
Humans, Computers, Specifications:
The Arrow Logic of Information System

Engineering

Zinovy Diskin 1, Boris Kadish 1

Lab. for Database Design,
Frame Inform Systems, Ltd.

Riga, Latvia
www.fis.lv/ english/ science zdiskin©acm .org

Frank Piessens2

Dept. of Computer Science,
Katholieke Universiteit Leuven

Beverlee, Belgium
Frank . Piessens©cs. kuleuven .ac . be

Abstract. The goal of the paper is to manifest a special arrow diagram logic
developed in mathematical category theory as capable to provide a general specific­
ation framework for information system engineering. We show that, unexpectedly,
abstract ideas developed in categorical logic are of extremely high relevance for ap­
proaching some difficult specification problems in the field . Correspondingly, the
arrow thinking underlying the diagram logic is suggested as a working way of think­
ing in information system engineering.

Keywords: Semantic Specification, Arrow Logic, Category Theory

1 Introduction: The Problem of Specifying

All the activity of information system engineering (ISE) is saturated with specific­
ations: their design, building, using, reengineering and implementation. Specific­
ations appear, and at once begin to play a key role, at the very beginning when
(system) requirements3 have to be figured out, and continue to play the role up to
the end when a few millions of programming code lines together with a few volumes
of user's manual are finished . In addition, specifications are extremely important in
maintenance of ISs, especially when the maintaining team did not take part in the
IS design, as it often happens.

In a sense, the entire design process can be presented by a schematic diagram
on Fig. 1. The horizontal branch is a refinement of requirements to programming
code through a business/enterprise specification often called conceptual, or semantic,
model, and then through software independent logical schema that, finally, is imple­
mented within certain software and hardware. In addition, each node in the way
is not a single one-piece huge specification but rather a system of mutually connec­
ted component specifications presenting different views on the universe and with
different degrees of elaborating details.

1 Supported by Grants 93.315 and 96.0316 from the Latvian Council of Science
2 Postdoctoral Fellow of the Belgian National Fund for Scientific Research (N.F.W.O.}
3 properties that a system should have in order to succeed in the environment where it will be used (Goguen,

1994}

International Journal of Computing Anticipatory Systems, Volume 3, 1999
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-9600179-4-3

Requirement
Description

User's
Manuals

i .. -

_ Conceptual
Model

Logical
Schema

Fig. 1: Schematic view on IS design

_ Programming
Code

The vertical branch is a refinement of fuzzy expectations of what is desired to
quite concrete directions of what is to do.

The focus of the present paper is on the top-left "generating" corner of ~he dia­
gram centered (conceptually) around specifying requirements and building semantic
specifications, the corresponding activities are called requirement enginering (RE)
and conceptual/semantic modeling and design (CMD). In essence, these activities
are complex processes of communication between software designers, experts on the
universe-of-discourse and users of the future IS, which should result in a well organ­
ized system of compact comprehensible specifications of the universe and the user's
expectations of the system.

The key peculiarity of the process is that the specifications in question have to
be somehow extracted from multiple, very informal and often hardly consistent de­
scriptions provided by different people. Moreover, as the design is going on, and
mutual understanding between t he contributors is increasing, these partial descrip­
tions may be essentially changed so that the specifications are permanently revised
and corrected. On a whole, the design process appears as a complex interplay of
anticipating "Why", specifying "What" and implementing " How" and combines in
a non-trivial way logical, cognitive, technological and humanitarian (psychological
and social) aspects. It necessarily goes along some specific spiral rather than a direct
line, and the entire specification structure , and its components as well, are endlessly
reengineered until the approaching deadline captures them as they are.

1.1 Specifications in Conceptual Modeling and Design

It is clear from the above, and it was stressed and displayed by Goguen with co­
authors (see (Goguen, 1996) and references therein), that social contexts are very
important in RE and remain valid in CMD too, thus a certain informality in high­
level specifications is unavoidable and even useful. On the other hand, effective

32

communication assumes a certain degree of common understanding of the domain
in question, which should be fixed in a sufficiently precise domain specification; this is
especially important for business/enterprise specifications, that is, their conceptual
models.

A conceptual model must record the information discovered in RE in some precise
form, in addition, it should be flexible and open for reengineering. The task is highly
non-trivial since a typical universe to be specified is not an example from a textbook
but a piece of reality like a bank or an airport . One may imagine an elementary
verbally formulated arithmetic problem that is very simple in essence but whose
formulation takes hundreds of pages. The problem is not in resolving algorithm as
such but in specifying a huge array of data in a comprehensible way, we again remind
and stress that the very data are subjected to discussion and permanent changes.
In fact, such problems are out of scope of classical science: normally, the latter deals
with either continuous domains specified by differential equations, or homogenous
discrete domains specified by, say, systems of linear equations.

In contrast, an airport or bank are discrete heterogeneous systems consisting
of many subsystems of different kinds, which, in their own turn, consist of many
objects of different kinds, all are integrated in a single whole via complex mutual
relationships and mutually dependent functioning subjected to dozens of specific
(business) rules . Importantly, each subsystem can well induce its own specification
language to be effectively used in communication between designers and domain
experts , thus, the entire conceptual model appears as a heterogeneous specifica­
tion structure. Moreover, though in ideal semantic specifications should be entirely
independent on future implementation, in practice the intended implementation in­
fluences the choice of semantic languages and conceptual models become even more
heterogeneous because of extreme heterogeneity of the modern software.

So, a conceptual model has to compress a bulky array of diverse information into
a compact specification suitable for human communication. A natural, and the only
practical, choice is to use graphic languages, and indeed, a vast variety of graphic
notational systems was developed in RE and CMD. On the other hand, a model
should be sufficiently precise to rule out ambiguities and be readily transformed
into formal software specifications in the further stages of design. Thus, a good se­
mantic modeling language should be graphic and comprehensible, sufficiently precise
or even ready to be formalized, and sufficiently expressive to capture all the peculi­
arities of the real world . In addition, the language should be flexible to manage the
heterogeneity problem within a single unifying pattern.

Up to the current state of the art, this synthesis has not been achieved: graphic
specification languages in use are either far from being precise, or have a very limited
expressive power, or both. In addition, they are based on very different and particu­
lar (if any) logical foundations so that the entire area appears today as somewhat like
a Babylon of graphic notational systems. There is even the Tower of Babylon - it is
the so-called Unified Modeling Language (UML) recently adopted by a consortium
of software vendors as an industrial standard in the field of conceptual modeling
and design (OMG, 1997) . No doubts, UML is a significant achievement towards

33

unification but , from the mathematical view point , it is just a one more (monstrous)
notational system rather than a universal framework capable to unify the diversity
of RE/CMD-notations. Indeed, since the UML constructs have no formal semantics,
one has no precise means to relate and compare one's particular model with UML.
Moreover, by the same reason, an UML specification can be differently treated by
different users and so, solving some technological problems the UML creates new
ones.

1.2 Specifications in Software Engineering4

Modern (and of the nearest future) ISs are cooperative and heterogeneous: they
appear as a large number of local ISs distributed over complex computer/communi­
cation network (intranet) . In its own turn, every local IS is a complex configuration
of data flows between data processing units, and the pattern of global/local is reit­
erated downward and upward.

Normally, local ISs are sufficiently autonomous and can significantly differ in their
origin and development, hence, in their organization, architecture, data models etc.
A result is that inside of intranet different nodes are often operated by different
software which runs on different hardware platforms. All this constitutes the phe­
nomenon of architectural heterogeneity. In addition, data circulating through the
network significantly differ in their meaning (which can range from natural numbers
to video images) and their types (Integer, String, Figure etc) ; this constitutes
semantic heterogeneity. Builders of complex software systems are thus faced with
the need to integrate heterogeneous data residing in different sources over some
communication network. Today the problem is becoming global in both direct and
figurative senses: with the advent of the information superhighway, in addition to
the many intranet enterprise databases, there is now a vast amount of information
(data and software) accessible through the Internet .

Handling architectural heterogeneity is usually attributed to the so called in ter­
operability and amounts to resolving communication problems (file transfers, remote
logins etc). It can be stated that by now the basic conditions for interoperability in
heterogeneous systems either have been achieved or will be achieved in the nearest
future (Drew et al. , 1993). In contrast, managing semant ic heterogeneity, ie, in­
teroperation , is far from being solved and , moreover, as is noted in (Drew et al. ,
1993), the problem itself is still at the stage of being understood (and hence, we
add, requires a corresponding logic to reason properly).

Clearly, the interoperation problem is a specification pro blem: to manage it one
should be able to specify heterogeneous data structures in precise and unifying ab­
stract terms so t hat specifications (what) would be separated from algorithms (how) .
Specification of data processing unit is like a plug for an electrical appliance. Ex-

4Some terminological remarks seems to ue useful. T he term "soft ware engineering" (SE) is sometimes used in a
wide sense coverin g all the schema on Fig. l above, and sometimes more na rrowly focusing more on t he right half
of the refi nement chain. We will try to keep using the term "SE" more in the narrow sense and use "ISE" for SE
in the w ide sense; at the same time we remind that in this paper we focus on the high- leve l - sem ant ic - part of
!SE-specifi cations, somewhat like "proper" ISE.

34

ternally, t he latter is completely characterized by a few numbers (voltage, power,
current frequency) so that to connect appliances between themselves or to a net­
work all that is required is to verify matching of several numbers. Of course, we
cannot hope on such a simple story for data processing devices but the network of
electrical appliances is a sample useful to have in mind (we borrow this metaphor
from (Makowsky, 1992)) .

Unfortunately, the picture one can observe in the modern software is in a sharp
contrast with this sample: specifications are often implicit and hidden in the im­
plementation so that a procedural description is the statement of purpose and its
resolving algorithm simultaneously (hence, any discussion of success and optimality
of the algorithm is canceled). On a whole, while all the prerequisites of handling
interoperability are achieved, (semantic) interoperation is still a challenge.

To summarize, extreme heterogeneity of the software world has led to extreme
heterogeneity of software descriptions. The latter are often overly sugared syntactic­
ally and overloaded with particular details of presentation and implementation. The
role of semantic specifications in such a heterogeneous and notationally diverse en­
vironment becomes much more important and even crucial. The area strongly needs
an integral framework of powerful specification principles capable to cover different
data and their semantics in a uniform way. No such a framework is known to the
community and its specification-linguistic efforts have resulted in a huge diversity of
ad hoe notational systems and languages - the Babylon metaphor, again , was used
by different people in their attempts to characterize the situation.

1.3 What We Suggest

Since any language, and even merely a notational system, is a more or less direct
reflection of the corresponding underlying logic, software engineering is actually
suffering badly from the lack of suitable logics. Thus, the problem is in specificational
logics rather than in notational tricks - this consideration is crucial for the field but
often is not well understood.

The goal of the present paper is to manifest a special diagram or arrow logic
developed in mathematical category theory as capable to solve a lot of specification
problems in IS-engineering. We will demonstrate effectivity of arrow logic in ap­
proaching only two but fairly infamous problems: heterogeneity of conceptual rnod­
eling languages and managing specification repositories. As for other specification­
centered problems in ISE, an optimistic forecast will be briefly motivated in sec­
tion 3.5 .

We did not invent the arrow logic ourselves. Surprisingly, but a graphic yet quite
precise specification paradigm extremely suitable for ISE applications has already
been invented in a quite abstract branch of modern algebra, category theory (CT),
where an approach to specifying mathematical structures via the so called sketches
was developed. Being adapted for ISE-needs, sketches become an extremely ex­
pressive, flexible and handy specification means (cf.(Johnson and Dampney, 1993;
Diskin, 1997a; Piessens and Steegrnans, 1997; Cadish and Diskin, 1996; Diskin ,

35

19986; Diskin , 1998a)). Moreover, an important observation we made while ap­
plying sketches is that in a concrete domain sketches normally appear as a precise
formal refinement of the existing notation rather than an external imposition upon
the domain. In particular, sketches can be seen as a far reaching generalization of
entity-rela tionship diagrams in conceptual modeling, interaction diagrams in process
modeling, schema grids in structuring specification repositories.

In the rest of the paper the essence of the arrow logic is briefly discussed and
demonstrated in a few simple examples. Some more general yet speculative sugges­
tions are made in section 4.

Acknowledgements. We are indebted to the participants of our sketch seminar
at F.I.S .: Sergey Ageshin, Ilya Beylin, Vitaly Dzitenov and Felix Skorohod for
numerous fruitful discussions and stimulating criticism; as for this latter component,
Ilya Beylin should be specially thanked for often sharp but always substantial and
really stimulating discussions. Several substantial conversations on the subject with
George Sheinkman also were extremely helpful. Special thanks go to Vitaly Dzitenov
- once more - for implementation of a prototypical sketch editor and real using
sketches in this software project.

Finally, we are grateful to Daniel Dubois who (unexpectedly for us) invited us to
prepare this paper for CASYS, and for encouragement we had been got from him
during preparation .

2 Ideal Specification Paradigm for Software Engineering

The bundle of specification problems outlined in introduction can be resolved only
within a framework of powerful specification paradigm rather than a single extra­
universal specification language. We mean that one needs a generic protolanguage
.C(p), whose definition depends on a list of parameters p = (p1 , ... , PnY so that
different specification languages would be instances of the protolanguage defined by
the choice of parameters: given a problem domain A, a specification language LA
suitable for A may be built as .C(a) for some p = a appropriate for A . Another
domain B needs another language Ls = .C(b) and so on but the diversity of domains
A, B , . . . results in a variety of languages LA, Ls, . . . since all these languages are
t reated in a uniform way as .C-instances.

To achieve its goals, the paradigm .C should possess the following characteristics:

Semantic capabilities . .C-languages should admit semantic interpretation close to
the real world semantics, that is, a t least, be object-oriented and capable to
specify object class schemas in a nat ural way. On the other hand, .C-languages
should admit value-oriented interpretations and be capable to specify type
schemas.

The semant ics of the £-languages should be formalizable to rule out ambigu­
it ies, and to allow for computer assisted verification.

5 of course 1])i a re not numbers b u t form al co nstruc ts which can th emselves be com plex structures

36

Universali,ty. A wide range of semantic constraints (business rules) should be ex­
pressible. Moreover , the totality of semantic constraints possible in the real
world is practically unlimited, and even given some particular case, the set of
business rules is usually changeable and subjected to unpredictable evolution .
So, universality of specification language must be understood in the absolute
sense: any possible (formalizable) semantic constraint must be expressible.

Unifying flexibility. An ad hoe specification language (say, L) developed for a
particular domain can accumulate a useful experience and be convenient and
customary for many experts in the domain. It would not be reasonable to
neglect these advantages of L and replace it with some equally expressive but
entirely novel .C-language. A better solution would be to simulate L in .C, that
is, to find parameters p = a such that syntax and intended semantics of .C(a)
would be close to that of L. Thus, ,C should possess the possibility to simulate
a wide range of ad hoe languages.

Abstraction flexibility. This term means the capability to build specifications in
a data model independent way. Consider, for example, the notion of view to
data. What is a view is quite clear in the case of the relational data model
but the notion is of extreme importance far beyond it: views make software
applications tolerant to changes in the data schema. Thus, one needs a general
definition applicable to the relational, 00, semantic ete data schemas in a
uniform way. In other words, one needs an abstract definition of view where
a data model would be a parameter. The same holds for other basic
metadata modeling concepts such as schema refinement or schema integration.
That is , one needs an integral metadata modeling framework where a data
model would be a parameter. We call the possibility to state such a framework
abstraction flexibility of the specification paradigm.

Comprehensibility. Any specification language, as though powerful and flexible
it would be, will remain a thing-for-itself if it is heavily comprehended by
the human. We recognize at least two main components of comprehensibility:
graph-based evidence and modularizability.

(i) Graphical syntax. People like to draw graphical schemas to facilitate reas­
oning and communication. Usually these schemas are considered as informal
heuristic pictures, while to become precise and implementable they must be
converted into string-based specifications similar to theories in logical calculi.
What would be desirable in this respect is to build a graph-based specification
language such that graphical images themselves should be precise specifications
suitable for implementation.

(ii) Modularizability. There is a growing awareness among experts that most
specification and verification methods have reached their limits but can handle
only systems of small size and complexity. As it was noted in (Langmaack
et al., 1997), "if there is a hope that industrial-size designs can be handled by
formalized methods, it must be based on the premises of compositionality and

37

abstraction". If so, the "ideal" paradigm .C we are discussing should neces­
sary include a flexible modularization mechanism. That is, there must exist a
machinery of decomposing a global £-specification S into simpler component
£ ;-specifications S;, (i = 1, ... , n) where L , L; are £-languages, such that an IS
satisfying all the S; must automatically satisfy S or, in another context, com­
ponent systems IS; satisfying S; can be then integrated into the global system
IS satisfying S. Of course, the schema of decomposing S into S; should be
presentable in a concise form (preferably graphical).

Specification methods currently used in software engineering fail to integrate the
requirements stated above in a single framework. Moreover, with current specific­
ation methodologies the task of building the "ideal" paradigm we have discussed
appears to be extremely difficult if at all possible. In particular, concerning the
property of abstraction flexibility, it seems impossible to speak about data schemas
and data instances in the abstract way without any specific description of what they
are: this appears to be a kind of substantial speaking about nothing (cf. (Drew et al.,
1993)).

Fortunately, as we have said, a methodology and specification machinery ideally
matching the ideal properties we have formulated, have been developed in math­
ematical category theory. In the next section we will describe briefly main lines
of incorporating categorical means into the real specification problems of semantic
data modeling and structuring schema repositories.

3 Arrow Logic of Software Specifications

3.1 Arrow Thinking and Category Theory

Category theory (CT) is a modern branch of abstract algebra. It was invented
in the late fourties and since that time has achieved a great success in providing
a uniform structural framework for different branches of mathematics, including
metamathematics and logic, and stating foundations of mathematics as a whole
as well. CT should be also of great interest for software because it offers a general
methodology and machinery for specifying complex structures of very different kinds .
In a wider context, the 20th century is the age of structural patterns, structuralism,
as opposed to evolutionism of the previous century, and CT is a precise mathematical
response to the structural request of our time.

The basic idea underlying the approach consists in specifying any universe of
discourse as a collection of objects and their morphisms which normally are, in
function of context, mappings, or references, or transformations or the like between
objects. As a result, the universe is specified by a directed graph whose nodes are
objects and arrows are morphisms.

Objects have no internal structure: everything one wishes to say about them
one has to say in terms of arrows. This feature of CT can be formulated in the
00 programming terms as that object structure and behaviour are encapsulated

38

/\ A
A B A B

a) b)

A
A B

a)

QAp
I (fun) \

A ◄· ·· · ····------·-- B r
b)
(2

Fig. 2: Relations via arrows

R"

G
~ (gn)_"•

,........_;

A ◄--B
f

c)

and accessible only through the arrow interface. Thus, objects in the CT sense and
objects in the 00 sense have much in common.

A surprising result discovered in CT is that the arrow specification language is
absolutely expressible: any construction having a formal semantic meaning6 can be
described in the arrow language as well. Moreover, the arrow language is proven to
be an extremely powerful conceptual means: if basic object of interest are described
by arrows then normally it turned out that many derived objects of interest can be
also described by arrows in a quite natural way. The main lesson of CT is thus that
to define properly the universe we are going to deal with it is necessary and sufficient
to define morphisms (mappings) between object of the universe. In other words, as
it was formulated by a founder of categorical logic Bill Lawvere, to objectify means
to mapify.

For example, a relation between two objects A and B, where A, B can be object
classes, or process interfaces, or data schemas is specified in the same way by an
arrow span shown on schema (la) Fig. 2. There R is an object similar to A, B, which
is to be thought of as consisting of relationships between items of A, B, and p, q are
projection morphisms (references, processes, schema mappings) to be thought of
as extracting the first and the second components of relationships. In addition, a
special predicate should be declared for the pair (p, g) to ensure that R-items can
be indeed thought of as couples composed from A-items and B-items. A natural
way to express such a declaration syntactically is to mark the arrow diagram (p, q)
by some label, say, an arc, as shown on schema (lb), Fig. 2. This schema is nothing
but a simple sketch.

Specifically, the property of being a functional relation, say, from B to A, can be
expressed by another predicate declared for the same diagram; syntactically, it can
be presented, for example, as shown on sketch (2a), Fig. 2. In this case there is a
mapping
f: B -+ A derived from the relation. In fact, one has a diagram operation producing
an arrow from a span marked with the functional relation label, see schema (2b),
where the marker (fun) denotes the operation in question and the dotted body of the
/*-arrow denotes that it is derived (by the operation). The converse construction of
building the graph of mapping is presented on sketch (2c) where all derived items
are marked with the *-superindex.

So, in the arrow framework relations can be specified, and manipulated, in an
6 that is , expressible in a formal set theory

39

abstract way without considering their elements but via their arrow interfaces, (p, q)
in the example.

The arrow language is extremely flexible. In function of context, objects and
arrows can be interpreted by: sets and functions (in data modeling), object classes
and references (00 analysis and design), data types and procedures (functional
programming), propositions and proofs (logic/logic programming), interfaces and
processes (process modeling), data states and transactions (transaction modeling),
data schemas and schema mappings (meta-modeling). Moreover, all this semantic
diversity is managed within the same syntactical framework.

The arrow specification framework gives rise to a special kind of thinking - the
so called arrow thinking. In philosophical terms, the arrow thinking can be seen
as a precise formalization of the dialectics idea (but, of course, CT as such is a
mathematical discipline having nothing common with philosophical speculations).
In this context, the arrow thinking has a long history going back to ancient Taoists
and continuing by now with the 00 paradigm in software and the constructive on­
tology in quantum physics (see (Diskin and Kadish, 1996) for constructivity aspects
of arrow specifications). It would not be a great overstatement to say that CT offers
a mathematically justified framework for a proper formalization of the very general
ideas of observability, constructivism and object-orientation.

Formally, a category is a directed multigraph with composable arrows: given
any two arrows f: A -t B and g: B -t C where A, B and C are objects, an arrow
h = f 11:> g: A -t C, the composition of f with g, is defined in a unique way. Due to
arrow composition and, often, other arrow diagram operations, categories modeling
complex universes are usually infinite and, hence, implicitly specify also a lot of de­
rived information about the universe. In practice, one deals with finite presentations
of infinite categories. These finite presentations are nothing but sketches and so
sketch specifications appear as a constructive technological realization of the arrow
logic (see (Diskin, 1997c) for a database oriented presentation of sketches).

3.2 Graph + Diagram Predicates = Sketch

Arrow specification with diagram predicates is a sketch, and it follows from the gen­
eral results of categorical logic mentioned above that any formalizable specification
can be replaced by a corresponding equivalent sketch. And even more, there is a
fixed (and not very big) collection of diagram operations, compositions of which
cover all formalizable constructions.

The sketch specificational vocabulary is strict and compact. Sketches are graph­
ical constructs consisting of three kinds of items: (i) nodes, to be interpreted as
object (eg, sets), (ii) arrows, to be interpreted as morphisms (eg, functions), (iii)
marked diagrams, i.e., labeled collections of nodes and arrows, to be interpreted as
predicates (eg, declared for diagrams of sets and functions).

Of course, before one can draw a sketch, a collection of diagram predicates (mark­
ers) should be declared and organized into a signature, say, IT. That is, any sketch
is a IT-sketch for some predefined signature IT.

40

~ h usb ~
~~-~

l wife

a) Sets-and-functions graph b) ER-diagram

~~~~riedl 

L ,. \ 7wi/e 

~:Ljwomanl 
c) Sketch 

Fig. 3: Internal object structure via arrow diagrams 

It is important that diagram predicates can be defined in a uniform way. Their 
semantics can be defined via so called universal properties, or equivalently, using 
some essentially algebraic axioms. This way of defining things is very common in CT. 
It effect, declaring a diagram predicate can be reduced to declaring some equations 
for corresponding diagram operations. So, any signature of diagram predicates can 
be considered as an essentially algebraic theory over some predefined set of basic 
operations. 

An important property of sketches is that their framework is sufficiently man­
ageable to allow for correctness proofs of practically and mathematically valid al­
gorithms on sketches. In particular, in (Piessens, 1996; Piessens and Steegmans, 
1997), algorithms for deciding a basic problem of semantic equivalence of sketches, 
and performing their integration as well, are developed and proven correct for 
sketches of some specific signature. 

3.3 Semantic Modeling via Sketches 

As it was said above, current semantic models are either hardly comprehensible in 
the case of complex specifications, or informal, or have a very limited expressive 
power. In contrast, the arrow framework is as rigor as logical calculi and absolutely 
expressible yet it is graph-based. The specification principle underlying the approach 
is that the world consists of sets and functions. Correspondingly, the world can be 
specified by a directed graph whose nodes denote sets (classes of objects) and arrows 
denote functions (references or attributes) . 

3 .3.1 Internal Structure of Objects via Arrows 

The basic discovery of category theory is that it is possible to describe internal 
structure of objects in a class externally via stating certain properties of arrow 
diagrams adjoint to the class. Let us consider, for example, the class-reference 
diagram shown on Fig. 3(a). 

We can infer from this diagram that to each object o of the class Married are 
assigned some Man-obj ect o.husb and some Woman-object a.wife. However, this 
does not allow to state that each Married-object is a pair of Man-object and Woman­
object . To ensure the latter property, in many semantic models class Married would 
be declared to be a relationship class between Man and Woman, and correspondingly 

41 



marked, eg, in the famous ER-diagram notation, by a diamond (Fig. 3b). Then the 
node Married becomes intrinsically different from the nodes Man and Woman and 
so this way of treating types leads to heterogeneity of object classes. 

Another way to express the required property of Married-objects is to shift the 
focus from nodes to arrows and to declare that the pair ( wife,husb) has the following 
separation property: 

for any objects o,o' E Married if o.husb = o'.husb and a.wife= o'.wife then o = o' 

Indeed, in such a case the function (husb, wife): Married -+ Man x Woman is one­
one so that Married-objects can be identified with some pairs (m, w) E Man x 
Woman. Thus, a property of the arrow diagram (wife,husb) enforces a certain 
internal structure of Married-objects. 

If we introduce a diagram predicate of being separating (it is a particular case 
of the general construct considered in example on Fig. 2), and agree to denote the 
family satisfying the predicate by an arc, then the required specification of the class 
Married will look as shown on Fig. 3(c). The picture contains two other diagram 
markers: the double-body of arrow and arc with brackets. The former is a marker 
that might be hung on diagrams consisting of a single arrow and denotes the property 
of being IsA-arrow. The arc marker denotes the property of commonly targeted 
family of functions to cover the target disjointly, that is, each object in the target 
class is in the image of one and only one source classes. Thus, the specification (c) 
states that (i) each Person-object is either Man-object or Woman-object but not 
both and (ii) each Married-object is actually a pair (m, w) E Manx Woman. 

The example above is quite simple but it demonstrates how to specify various 
object types via arrow diagrams and their properties (see (Diskin, 1998b) for other 
examples). Moreover, it turned out that rich semantic constructs - IsA, IsPartOf, 
aggregation and qualifications relationships between objects - also can be specified in 
the framework of sets-and-functions, correspondingly, of arrow diagram predicates. 
Sets and functions to be considered here should be changeable, that is, variable 
in (logical rather than physical) time: it was shown in (Diskin and Kadish, 1996) 
that all semantic constructs above can be exhaustively described in the framework 
of variable set semantics for sketches. However, variable sets and functions can be 
specified in the logic of arrow diagram predicates as well as constant ones. Moreover, 
the construction of variable set universe is well studied in CT under the name of 
topos. In these terms the experience of semantic modeling can be summarized 
as experience of viewing the real world as a topos of variable sets while building 
semantic model is nothing but building a finite graphic presentation of this topos -
a graph-based analog of well known algebraic task. The topos-theoretic refinement 
of semantic rnodeling has far reaching consequences for stating the discipline on firm 
mathematical foundations. In particular, it opens the door for applying powerful 
algebraic techniques developed in category theory, specifically, diagram chasing. 
Unfortunately, discussing this and other aspects of sketching semantic modeling 
goes far beyond the frame of the present paper. 

42 



3.3.2 Sketches vs. Heterogeneity of Semantic Models 

The value of the graph-based logic approach to semantic modeling is not exhausted 
by an adequate formalization of semantic models. Maybe, even a more important 
benefit is that the approach facilitates managing the infamous problem of hetero­
geneity of semantic models. Indeed, even a surface glance over the current semantic 
modeling shows an abundance of various notational systems with a great diversity 
of conventional graphic constructs, symbols, markers etc, which makes comparing 
and integrating different semantic models an extremely difficult task. 

This Babylon mess inspired a lot of theoretical work in academia (like, eg, (Atzeni 
and Torlone, 1996)) and in industry where the famous UML was adopted as a stand­
ard in 00 analysis and design. However, in the light of mathematical treatment 
of semantic modeling we have outlined above, these attempts look conceptually 
helpless and too partial. 

We suggest the following way to manage heterogeneity of semantic models. Given 
a model M, its vocabulary of specificational constructs is specially arranged to be­
come convertible into a signature of diagram predicates, TIM, so that M-specifications 
could be converted into TIM-sketches. Moreover, by adjusting visualization of TIM­
predicates one can make visual presentations of TIM-sketches very close to semantic 
M-schemas as they are seen externally (see (Diskin, 1998b) for details) . In this 
way the diversity of semantic models can be transformed into the variety of sketch 
data models in different signatures. Indeed, sketches in different signatures are 
nevertheless sketches, and they can be uniformly compared and integrated via relat­
ing/integrating their signatures. A more detailed discussion can be found in (Diskin, 
19986). 

The methodology of the sketch approach can be illustrated by the following ana­
logy (invented in (Diskin, 19986)). In a sense, the place of sketches in the hetero­
geneoui:: space of semantic models is comparable with that of the modern positional 
numeral systems in the general space of numeral systems including also zeroless po­
sitional systems ( eg, Babylonian, Mayan) and a huge diversity of non-positional ad 
hoe systems (Egyptian, Ionian, Roman etc). The analogy we mean is presented in 
the table below. 

Specification Data Language Minimal 
paradigm to be specified Predefined base Specification language 

Collections of sets Original 
Sketches 

and functions 
Signature, II II-sketch categorical 

sketches 
Positional 

Base of numeral numeral Finite cardinalities Positional k-number 
Binary 

systems 
system, k numbers 

In the context of this analogy, many of conventional notations used for conceptual 
modeling are similar to ad hoe non-positional numeral systems like, eg, Roman. 
In particular, operating sketches in different signatures is like operating natural 
numbers written in different positional systems. The question about expressive 
power of sketches is analogous to the question of whether a positional numeral 

43 



system can emulate an arbitrary numeral system. The positive answer is evident 
to everybody but it would not be so if one considers the question within the pure 
syntactical frame: thinking syntactically, it is not so obvious how to translate Roman 
numbers into decimal numbers. The question above is easy because of our inherited 
habit to think numeral numbers semantically. Indeed, thinking semantically, any 
Roman number is a presentation of some finite cardinality, and a decimal number 
can express the latter as well. 

The situation with sketches is somewhat similar: thinking semantically, any data 
schema is a specification of system of sets and functions, and the latter can be 
expresseci by a sketch as well. Of course, a specialist in semantic modeling who 
has the habit to think of conceptual schemas in pure relational terms will have 
doubts whether an arbitrary complex logical formula can be expressed by a diagram 
predicate. The translation is indeed far from being evident but nowadays can be 
found in any textbook on categorical logic (see, eg, (Barr and Wells, 1990)). 

3.4 Meta-specification Modeling via Sketches 

It is clear that a working description of large, and of moderate size too, real system 
cannot be a flat, one-piece, specification. Rather, it will be a collection of differ­
ent viewpoint specifications and their refinements of different degree of elaborating 
details. In addition, the components (views and refinements) can be somehow addi­
tionally related between themselves, for example, one component specification can 
be the intersection of several others, or the merge of some others, or both. So, 
specification of complex system is itself a complex structure subjected to certain in­
tegrity constraints and carrying certain operations. To fix terminology, we will call 
component specifications schemas and the entire specification repository schema 
library. 

To be manageable, a schema library should be structured according to some 
predefined pattern and so the key to the problem is in finding a language suitable for 
specifying the library structure. Several proposals for such languages were made in 
research papers and/or implemented in CASE-tools. It is common to arrange these 
languages around the structuring primitives of view to a schema, refinement of a 
schema and schema integration (cf. (Batini et al., 1993)). In particular, in a series 
of works by the Italian school of conceptual modeling (Batini et al., 1993; Santucci 
et al., 1993; Francalanci and Pernici, 1994), a general mechanism of view/refinement 
grid was proposed for structuring schema libraries. 

However, their grid and similar patterns that can be found in the literature lack a 
construct of vital importance for the problem: namely, what is a structuring pattern 
for specifying relations between schemas? In other words, given two conceptual data 
schemas S1 and S2 , how can one specify that S1 is a view on S2 or, for example, 
that a third schema Srnt is the result of integration of S1 and S2 according to some 
additional information about correspondence between S1 and S2 . Similarly, how can 
one specify that a schema S' is a refinement of schema S? 

It was shown in (Diskin, 1998a) that basic modularization concepts of view to 

44 



data and refinement of data can be naturally described by arrows denoting sketch 
mappings or functors (they are graph mappings compatible with diagrams) . 

A view to a schema (TI-sketch) Sis a pair V = (Sv,v) with Sv is the view 
schema (another IT-sketch) and v: Sv ➔ Sis the view mapping (functor) into some 
augmentation of S with derived items. 

A refinement of a schema S is a pair R = (Sn, r) with SR is the refinement 
schema and r: S ➔ SR is the refinement mapping into some augmentation of SR 
with derived items. 

The top-down design methodology suggests to work out data schemas for a com­
plex IS by the process of stepwise data refinement, and in each stage of refinement 
to work out a system of user views to principal data schemas. Such a design process 
can be specified by a chain 

r1 r2 rn-1 
S1 =➔ S 2 cm--+ ... ~ Sn 

where each S; is a view meta.sketch on the i-th stage of refinement and r; is the 
corresponding refinement. Here view meta.sketch means a sketch whose nodes denote 
data schemas and arrows denote mappings between them (views). In other words, 
with each meta.sketch S; there is coupled a metafunctor £; sending nodes and arrows 
of S; into sketches and sketch mappings. In analogy with hypertexts, we will call 
such a construct hypersketch. 

Each arrow r; is a pair (:F;, p;) where the first component is a functor :F;: S; ➔ S;+1 

and the second component is a function which assigns to any view schema S E S; a 
refinement mapping pf: S ➔ :F;(S). One can think of this construction as a collec­
tion of view hyper-sketches, each is placed in its own fiber (plane) indexed by the 
number of refinement steps, while r;'s are inter-fiber mappings. This explains the 
name hyper-text fibration we use, the term fibration is borrowed from the category 
theory. 

In addition, the following diagram must hold commutative for any i and any view 
mapping v: Sv ➔ S in S;: 

Sv 
pfv 

:F;(Sv) 

vl 
pf 

1 F;( v) 

s F;(S). 

This commutativity condition is an important constraint: its maintenance is ne­
cessary for holding integrity of the schema repository and should be a mandatory 
functionality of any metadata framework. On the other hand, this condition makes 
the pair (:F;, p;) above a construction which has been thoroughly studied in category 
theory: namely, with this condition the mapping p; becomes nothing but a so called 
natural transformation of functors, p; : £; ==} (F~ £;+1), where £; is the functor 
assigning data schemas to the i-th fiber sketch. Only in the presence of the commut­
ativity above the entire construction becomes a fibration in the technical categorical 
sense. 

45 



Thus, a constraint induced by the software reality leads to a mathematically 
justified construct. We consider this as an instance of the general phenomenon we 
have stressed above: extremely high relevance of the arrow language developed in 
category theory for software engineering. 

The construction of hypersketch fibration can be generalized in the following 
way. Till to now we assumed that the collection of hypersketches is organized in a 
refinement chain. However, it may happen that the schema repository is a set of 
such chains outgoing from a common source, for example, these chains can represent 
different directions of the design project. Moreover, there is nothing strange if these 
chains meet in some node and then diverse again following to some project schema. 
In other words, one can well assume that refinement steps are organized into some 
graph, actually, a sketch, representing the project on a very abstract level, details 
can be found in (Diskin, 1998a). 

3.5 Sketches vs. Software Specifications: a Conjecture 

A sketch is a precisely defined formal construct: it is a directed multigraph endowed 
with diagrams labeled by markers from a predefined signature. So, sketches can be 
studied by mathematical methods, this is a subject of category theory and the basic 
framework is already established (Diskin, 1997c). 

Modeling software notions and constructs by sketches is a subject of computer 
science beyond mathematics. It can be roughly divided into data modeling, process 
modeling and specification (meta-) modeling. It was shown above how data modeling 
and meta-specification modeling can be managed with sketches. Process modeling 
can be approached via n-arrow sketches, but by lack of space, we refrain from 
discussing it in the paper 

If the structures to be modeled are simple, ordinary ad hoe specificational means 
are sufficient. Complex structures however need special means and our considera­
tions above hopefully show that the sketches is a powerful and natural specification 
paradigm. 

Applicability of the sketch framework can be visualized by Fig. 4 in which some 
specification space is presented. In modern complex ISs built on 00 principals, all 
the three components - data, procedure and meta structures are complex , and then 
the structural pattern for specifications in a modern IS is that of n-arrow hypersketch 
fibrations (see Fig. 4a). 

The flexibility of sketches as a modeling ( correspondingly, specification) tool is 
provided by existence of different substantial interpretations of sketch items (Fig. 46). 
Interpretations 3,4,5 residing in the square [DS=simple, PS=complex] on the plane 
MS=0, have been thoroughly studied in semantics of computation research, eg, 
(Jifeng and Hoare, 1989; Moggi, 1991; Wadler, 1992). Interpretations 1 and 2 (here 
we mean data structuring aspects of 00) , the square [DS=complex,PS=simple], 
were developed in (Johnson and Dampney, 1993; Diskin and Kadish, 1995; Diskin 
and Kadish, 1996). In particular, the sketch-based solution of the long-standing 
problem of heterogeneous view integration was described in (Cadish and Diskin, 

46 



a) Space of software specifications 
(s - simple, c - complex) 

Process 
S1ruclur6$ 

c O/Tiina,y 
sketches 

A4 lloc notation 
• sndlogic 

a s(lmple) 

A411oc 

HyperskBlch fibrations 

Spec/f1cotlon 
S1rucltses 

N-arrow 
sketches 

0/Tiina,y 
skalchas 

comp ex Dalo 
S1rucltses 

b) Possible interpretations of 
sketch nodes and arrows 

1. sets and functions (in data 
modeling); 

2. object classes and references 
( 00 analysis and design); 

3. data types and procedures 
(functional programming) ; 

4. propositions and proofs (lo­
gic/logic programming); 

5. interfaces and processes 
(process modeling); 

6. data states and transactions 
( transaction modeling); 

7. schemas and schema map­
pings (meta-modeling) . 

Fig. 4: IS-engineering specifications in the arrow logic framework 

1996)). Modeling transactions, the square [complex,complex], is in the stage of 
initial development if to speak about technology. 

Meta-modeling, the plane PS=O, was developed in (Diskin and Kadish, 1997; 
Diskin, 1998a); in (Diskin, 1997b) an integral data model independent framework 
for specifying database architecture was proposed. 

4 Instead of Conclusion: Mathematics vs. Information Sys­
tem Engineering - A General Perspective 

Any human activity is impossible without descriptions of why, what and how. The 
necessity of how is obvious, why-statements are of vital importance when we speak 
about humans but what-descriptions, though important, are not mandatory: the 
activity is richer than logical schemas and goes beyond denotational formulations . 
However, as it goes further, the absence of clear specifications becomes a more and 
more serious obstacle till the benefits of having a specification language will exceed 
efforts for its development. 

Software is computer's intellect somewhat similar to human 's one, and simultan­
eously, software is a human activity which seems has reached the stage when clear 
semantic specifications become a crucial factor. The question is in languages suit­
able to achieve the goal. In its turn, semantic specifications are impossible out of 
abstract mathematical framework, so, the question is in suitable mathematics. 

47 



Procedural 
Structures 

Data Structures 

The axis scales richness of data/ proced­
ural structures employed. The curves 
trace the evolution of DB and PL. The 
middle line depicts logical/algebraic ma­
chinery involved in mathematical mod­
els: 
1. discrete mathematics / matrices, 
Boolean polynomials; 
2. string-based ( relational) logic / ordin­
ary algebras; 
3. graph-based (categorical) logic/ dia­
gram algebras. 
Each trident symbolizes a systematic at­
tempt of applying theory to practice, 
and its success ( relevance of the math­
ematical model) is evaluated by ! or ? 

Fig. 5: An overall picture of software evolution 

Of course, there are always genetic gaps between mathematics and applied meth­
odology, and then between methodology and practice, and this is quite normal. 
What is not normal is the size of these gaps and disagreement between their op­
posi te sides which one can observe in modern SE. This has resulted in a common 
general disappointment of practitioners in the methodology and methodologists in 
the logical and mathematical support of software technology7

• 

We assert that the cause of the gaps and subsequent disappointment is not in 
inherent non-applicability of mathematical logic and algebra to software engineering 
but rather in using unsuitable mathematical tools: not the theory is unsuitable but 
an unsuitable theory is not suitable. 

The following ( oversimplified) picture of software evolution and mathematics em­
ployed traces the history of the situation (see Fig. 4). 

Certainly, any attempt to describe the software world by a concise graphical image 
is doomed to be more or less speculative. Nevertheless, some global threads can be 
identified and are shown in the picture: the infamous impedance mismatch between 
databases (DB) and programming languages (PL) arisen in seventies, the trend of 
modern computational procedures to operate on extremely rich data structures and 
the trend of databases to be more flexible and rich from the computational view 
point. In fact, to manage modern ISs effectively one is forced to think in terms 
of semantically valid computational procedures: in effect, it joins databases and 
programming into an integrated object-oriented framework so that DB and PL tend 
to meet under the 00-supervision. 

7 as one of anonymous referees of our manifesto (Cadish and Diskin, 1995) wrote: " ... none of the theorems (beyond 
the really basic stuff) is at all helpful" 

48 



As for the Theo1y -line, it appears that in computation modeling the powerful 
tools of category theory are used for attacking somewhat obsolete goal while in data 
modeling actual problems are attacked with unsuitable tools. Graph-based and 
object-oriented specifications are beyond the scope of the classical relational model 
but they are just in the focus of CT as we described briefly in section 3.1. Moreover, 
experience of CT shows that 00 requires a special kind of thinking - dynamic arrow 
thinking in terms of (variable) sets and morphisms as opposed to static thinking in 
terms of sets and elements. Thus, the mathematics of (the formalizable part of) 00 
is CT and one has a nice amalgamation of modern trends in software with modern 
mathematics. 

So, our general suggestion is to incorporate powerful GT-tools - the arrow logic 
and sketch language - into ISE very seriously from the very beginning, and thus 
build a unified specification framework for modern information technologies. Of 
course, we recognize well that the subject of engineering is much wider than it can 
be seen through mathematical patterns, and ISE is not an exception. However, 
in everyday work an engineer necessarily uses working models of the constructs he 
deals with and reasons of them on the base of some (implicit rather than explicit 
yet) working logic. So, what we actually propose is to make the arrow thinking 
underlying the sketch framework a working way of thinking in ISE. Being aware 
of the risk of making general statements and the more so predictions about the 
software world, we nevertheless assert that such a step should result in a significant 
increasing of information system design quality and productivity. 

It seems for us that the current and of the nearest future situation in relating 
category theory with ISE theory and practice should be similar to the heroic age 
of the calculus in the 18th century when differentiation/integration techniques and 
mechanical engineering coupled closely in, in fact , a single discipline of theoretical 
mechanics and elasticity theory; only later preimages of modern purely mathematical 
disciplines had separated from that merge. The situation with CT and ISE is slightly 
different: the mathematics as such is already designated and developed, and we 
predict that in the nearest future it will be coupled with ISE. Initial steps have 
been done, and we conjecture that in some years the abstract "arrow nonsense" of 
category theory will become a basic mathematical discipline necessary for a software 
engineer very much like the ordinary linear algebra and calculus are for a mechanical 
engineer. 

References 

Atzeni , P. and Torlone, R. (1996). Management of multiple models in an extensible 
database design tool. In Advances in Database Technology - EDBT'96, 5th 
lnt .Conf. on Extending Database Technology, Springer LNCS ' l057, pages 79-
95. 

Batini , C. , Battista, G. , and Santucci, G. (1993) . Structuring primitives for a 

49 



dictionary of entity relationship data schemas. IEEE Trans.Soft.Engineering, 
19( 4):344- 365. 

Barr, M. and Wells, C. (1990). Category Theory for Computing Science. Prentice­
Hall International Series in Computer Science. Prentice-Hall International, New 
York, 1990. 

Cadish, B. and Diskin, Z. (1995). Algebraic Graph-Oriented = Category Theory 
Based. Manifesto of categorizing database theory. Technical Report 9506, Frame 
Inform Systems. //ftp.cs.chalmers.se/pub/users/diskin/MANIFEST /mnfst4.ps 

Cadish, B. and Diskin, z. (1996). Heterogeneous view integration via sketches and 
equations. In Foundations of Intelligent Systems, Proc. 9th Int.Symposium, 
ISMIS'96, Springer LNAI'l079, pages 603-612. 

Diskin, Z. (1997a). Formalization of graphical schemas: General sketch-based logic 
vs. heuristic pictures. In 10th Int. Congress of Logic,Methodology and Philosophy 
of Science. Kluwer Acad.Publ. 

Diskin, Z. (1997b ). Formalizing schemas for federal database environment architec­
ture. Technical Report 9701, Frame Inform Systems, Riga, Latvia. 
(On ftp: //ftp.cs.chalmers.se /pub/users/diskin/REPORTS/tr9701.ps) . 

Diskin, Z. (1997c). Generalized sketches as an algebraic graph-based framework for 
semantic modeling and database design. Technical Report 9703, Frame Inform 
Systems/LDBD. (//ftp.cs.chalmers.se/pub/users/diskin/REPORTS/tr9703.ps) 

Diskin, z. (1998a). The arrow logic of meta-specifications: a formalized graph-based 
framework for structuring schema repositories . In Seventh OOPSLA Workshop 
on Behavioral Semantics of 00 Business and System Specifications), Technical 
Report, Munich University. To appear. 
(On ftp: //ftp.cs.chalmers.se/pub/users/diskin/PAPER-DB/ oopsla98.ps). 

Diskin, Z. (1998b ). The arrow logic of visual modeling and taming heterogeneity of 
semantic models. In Second ECOOP Workshop on Precise Behavioral Semantics 
(with an Emphasis on 00 Business Specifications), Technical Report , Munich 
University. 

Diskin, Z. and Kadish, B. (1995). Variable sets and functions framework for con­
ceptual modeling: Integrating ER and 00 via sketches with dynamic markers. 
In OOER'95: Object-Oriented and Entity-Relationship Modeling, Proc. 14th 
Int.Conf., Springer LNCS'1021, pages 226- 237. 

Diskin , Z. and Kadish, B. (1996). Variable set semantics for general-
ized sketches: Why ER is more object-oriented than 00. To ap­
pear in Data and Knowledge Engineering, manuscript is available by ftp 
//ftp.cs.chalmers.se/pub/users/diskin/ER/ERvsOO.ps. 

Diskin , Z. and Kadish, B. (1997). A graphical yet formalized framework for spe­
cifying view systems. In Advances in Databases and Information Systems, AD­
BIS '97, 1st East-European Symposium. 

50 



Drew, P., King, R. , McLeod , D., Rusinkiewicz, M., and Silberschatz, A. (1993) . 
Report on the workshop on semantic heterogeneity and interoperation in mul­
tidatabase systems. SIGMOD Record, 22(3):47- 56. 

Francalanci, C. and Pernici , B. (1994) . Abstraction levels for entity-relationship 
schemas. In 13th Int .Conf. ER '94, Springer LNCS'881, pages 456- 473. 

Goguen, J. (1994) . Requirements engineering as the reconciliation of social and 
technical issues. In Requirements Engineering: Social and Technical Issues. 
Academic. 

Goguen, J. (1996). Formality and informality in requirement engineering. In Re­
quirement engineering, 4th Int . Conference, pages 102-108. IEEE Computer 
Society. (keynote address). 

Jifeng, H. and Hoare, C. (1989). Categorical semantics for programing languages. In 
Mathematical foundations of programing semantics, Springer LNCS'442, pages 
402-417. 

Johnson, M. and Dampney, C. (1993). On the value of commutative diagrams 
in information modeling. In Algebraic Methodology and Software Technology, 
AMAST'93. Springer. 

Langmaack, H., Pnueli, A., de Roever, W.-P., and Strabner, A. (1997) . Foreword. 
In Compositionality. Proceedings of Int. Symposium. 

Makowsky, J . (1992). Model theory and computer science: An appetizer. In Ab­
ramsky, S., Gabbay, D., and Maibaum, T., editors, Handbook of Logic in Com­
puter Science, volume 1. Oxford University Press. 

Maggi, E. (1991). A category-theoretic account of program modules. Mathematical 
structures in Computer Science, 1:103-139. 

OMG (1997) . UML Document Set. Object management group, OMG, OMG's web­
page, http://www . omg.org/library/schedule/Technology-Adoptions . htm. 

Piessens, F. (1996) . Semantic data specifications: an analysis based on a categorical 
formalization. PhD thesis, Dept. of Computer Science, Katholieke Universiteit 
Leuven. 

Piessens, F . and Steegmans, E. (1997). Proving semantical equivalence of data 
specifications. J. Pure and Applied Algebra, (116):291- 322. 

Santucci, G., Batini, C., and Battista, G. (1993) . Multilevel schema integration. In 
12th Int.Conf. ER'93, Springer LNCS'823, pages 327-338. 

Wadler, P. (1992). Comprehending monads. Mathematical structures in Computer 
Science, 2( 4) . 

51 


