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Abstract
The mathematical models for different hierarchical levels of transport processes are
discussed. The model equations with memory effects accountng are proposed. Such
equations are hyperbolic modifications of the Burgers equation and the Navies- Stokes
system. Also the new systems of ordinary differential equations are proposed for
investigation memory effects influence on chaos. Some numerical examples of chaotical
behaviour in such systems are included.
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l lntroduction

The basic equations for heat transfer and hydrodynamics are usually parabolic heat
equation and the Navier-Stokes hydrodynamic equations. But it is known very well that
these equations lose their applicability in extended media when characteristic scales of
parameters change less then correlation time and conelation length (relæration or
memory and nonlocality effects). Especially many examples of non-applicability were
found in turbulence. So more correct equations should be applied in such cases.
There are some well-established facts in theoretical physics on the description of
transport processes. The first famous idea is the existence of hierarchy of description
levels. If there are N>>l particles we have many levels for description: N deterministic
dynamical laws of Newton for particle movement; Liouville equation for N- particle
distibution function, Boltzman equation for one-particle distribution function,
hydrodynamic equations for macroparameters (Naveir-Stokes class equations),
thermodynamic equations. The choice of the level of description depends on the
measure of deviation from equilibrium. The second background idea is the existence of
many interrelating relæration processes and many time and space scales with different
relocation times and lengths. The memory and nonlocality effects are common for all
levels. The turbulence is a bright example of such complex phenomena. It should be
stressed that each level of description has its own model equations with typical
behaviour of solution. Especially interesting is the problem of defining typical
'chaotical behaviour' for a given level. So each level ofdescription has its own specific
type of 'chaos', 'autowave' solutions, 'collapses'and so on.
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Thus in this paper it will be compared the levels of description and typical chaos,
solitons, collapses for them. Special attention will be devoted to the hydrodynamic level
but with accounting memory and nonlocality effects.

2The Hierarchical Levels of Description in Physics

2.1 Hierarchy of Equations

There are many phenomenological, experimental and mathematical models for
hydrodynamic processes. But only theoretical physics can give adequate understanding
of transport phenomena in different media under different conditions. So we very
briefly describe some main concepts from statistical physics relevant to modeling
equations choice.
Since the works of N.Bogoliubov, M.Bom, M.Green, Kircvud and Ivon, the canonical
approach in theoretical physics is as follows. Let us consider the medium constituted
from N independent particles. Then in classical physics we can describe the particle
movement precisely by an ordinary differential equations system (Newton equations).
But statistical physics considers the ensemble of system by introducing distribution
function fp(xl, x2, ..., xN, t) fbr particles distribution probability at time t. The function
fN is evaluated from the Liouville equation

ôf ̂,
"  + { . f p ,H \=o ,  ( l )

ôt

where H is the Hamiltonian of the system and {} are the Poisson brackets. But really the
function fy is too informative for the hydrodynamic phenomena description. Usually all
necessary pararneters are macropafirmeters (for example temperature, pressure, and
velocity: T, P, and V). The main leading principle in such a case is the reduction of the
description pararneters set. The reduction procedure deals with some hierarchical levels.
Firstly by integrating on some variables in phase space \ile can go to t - l-particle
distribution function with the BBGKI chain of equations for s- particle distibution
functions. Remark that for f1 we can received well known Boltznan equation. These
hierarchical levels ofdescripton are displayed on the Figure I at the end ofthe paper.
These stages with distribution functions named kinetical. Further averaging with one-
particle distribution function leads to macroparameters T, U, P above. Usual procedures
leads to well known equations of hydrodynamic type: parabolic heat equation, Navier-
Stokes equations and so on. But more correct description leads to more difficult
equations with memory effects accounting. The reason of memory effects origin under
reduction processes is very well described in theoretical physics since the works of
Mory, Zwanzig, Picirelly, Zubarev and many others, see review in (Makarenko et al,
1993; Makarenko, 1996, Makarenko et al, 1997). In such approach we receive
hydrodynamic equations for mackroparameters with some constitution equations
relating macrovariables. In general such constitution equations have the form ofintegro-
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differential equations. For example the relation between temperature T(x, 0 and heat
flux q(x,t) receives the form:

Q (x, t) = -!t- *at I at X@, rt;t fl){
Ax

(2)

In (2) K(x, xl; t, tl) is some kernel accounting the memory and nonlocality effects.
Only in the case when the kernel is ô-function we receive usual the heat conduction
equation. The more realistic kemel for fast processes is of exponential type K=const
exp(-tlr). Then we receive the so-called hyperbolic heat conduction equation well
known since Maxwell, Cattaneo, Vemotte, Luikov. Also there exists hyperbolic
counterpart of the Navier- Stokes equations.
Remark also that some reduction procedures can be applied further for hydrodynamic
equations. For example the searching of small number of leading parameters in the
dissipative structures theory or synergetic and phase transition theory also may be
considered as reduction in description (see the works by Prigogine, Haken, Ebeling).
Remember also the new investigations of reducing of partial differential equations to
low-dimensional ordinary differential equations and on their attractors (Ladyzhenskaya,
1969; Temam, 1990). The next stage of reduction consists in the transition to the pure
thermodynamic description. The stages above are also displayed in the Figure 1.
It should be stressed that in general it is known from the theoretical physics the precise
abstract equations for different hierarchical levels of description. Usually theoretical
physicists explore these very complex abstract equations (frequently qualitatively). But
on hydrodynamic level it is especially interesting to search visible macroeffects. In such
a case especially useful is the consideration of model equations. Thus as the Navier-
Stokes equations as their hyperbolic counterpart and low-dimensional systems of
ordinary differential equations are the model equations. So in the next divisions of the
paper we very briefly describe the results on investigations of some new model
equations derived by author.

2,3 Typical Solutions for Dilferent Hierarchical Levels: Stationary and
Nonstationary Dissipative Structures, Solitons, Autovaves and Chaotical Solutions.

Thus in the previous subsection we described some hierarchical levels of the description
and some typical model equations for this levels. Especially interesting is correlation
between them. The next very useful and intriguing component of the investigation is
searching of typical solutions on model equations for different levels. Remark that
usually such typical solutions are the basic elementary objects for description of
complex real phenomena. One example is the turbulence.
Next well known phenomena are the so-called stationary dissipative structures
introduced for the first time explicitly by I.Prigogine. In simplest case such dissipative
structures are the stationary nonuniform solutions ofheart-transfer equations (Prigogine,
1980; Danilenko et al, 1992; Loskutov, Michailov, 1997). They originate in open
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thermodynamic systems with heart, mass and entropy fluxes through the boundaries far
from equilibrium.
Second close examples constitute nonstationary dissipative structures named blow-up
solutions, collapses or peaking regimes (Samarsky et al, 1987; Danilenko et al, 1992).
Mathematically such solutions receive infinite value of variables in a finite time (more
details see in Danilenko et al, 1992; Makarenko, 1996q b, c).
Remember that the dissipative structures above were investigated mainly on the base of
the usual parabolic heat- mass transfer equations. We investigated them on the basis of
more conect hyperbolic heat and mass conduction equations with the memory and
nonlocality accounting. We received as theoretical results as interesting applications to
combustion (Kudinov et al, 1983). In sections below we describe some our recent
investigations on the model hydrodynamic equations with the memory effects.
The next class of typical solutions constitutes solitons and autowaves. Till now such
solutions was investigated in fully integrable equations such as Korteveg- de Vries,
Burgers, Benny-Stewartson equations. Accounting the memory effects leads to the new
equations and new possible solutions. The simplest new equation is the one-dimensional
hyperbolic modification of Burgers equation. The two and three-dimensional hyperbolic
systems improving the Navier-Stokes equations was introduced by author. When the
relæ<ation time is small remarked equations is the singular perturbation of the parabolic
counterpart. It is important that new equations have more solution types then usual. One
distinctive feature is that in a case of the large flow velocities the equations with
memory accounting allow collapses (blow-up) in solutions. Remember that an existing
of blow-up solutions in the Navier- Stokes systems is still under the question now.
Finally there exists another entirely separate class of solution - the so-called chaotical
solutions. Earlier the author pushed idea that each hierarchical level ofthe description
has its own type of turbulence (Makarenko et al, 1993). Moreover different modal
equations have the different types of chaotic solutions. Till now dynamical chaos for
hydrodynamics was investigated mainly on the base of the parabolic type equations or
Lorerz system of o.d.e. The author derived new low-dimensional systems of o.d.e.
which generalized the Lorcnz system. It is found that such more correct equations have
some presumably new types of chaotic behaviour (Makarenko, 1998). We exposed the
results of investigations very briefly in the next divisions.

3 Ilyperbolic llydrodynamics with Memory Effects.

As was mentioned more correct then the Navier-Stokes equations should be applied in
such a case. Cattaneo, Vemotte, Joseph and many others had investigated more conect
hlperbolic equations for heat conduction and for the thermoelasticity (see also
@anilenko etal,1992; Makarenko, 1996; Makarenko et al, 1997)). The accounting of
the memory effects also follows the origin of new hydrodynamic models. The simplest
modification of the Navier-Stokes equations is the Ma"rwell media equations

25rr2L.{+v, 
ôvr, ôv,,, *o- -)-^v =-{*!)gradÈF;çu1

à1' 'k a*k-' lu7- u 4-'k ùe )-nr/ 
-\L* 

a)



divV =0,

where t is the relaxation time and v is the viscosity, / is velocity vector, F(x, T) is
extemal force and P - pressure.

In the second part of proposed report it is considered the result of mathematical
investigations for the model ic equations derived from system above. Than
the one-dimensional model equation is the so-called hyperbolic modification of Burgers
equation

The new simplest two and threedimensional model equations have the form (È2,3)

(3b)

LL*v a I /  -(  u 'z--)- , .  a2rr
a t ô,-*"[;7-)- '*z-= o s\

(5)
aI r__+
O T

a r  (a2 r  ' \

aÇ*"[ a 7-)
I / k -  v L I l  =  0 ;

Remember that early we had investigated another model equation with the memory
effect - the so-called hyperbolic heat conduction equation. We had investigate the
problems of combustion theory and had found conditions for blow-up solutions and
interesting dependence the processes current from a rela<ation time (Kudinov et al,
I 993 ; Makarenko, 1996).
The hydrodynamic equations with the memory effects are more interesting. First
peculiarity is the possibility of collapses existing without external forces. This effect
was investigated (analytically and numerically) in the one-dimensional modification of
Burgers equation (equation (4) and results were published earlier @anilenko et al,
1992; Makarenko, 1996; Makarenko et al, 1997). It is found that in dependence of
initial velocity U0 (x) in case lUl >t \rye can receive blow-up for velocity u and in case
lUl<t we receive decreasing solution. The quantity

M =lmaxu}(x)| lC;C =lv /c

represents the ratio of the flow velocity to the velocity of small disturbances
(harmonics) in equation. M plays the role of well-known Mach number in gasdynamics.
The behaviour of solutions of (4) in cuse lM >l is entirely different from them in usual
Burgers equation case.

(6)
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We also had investigated the two- and three- dimensional model systems (5) with the
memory effect accounting. In two-dimensional case v/e found numerically similar
dependence of the value of M as above. For case lMtt in (Makarenko, Moskalkov,
1992; Makarenko, 1996) we described the development of vorticity collapses in a flow
and an increasing of the vortices number.
Our initial investigations of the tlree-dimensional system (5) are very interesting and
prospective not only for the model system (5) but also for the hydrodynamic and
turbulence theory. Here we described some preliminary numerical results. ln case
I trrtltt we found the reducing in characteristic scales of vortices and increasing of
vortices number in a fixed volume of space. On Figures 2,3 we display the typical
behavior in a case of simplest initial and boundary condition. We used initial condition
inthe form

u(x,y,z) = By,ly l< R;

v(x,y,z\ = Bx,lx | <.R; (7)

w(x,y,z) = O,Vx,y,z

Such conditions corresponds to the rotation of the fluid ball with the radius R in the
stable flow (the picture of initial conditions is similar to the "real earth in universe").
Initially the fluid in the ball rotates around the axis Z and, moves in the stream in the
direction of this axis. Figure 2 represents the section of the flow in the plane (X, Y) with
Z;-0.

Fig.2: Initial velocity field (equation (7)).
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Short arrows display the direction of the flow in the grid points (small points in picture
represent the grids). The initial nonzero velocity is localized within the circle of radius
R. The flow field at the moment of time T=0.4 is displayed in the Figure 3.

Fig.3: Velocity field in the moment T:0.4.

The fat points in the picture correspond to the regions with blowing-up growth in
solutions. From Figure 3 we can see four local regions of collapses and general complex
flow pattem. Remark that in the another numerical experiments we found also much
more irregular pattems in the case lUl>tt with many small collapses origin in the
bounded domain. This behavior remembers very closely the 'dry turbulence" found
earlier (Sharkovsky, 1984; 1995). Such properties of solutions of the model equation
(3)-(5) open new ways for description ofthe real turbulence.



3. New Model Equations with Memory Effects for Chaos Investigations

It is well known that Galerkin methods are one of the approaches to the investigation of
hydrodynamic equations. It is easy to construct low-dimensional dynamical systems
using this method. ln particular, for the Navier-Stokes equations the classical example is
the well-known Lorenz system. Below we expose some results on the construction of
low-dimensional analogs for the generalized hydrodynamics with memory effects.
Some comparison with common equations also proposed'

3.1 Galerkin Systems for Three- I)imensional Flows

The first class of dynamical models was derived for the three-dimensional flows with
the stick boundary conditions from the system (3a)-(3b). In Galerkin methods solution
looks for as the series (Ladyzlrenskaya,1969)

@

v(x,t) = p_rznt)v*Q), (8)

where 7r , l<=1,2,,.., are unknown coefficients; {V, l, k:1,2,.. is full system of

orthogonal eigenfunction of some linear eigenvalues problem. In the case F(x, t):F(x)
after application of projection procedure we receive the infinite system of o.d.e.

2

dt" 
tlt k=lm=l

(e)

*' F=t #t(# " - *' **)' w* = tt

l=12,...,wherc f some coeffrcients received from the right side of equations (3). The

sirnple low-dimensional system of o.d.e. is received from (7) by reduction of system (9)
to three variables and after introducing derivatives as complement variables takes the
form:

, 
ff 

=(-xl -.r5 x6 - v x4+ ft) - t(6 y5+ 6 y2) i

,ff =( y2+2"4r;-v x5* y2\+2c(gr6+ ûx4)i

(10)

( t  l )
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Condition

ln 1979 Boldrighini and Franceschini investigated the fivedimensional system for
flows on the tonts. For the sake of comparison we derive the analogous systems for the
generalized hydrodynamics with memory. when t=0 (no memory effects) this system
coincides with the system from @oldrighini, Franceschini 1979). And in the case
0<r<<1 our system is the singular perturbation of Boldrighini- Franceschini system. It
was considered the flows of a fluids with memory on the torus T2:10,2æl*[0,2æ] just in
Boldrigini- Franchesini work. The solution was searched as the series of harmonics
exp(ik), where x- coordinate and k- wave vector. It was received infinite-dimensional
system of o.d.e. Truncated system with five harmonics has the form:

- & l  /  ^  . a

" I 
= F xt-Z x6+ 4 *7 rg+ 4 gylg)+ 4r(r2xg+ x7 û)+4t(;,4y;1g+ gy5) (16)

- & 3 r ., 
T 

= ? $+ x5 x4- v x6+ f) 
- rÇç2r4+ rlx5) .

&4 = _,, &5 &(,
d t  4 r -  d t = * 2 i  i = û :

Without memory effect the system (10) - (15) coincides with the system
(Brushlinskaya, 1968) from the Navier-Stokes equations.

3.2 Dynamical Systems for 2- Dimensional Flows on Torus with

" ff 
= ? x2-9 y7 +3x6rd + 3r(xlxg + x6r3)

t 
* 

= ( 7ç,- 5 yu- 7 y7 7ç) - 7 r(3 x7 + )c6X) + R

" ff 
= F x+- S x9-.r6xld - r(.,,1s+ 6a3)

" ff 
=(-x5 - xtg - 3 x;xù - 3t(*1g+ y64)

#= *r; ff= xz; #= "r; ff= r+;

(r2)

(13) - (ls)

received in

Periodicity

(20)

QD. Q5>

(r7)

(18)

(le)

#=,st
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3.3 Some Properties of \namical Systems with Memory Effect Account

In past publications we had described some properties of the received systems of o.d.e.
(Makarenko, 1996, 1998). Now for information we display some results on numerical
solutions of the o.d.e. systems above.
We present some properties of such systems and a liule results of computer modeling.
On the Figure 4 we show the two-dimensional projection of ten-dimensional phase
space. We also represent the complex behaviour of the system (16)-Q5) with the
parameter value R:6.0 in the vicinity of the stationary point of system. This stationary
point has next coordinates : x I :x2:x3=14=rç5:x9:x I 0=0,

'o ='G(-s .^E.u;;6tA; x7 = re r G; x8=  13  /2 .

Remark that the values of last five parameters (xl-xlO) coincide with the stationary
point of the system in (Boldrighini, Franceschini, 1979) without memory effects.
On the horizontal axis we represent the values of variable x6 and on vertical - the values
ofvariable x2.

e . 5 ( t

Fig. 4: The projection on the axis x2, x6 the phase portrait of the lO-dimensional
system (16)- (25).

The Figure 5 corresponds to the so-called one-dimensional bifurcation diagram of the
considered system of o.d.e.



5 .  ? O 6 . 7 ( r
Fig. 5: One-dimensional bifrrcation diagram.

This graphic displays the stationary values of coordinate x6 in Poincare section in
dependence on parameter R in range 5.7<R<6.7. It is evident that near the value 5 there
exist the windows of transparency (corresponding to periodical solutions) and the
regions of presumable chaotic behaviour. Remark that this scheme of transition to chaos
is visually different from usual scenario such as period doubling.
Investigations ofeigenvalues ofright side ofo.d.e. (16)-(25) at stable points show that
the first distinctive feature from the case without the memory consists in the appearance
of neutrally stable oscillations in such systems. The second distinctive feature is the
types of chaotic behaviour. In the case t=0 gpical is an attractor of "butterfly" type as
in Lorenz system. with r not 0 there is the complex behaviour of new type. A
lujggtoty fills densely some bounded volume ("container"). Visually behaviôur is
familiar to these in two-dimensional mappings with a homoclinic tangency and with
quasiattractors described in (Gonchenko, Shilnikov, Turaev, l99l).

4 Discussions and Further Problems

In previous sections we proposed some properties of a model equations with the
memory effects. Blow-up (collapse) solutions may be very interesting for turbulence as
elementary objects and a source of dissipation (see (Makarenko at all, 1997)). The
processes ,of ,vortex pipe scale decreasing with increasing of vortex number under
condition lMl>l can imitate the vortex filament creation introduced by Moffat, Kida
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and Ohkitani (see Frisch, 1996, pp.l87-188). It can see also the deep analogy with the
Abricosov's vortex in superfluidity. Blow-up in solutions is analogs (in some sense) to
negative energy waves in hydrodynamics and plasma physics (Makarenko et al, 1993).
Remark also that the limit case when M tends to infinity may lead to solutions with the
infinite number of small vortex. In such a case the limit velocity flow may receives
probabilistic and multyvaluedness interpretation.
The o.d.e. systems above are interesting for chaotic behaviow investigations. First of all
when t-+0 these systems became singularly perturbed. So we may have relaxation

oscillations and a specific chaos. At second if t+0 than the dimension of the attractors
tends to infinity. In such a case v/e can have a chaotic behaviour intrinsic not to a
dissipative system but rather to a conservative system. The infinite system of o.d.e.
behaves just like the collection of oscillators. So the distributed systems above may
manifest the properties of media constituted from oscillators. The explanation lies in
fact tfuat the leading operator in equations for description is wave operator. Presumably
the structure of the chaotic behaviour in such media is simple than in dissipative media
and is based on the properties of infinite systems of elementary disturbances. Earlier we
proposed the notion of dispersion turbulence for conservative systems with infinite set
ôf trarmonics (Kuleshov, Makarenko, 1983). Moreover we suppose that familiar
behaviour are inûinsic for systems with broken symmety. Next we suppose also that

the systems above can have large number of atEactors when N-+æ (N- number of
equations).

Thus we c,an see that the accounting the memory effect on hydrodynamical level leads

to the existence of new interesting features of solution, new elementary objects of flows
and new types oftransition to chaos. So the investigations of such equations are very

actuai and perspective. Remark that nonlocality effect can be considered at the same
way as memoryeffect. Some results on nonlocality were described in (Makarenko et al,
ree7).
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