S.: A topological neural map for on-line learning: Emergence of 
obstacle avoidance in a mobile robot. From animals to animats 3, pp. 282-290, 1994. 
Grossberg, S.: Nonlinear neural networks: Principles, Mechanisms, and Architectures. 
Neural Networks, vol. 1 (1988), S. 17-61. 
Hamker, F.; Gross, H.-M.: Task-based representation in lifelong learning incremental 
neural networks. VDI Fortschrittberichte, Reihe 8, Nr. 663, Workshop SOAVE'97, 
Ilmenau, pp. 99-108, 1997. 
Hamker, F.: Lebenslang lernflihige Zellstrukturen: Eine Ll:isung des 
Stabilitiits-Plastizitiits-Dilemmas? In: Proceedings der Co WAN '98, Cottbus: Sharker 
Verlag 1998, pp. 17-37. 
Heinke, D.; Hamker, F. H.: Comparing Neural Networks: A Benchmark on Growing 
Neural Gas, Growing Cell Structures, and Fuzzy ARTMAP. IEEE Transactions on Neural 
Networks, vol. 9 (1998), pp. 1279-1291. 
Heskes, T. M.; Kappen, B.: On-line learning processes in artificial neural networks. 
Mathematical Foundations ofNeural Networks. Elsevier, pp. 199-233, 1993. 
Rescorla, R. A.; Wagner, A. R.: A theory of Pavlovian conditioning; variations in the 
effectiveness of reinforcement and nonreinforcement. Classical Conditioning 2, Current 
Theory and Research. A. H. Black and W. H. Prokasy (Eds.), New York: Appleton­
Century-Crofts, pp. 64-99, 1972. 

74 


