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Abstract. Recent investigations showed that even weak noise acting upon a nonlinea,r dynamical
system can have a pronounced effect on its behaviour resulting in the transitions to a new state
and in qualitative change in the system's properties, e.g., the transformation of an unstable
equilibrium state into a stable one, and vice versa, the occurrence of multistability, noise-induced
transport (stochastic ratchets), so-called stochastic resonance, and so on. The phenomenon of
noise-induced transport is closely allied to the well-known problem of fluctuational transitions
from one stable state to another. The theory of such transitions and examples of the phenomena
indicated are considered.
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1 Introduction

The problems of fluctuational transitions of a nonlinear system from one stable
steady state to another in response to weak noise, that can be either of internal
or of external origin, have long attracted the attention of physicists and chemists
(Pontryagin et al., 1933; Kramers, 1940; Landa and Stratonovich, 1962). These
transitions play a dominant role in the route to dynamical chaos via intermittency
(Landa and Stratonovich, 1987; Landa and McClintock, 2000), in the excitation of
noise-induced oscillations (Landa et al., 1997; Landa and Zaikin, 1998, 1999), and
in the fluctuational transport (Millonas and Dykman, L994; Landa, 1998; Astumian
and Moss, i99B). Many reseârchers believe that the fluctuational transitions are
of crucial importance in stochastic resonance as well (Gammaitoni et al., 1998).
However, it is the author's opinion that such is not the case.

Noise can not only cause the transition of a nonlinear system from one stable
steady state to another but also induce these states in themselves. Such is indeed
the case when noise-induced oscillations are excited.
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2 Fluctuational Tbansitions of Nonlinear Systems from one
Stable Steady State to another

The problem of fluctuational transitions from one stable steady state of a system
to another under influence of weak noise can be reduced to the statistical problem

of the probability of the first attainment of a boundary by a Brownian particle

moving in a given force field (Pontryagin, 1933; Landa and Stratonovich, 1962). As
an example, Iet us consider a Brownian particle in a force field corresponding to
double-well potential U(r). The motion of such a particle is conveniently described
by the equation

mù * 1ù + tf @) : "Y€(t), (1)

where m is the mass of the particle, f (r) : du ldr : -arlbr3, ((t) is a sufficiently
wide-band random process of intensity K.

For  { ( t )  :0  eq.  l  has two stable s ingular  points t r ! ,z :  +11a/b, i1 ,2 :0 and
one unstable t0 : 0, iq : Q. These points corresponds to steady states of the
particle. In the absence of fluctuations, the particle, being in one of the stable
steady states, cannot pass from one to another without external action of some
kind. In the presence of weak noise, however, the particle executes small random
oscillations in the r icinity of one of the stable steady states and, from time to time,
undergoes a transition to another stable steady state. If the noise is sufficiently
weak (the condition for the smallness of the noise intensity will be specified later),
such transitions occur only very rarely. Thus the particle remains in the vicinity of
the corresponding stable steady state over a long period, and the probability dis-
tribution consequently has a chance to reach its stationary value. We will consider
namely this case.

The statistical problem of the probability of the first attainment of a boundary
is significantly simplified for a single stochastic equation of the first order. Let us
show that in two limiting cases eq. 1 can be reduced to such an equation.

(i) The damping factor 7 is sufficiently large, so that we can rewrite eq. 1 as

1 . tù * i :+ / ( r )  : ( ( r ) , \2)
where ;.r : ml"y is a small parameter. As is shown in (Stratonovich, 1963), in the
first approximation with respect to p the two-dimensional Fokker-Planck equation
corresponding to eq. 2 can be reduced to one-dimensional equation

ôwLr,t)  : l l r t ,+,1,@))(yçr1rçr, t )++ô'Î 'E' t ))1,  (3)
ô t  ô c [ \  \  

" ) '  2  0 x  ) ] '

where //(r) : dT@)ldr. We note that the derivation of the corresponding one-
dimensional equation in higher approximations with respect to p is given in (Landa
and McClintock, 2000). Eq. 3 can be rewritten in the form of the Fokker-Planck
equation as

ôw(r, t)  _
at # f(t' + t r' @))t(ù - + r" @))u,(r, t)] +
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where s(r) : (t + pf'@)12)l'y.
(ii) Let the damping factor 7 be sufficiently small and 7/(r) is of order of. mù.

In this case the particle energy E, which is described by

m ù 2  r r /E : '? *  f l ( r ) ,  (6)

is a slowly J*yirrg function of t. The stable steady states correspond to minima of

the function U(r), and the unstable state corresponds to maximum of this function.

A transition from one stable steady state to another can occur when U(r) attains

its maximal value. Multiplying both sides of eq. I by * we find the following exact

equation for .E:

È: -t(ù' - t{(r)). (7)

So, combining eqs. 6 and 7 we obtain the two stochastic equations

K  0  ( r -  . r  \  . \

; .h((t + r/ ' t '))w(r,t) 1.
This equation is associated with the following Langevin equation:

* : -(1 + pf '@))f (ù * + l"@) +s(r)€(r),

i I :- tp@-.'aù -
\ r n

,(E - uh\\ \\  " /€( r )  l .
n'L 

)

ôw a(
E:_"l,

2 (E - ru ( r ) )  I  2N  ̂ t / .\ ,  .  . /  w l+a l= l l (n_tu( r ) )_
n'L I  

n 'L  dI rL\ \  /
I

+)'l. # #*(t' - ru1"1)') : o
A solution of eq. 9 can be represented as

w(r, E,t) :  w(8, t)w(rl4),

(4)

(5)

(8)

If the correlation time of the noise is sufrciently small, we can write the two-
dimensional Fokker-Planck equation corresponding to eqs. 8:

(e)

(10)

where tu(rl-E) is the conditional probability distribution. Because E is a slowly
varying function of t, the conditional probability distribution w(rl0) has time



to follow the variation of. E. Therefore it can be approximately found from the
following equation (Stratonovich, 1963) :

#(
Taking account of the normalization condition, a solution of eq. 11 can be written
as

t _..Pp__-_, ror 1rJ(r) < E,
w(rl1) : 

I 
r rlz(n - 1u (r))

[ 
0 for 1U(r) > E,

where

is the oscillation frequency of a particle with energy .8. Thus, it follows from 10
and 12 that

, (E- rub\ \  
) :o-!-;---r(rla) 

,

(11)

(r2)

Substituting 13 into eq. 9 and integrating over f we obtain the following one-
dimensional Fokker-Planck equation for w (E,l) (Stratonovich, 1963) :

ô w ( E , t ) : 1 [ L (  (  l , K t  \

a t  m lo l11@(E)J(E) -  î )w(E ' t ) )

* É  
o ' l  \ )

'  
2- AE (\ . , (E)J(E) ' î r ' (U'ù)] '  (14)

where

J (E) :

is the action. We note that

dJ(E) 1

dE 
:  

, (E) '

It is easily shown that the following Langevin equation can be related to the Fokker-
Planck equation 14:

E:  - t lu (E)J (E)  "YK | .  1  d { / (F \  r /F \ \  1

L *=-ff i(.t-;tr)-s(a)€(t)l , (16)

+I
tU(a)<E

(13)

(15)

2(E - fl@)) dr



where e(E) : J{DJ(EW.
So, we see that in both of the considered particular cases eq. I can be approxi-

mately reduced to a single Langevin equation of the form

w",(z):h"*o(-riffi*),

2+ f ( z ) : s ( z ) ( ( t ) , (17)

where {(t) is white noise of intensity K. Let us assume that /(z) vanishes at the
points z: zo and z: \ and is positive for zs < z 1 21. This implies that the
point ze is a stable steady state and that z1 is an unstable steady state.

The Fokker-Planck equation for the probabiiity density w(z,t) is

uE!: * i(r,., 
- Ks(z)g'(:)) ,,,. ,1. + fi(n,r,t.r,,u) (18)

The stationary solution of Eq. (18) satisfying the condition for zero probability
flux is

(1e)

where the constant C is determined from the normalization condition. It is easy to
verify that, for small noise intensity rcg2(z), the functionTr'.1(z) peaks at the points
corresponding to stable steady states, in particular, at the point ze.

Let us calculate the probability for the passage of the system from a certain point

z' lying in the range from z2 to 21, where z2 I zs, through the boundary z : 21.

Clearly, for sufficiently small noise intensity, the probability of such passage must be
independent of the initial point z', provided only that this point is not located toô
close to the boundary. Let us denote a solution of eq. 18, satisfying the conditions

u(2,0)  :  6(z -  z ' ) ,  w(21, t )  - -  0 ,

by w(z,z',t). Then the probabil ity that z does not attain the boundary z: z1 in

a time f is

(20)

One of the methods of calculating P(t, z') was suggested in (Landa and
Stratonovich , 1962) . It is known that the probability density w(2, z' ,l) as a function
of z' is described by the equation conjugate to eq. 18, namely

P f t . z ' \ :  [ * ( r . z ' . t \ d z .
J

z2

0w(2 ,  z ' , t )  n ,  , ,  ôw(2 ,  z ' , t )  ,  Kg ' ( r ' )  02w(2 ,  z ' , t )

a t  
: r \ z )  

a l  
-  

2  ô / '  '

where

F(z) : -f Q) + 
Kg(2s'Q) .

2

(21)

(22)
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Integrating eq. 2I over z from z2 to 21, and taking account of 20, we find the
equation for the probability P(t,z') r:

7P( t ,  z )  - , . ,  AP( t ,  z ) ,  ngz(z )  02P( t ,  z )
At 

- \-/ ôz 2 ô22
(23)

Let us represent ôP(t, z) l}t in terms of the characteristic function

T âp( t  , \
@(iu ,z ) : - J f fe " td t .  (24 )

0

Expanding both sides of the expression 24 as a power series in io we obtain

Q(iu, z) : içtrlrmu(r),
&:0

where

r T
, \  t  l , x } P ( t , z ) r ,rnk\z) : - 

H. J 
t" 

At 
ot

0

is the kth moment of the attainment time. Because P(oo, z) : 0 and P(0, z) : 1,
then ms(z): P(oo, z) - P(0,2) : -1. Differentiating both sides of eq. 23 with
respect to t, multiplying by et't and integrating over t from 0 to oo, we obtain the

(25)

(26)

(27)

(28)

following equation for the characteristic function Q(i,u,z):

- ' iu@: F@#.ÉP#

we find

ÉP#.F@#*1:o

Substituting 25 in eq. 27 we can obtain the equations for all of the moments of the
attainment time. In particular, for the mean first attainment tirne M(z): m(z)

This equation, as well as eq. 23, was first derived in (Pontryagin et.al., 1933).
To solve eq. 28 we must set two boundary conditions. One of these is immediately

evident, it is

M ( z ) :  g . (2s)
The second boundary condition depends on the character of the boundary z: 22
(Landa and Stratonovich, 1962). If it is perfectly reflecting, and the requirements

that g(22) * O,VQz)l < oo and zz * -æ are fulfil led, rfr"" $l -0. If

one of these requirements is not fulfilled then we must use as ,h" ,:;kJ'Éoundary
condition the requirement ofboundedness ofthe function M(z) at the point z: 22.

I) Below we substitute unprimed z in place of primed z'
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A solution of eq. 28, in view of 22, satisfying the condition 29 is (Pontryagin et.al.,
1e33)

t "i 't ( '| r(,,\ \M(z): R Iîn 
*o 

[,r/ ,iFO^)

I t  (  " r f tu \ . \
" !, ta *o 

[-'/ itmdu) dzdz'

" i ' t  (^ l  rul  , \  , ,+c | * exn 12 J .;6dul dz', (30)
t  s\z') \  "o /

where the constant C is determined from the second boundary condition. In all
examples considered by us the second boundary condition causes C tobe equal to
zeto.

By using the condition of the noise intensity smallness, the expression 30, for
C : 0, can be reduced approximately to

M(z)x+Î**,(-iffi^) o,

"lh"-'(iffia')a'
If the conditions

lr, - ,ol > 6Qo), lz, - "ol > @Qo), l, - "rl 
>> {-QQù,

where 
e(z):ît*(ff i)\ ' ,

eq. 5, takes the form:

**hlt+uo('-#)]*'(#) ,

(31)

(32)

are fulfiIled (the first from these conditions should be considered as the condition
for the smallness of the noise intensity), the integrals in the expression 31 can be
calculated approximately by using a method similar to the saddle-point technique.
We thus obtain

M(z)x"f?-:w "*o(r"i {-\v)-a,\ (33)
Kg\zo)g\zL) 

- 
\ /" Kg'\u) 

l

We see from 33 that, in the approximation considered, the mean first attainment
time M(z) is independent of z and exponentially dependent of the ratio of the
potential barrier height to the noise intensity. The expression 33, as applied to

(34)



where LIJ : U(0) - Ue{alb) = a2l(4b) is the height of the potential ba,rrier. It
follows from the condition of the smallness of the noise intensity that K < LU.
Therefore the expression 34 shows that the mean first attainment time increases
with increa,sing particle mass. It should be noted that this result is valid only for
small noise and in the first approximation with respect to p.

If the second condition of 32 is not fulfilled, e.g. zz : zo, then an approximate
ca,lculation of the integrals in the expression 31 can be performed in another way.
As an example, let us consider eq. 16. For this equation, in view of 15, we can
rewrite the expression (31) as

(35)

where .Es : 1ue{alb) : -l'o'l(Ab), &: t/(0) : 0. Taking into account that

exp(a2l1K)E) have the most values for E: Es and E: Et, respectively, and,
for K << AU, decline rapidly , in the first integral of 35 we can substitute r.r(Ee) in
place of r.u(E) and in the second integral we can substitute J(81) in place of J(E).
In so doing we obtain

M = 2,#@)"*(?#)' (36)

where ar(.86) : ,f 2a1lm is the frequency of small oscillations in the vicinity of the
stable steady state. Because J(EL) - {fr,, within the weak-noise approximation,
the mean first attainment time is proportional to the particle mass. Thus, we
obtain that in both of the particular cases the mean first attainment time increases
as the particle mass increases.

The value of. M(z) is equal to the mean time at which the coordinate z frrst
attains the boundat! z : 21. If the potential at this boundary has a smooth
maximum, then the probability of passing through the boundary @) is equal to the
probability (t -p) of returning back again, i.e. p - lf2. Hence the mean time of
the passage through the boundary 7 has to be equal to 2M. It can be shown that
f o r p l l - p

(37)

3 Fluctuational Tlansport (Stochastic Ratchets)

In recent years noise-induced tra"nsport phenomena for Brownian particles have
attracted considerable interest, usually in the context of biological and ctremical
problems (see, for example, (Astumian a.nd Bier, 1996; Jûlicher et al. (1997); Bier
(1997); Astumian and Moss, 1998)).

- " #j:Ë *o ( h "),,j:fu *, (# n) an,

f :A
p
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FIGURE 1. An example of the ratchet-like potential t/(a)

Systems in which noise-induced transport occurs are often called stochastic
ratchet-like devices by analogy with mechanical device "ratchet and pawl" described
and considered by Feynman (Feunman, 1963). Feynman showed that in the case
of thermodynamic equilibrium the ratchet on average is at rest - it advances and
retreats by an equal number of teeth on the wheel - as it must be because of the
Second Law of Thermodynamics. It is interesting that similar considerations were
discussed by Smoluchowski (Smoluchovski, 1912) well before Feynman. However,
if the system is not in thermodynamic equilibrium state then directional motion of
the wheel is possible.

Most commonly, consideration of noise-induced transport is restricted to the so-
called overdamped case, when the mass of the Brownian particle can be neglected
and its motion is described by a first order differential equation of the form

i :+ ï ( r ) :e (x , r )+€( t ) , (38)

where ((r, t) is either a regular or a random process with zero mean value, which
just disturbs the thermodynamic equilibrium, {(t) is white noise of intensity K
imitating thermal fluctuations, f @) : (dU ldr) is an asymmetric periodic function
of r, a.nd t/(r) is a ratchet-like potential. An example of such a potential is shown
in Fig. 1.'We 

consider here a more generâl equation of the form

mù * 1ù + "yf @) : "yC(r,f) + 7{(t), (3e)
where rn is the particle ma.ss, but restrict ourselves by the case that ((r,t) =
p(t): Bcoswt, where the frequency ur is sufficiently small. If the amplitude B is
small then, in the absence of the noise {(f), the particle is to be found in one of
the potential wells; such a state is stable. As the noise is present, transitions from
one well to another can occur. Directional motion of the particle is possible if the
probabilities of transitions in opposite directions are different. The force Bcosu.rt

7 l

A IA
tl
I
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just causes this difference between the probabilities. So, we see that the problem
of noise-induced transport is closely allied to the fluctuational transition problem
considered above.

As previously, we study two limiting cases:
(i) The damping factor 7 is sufficiently large, so that we can rewrite eq. 39 as

p ,ù * r+ f@) : ç ( t )+ { ( t ) , (40)

where p : rrf "y is a small parameter. For 11,:0 this equation reduces to eq. (38).
The one-dimensional equation for the probability density w(x,t) can be written

as (Landa and McClintock, 2000)

(4r)0w AS
At 

:  
A*  LF 'urn '

where

,,0 : (,rt") - ee)), * +H, w11: f'(r)wrc,

,,, : (z(r' @))' * 2(T @) - e(t)) r" @) * T r"' @)) +

((tr"' - ç@) r' @) +ff r" at) W . f; r' atffi ,
The series in the right-hand side of eq. 41 is convergent asymptotically.

It should be emphasized that generally eq. 41 cannot be transformed to a Fokker-
Planck equation from the second approximation on. This can be done only in the
case of small rr.'s, when we can use the quasistationary approximation.

Starting from eq. 41 in the third approximation, for two different shapes of the
function /(r), we calculated the mean velocity of a particle in relation to its mass
and the noise intensity K (Landa and McOlintock, 2000). We found that for
moderately large K the flux reversal occurs.

The aforesaid is well illustrated by the examples of the dependencies ot@1A2
on p for different values of KlUs calculated in the first, second and third approx-
imations (Fig. 2). We see that the difference between the results is small only for
p, < 0.002 but for such values of pr the flux reversal is possible only for Iarge values
of. K/Us.

(ii) Let the damping factor 7 be sufficiently small. In this case we can take as a
slow variable the particle energy E, which we define as

^ i 2
E : '# + 1V(r, t ) ,  (42)

2

where V(r) : I l@)d,r - np(t) -- U(r) - rp(t). The variables E and r are
described by the equations

1a
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FIGURE 2. The dependencies of 6182 on p for (a) KlUs: 0.2, (b) KfUo = 0.35, (c)

K /Uo = 0.5, (d) K f Uo = 3, (e) K /Us : 4 and (f) K /Uo : 7. The results obtained in the first

and second approximations with respect to p are labelled 1 and 2, respectively.

(43)

É:-r (
2(E -  1v(r , l )

+ r?(t) - €(r))

la

2

1

The Fokker-Planck equation for the probability distribution w(n, E,t) correspond-



ing to eqs. 43 is

@ - #;ù,) ., #l(*e - n(r,,))+
^ l t ( l - IK \  f  fx  æ l '  \

^),1+ 
L::- 

âEu(,(u 
- tv(,,t))w) : o- (44)

As before, let us represent w(r, E,t) as the product of w(E,t) by w@lÛ), where is
determined by 12 with V(r,t) in place of.U(n). Substituting w(x,E,t), in view of
12, into eq. 44 and integrating over r we obtain the following equation for w(E,t):

ô w ( E , t )  :  ! (  
o  l ,  t K r  I

at 
- 

*\di l(. ' t t '  p)r(E,Q + mx(n,e)'h - 
î) '(E'dl*

1Ko ' ( , ^  \ l
;  6fr \u(E'@r(E'dw@'t)  ) ]  

'  (45)

Ar - -ô  (
at  , " \

where

x(E,p): rlT4?
is the conditional mean of r.

0 . 6

0 . 4

FIGURE 3. An exampl" or.lur*ooth potentiat U(o).

More often than not researchers of noiseinduced transport consider a saw-tooth
potential U(r) shown in Fig. 3. In this case we can set

(  o ,  f o r n L l x < n L a 1 1 ,
f @ ) : l  -  , _ .  r  ,  ,  :  ( 4 6 )

[  
-o,  for nL -  rz 1x < nL,

where n : 0, 41, t2,. .., L : rt*rz is the period of the function /(r). It is easily
shown that, in the absence of the disturbances <p(t) and {(t), the points r : nL
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and r : nL * q : (n I l)L - 12 correspond to stable and unstable equilibrium
states, respectively. For this saw-tooth potential

2(a, + az)Et/2mE

3ry (a1 -v ) (o "+e ) '

(47)

X ( E , p ) :
2(o, - ar 1- 2p)E

3 t@, . - ç ) (az+d '

Substituting 47 into eq. 45 we obtain

7 w ( E . t )  . y  {  A  l ( z n  2 m E ( a 2 - a t - r 2 p )  .  7 1 ( \ , -  . . . l
a t  

: ; | ô E L \ ,  + 8 1 1 r r , , - d @ r + d ' P -  
2  ) w \ r J ' t ) ]

. 1 N  ô 2 @ w ) )* s 
-drJ (48)

It follows from 48 and 23 that the probabil it ies P,(t,E) and P1(t,E) that,E does
not attain the boundaries -81,2 :7Ue(1 +ç(t)la\z), respectively, are described by
the equations

7P,,r +^t (2! *2mE(az 
- ar -r 2ç),, _ 15) }P,,t _ "yzK E 0'4, :  n,oo,

0 t  m \3  3 - r@r -ç ) (az - t s ) -  2 )AE  3m AEz

For the calculation of the probability P,(t, E) we substitute into eq. 49 E : Et -
lUstp(t)1a1. As a result we obtain

aP, . 1 (28', 1K\ AP, -tzKE', A2P, Z12Uo (ôP.
at - ; \3  

-  
, )aR-  J *  dEr :J - " ,  \aE , -

7K 82P, '1  , ^ , , ,  (  o ,  fUop\  2 (az-  a t *2ç)  04  ,^
, dEE )eG) 

- ("' - ;; ) za;:A6;;a ô8,e. (50)

A similar equation we can write for P1ft,8').
In the case of small B we can seek a solution of eq. 50 as a porver series in B:

P , ( t , E ) :  P o ( t , E )  +  P , r ( t , E ) B  +  P , 2 ( t , E ) 8 2  + . . .  .  ( 5 1 )

Expanding the right side of eq. 50 in powers of B and substituting 51 into the
equation found we obtain the following equations:

ôPo . t (zE' 1l(\ ôPo 12KE' a2Po
E;+;t ,  

-  , )aE,- '*  afr :o '  (52)

7Pt , I (2E' rK\ ôP", .y2KE'a2P,r

E' ; l .3  
-  

2 )aE-  B*  6Eo:
2"y'Uo (qrt _ 

-vK ô2P"\ 2E'(a2 - a1)u }Ps
Brnal \08, ; dÊr)cost'rt 

* -# 
fi 

sinwt' (53)
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ôP,z , 7 (28', lK\ôP,z 72KE A2P,,- :
A t  

' t n \  
3  2  ) A E '  3 m  A E ' 2

2-y2uo I aPn "yK ô'P"t \ . 2E (a2 - ar)a ôPt
I -------i-: -

3ma1 \oE' i # )coswt+'# 6fi 
sinut+

E'(a? + aZ) - iloaz(az - ar) ÔPo . ̂ :_ o, .+
Ta4;dsrnzdt'

Correspondingly, we can set

M, (E )  :  Mo(E)  +  M , r (E )B  +  M ,2 (E )82  + . . .  .

The value of. Ms(E) can be calculated from eq. 52. It is

{ , Æ [ ' ( ' Æ )  

- ' (

*,(ry) *'),u,

o(z) : hir,,o,
is the error integral.

Let us express Pg(t, E) and P,1(t, B) in terms of the characteristic functions by

PoG,E): * l :%+gùe-i" d1,,
(57)

_. 1 ( S* 
on(iur9) 

e_io,, du, * S* 
@n(iuz,E) 

e_iu"t duz\ ,P'{ t 'E):  
i l  1r--  zur 

-- '  
J-* iuz -  

, t

where u1,2 : u t r.r. Substituting 57 into eq. 53 and equating the coefÊcients of

exp(-tuy2t) we obtain

-iu1@11(iu1, û + *e - 9 # - ## :
"yzrnoq (ry _1' [qg) * iapE(az-ar)ô@o. (b8)
Smap \08 z ô82 ) 

'  
3a1a2u AE'

-iu2a12(iu2, E) + *,H - 9 H - # # :
1luovz (ô@o 7K ôzOe\ i,a2uE(a2 - ar) ôOo

\  ut , , ,

Smap \08 2 AE2 ) 3a1a2u AE'

(54)

(55)
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3m
%

- 1

/ 2 8 \  |
\1K)J-

(56)

where



Using the expansion 25 and taking into account eq. 52 and the evident condition
that rnls(B) : 0 we obtain the following equation for M,1(E):

"y /28 tK\ dMr .y2KE d,M,, _ ry e!43 * r) (60)
; (  s  

-  
2  )  d E  

-  
z *  

- É :  
o r l \ 2 *  d E  

-  
/

Its solution is

M'l(E\ :tTUo "l" t ^-^ (?q\- ^tKat 
I E"tr u"o 

\rlr/

* i +(, , f x auo\ ^..^1 !\ 0"0", (61)" ., !"Æ \ '  
+ 2- ao )""n \- $ /

The value of. Ma(E) should be ava.reged having regard to the statronary probability
distribution for E. The latter can be found from eq. 48 for p(t) : 0. It is

w(E) : c1fin1x "*, (- #) ,

wherc C is found from the norma,lization condition

1Uo

I w ( E \ d . 8 .
ô

It follows from here that

": 
(J-\1fi-^ ( IwÀ Euo *^/2uo\l 

'
' : \rK)1, *T,V-z-/-t l  x *Pt 1{/ l

Thus, we can write

,r+)-Æ"*,(?)]-',.
# (,. ##) "-zt' 6," d,z' d,2,

where

dMo - t^={4 ft ( 'g.1-o(r)lE:1iæl , f\V"/- , l
lzuo /  2t lo\.  - l-1 ,1  
x  exp\z-  K ) *u 'J
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It can be shown that (M,) is negative.
as

(M,t):  -Yrgo1x.,
'Yar

where

Therefore we can rewrite the expression 64

(66)

F(uolK)

zuo/K
î  - - .
J v'" '
0

,[u*,ff)]

*#)e-"" 
d'2" dz'd'2, (6?)

The expression for (Mt) 
"un 

be obtained from 66 by substitutiou of a2 in place of
o"1.

It is evident that in the first approximation with respect to B the mean particle
velocitv is

6J:
2((Mù + (M,t)B) 2((Mù + (Mn)B)

3mL(a2 - a1)
BF(Uo/K).

21apz(Mùz

We see that in the case under consideration the mean particle velocity is different
from zero even in the first approximation with respect to B, as differentiated from
the case (i). Because (M6) is proportional to rn, the mean particle velocity decreases
as the particle mass increases. The direction of the mean velocity depends on the
sign of the difference- a2 - a1.

4 Stochastic Resonance

In the last few years, a substantial body ofjorrrnal papers and reviews has evolved
which traces the role of stochastic resonance in different physical, chemical, biologi-
cal, and other phenomenar see for example (Moss et al., 1994; Wiesenfeld and Moss,
1995; Gammaitoni et al., 1998; Anishchenko et al., 1999; Klimontovich, 1.999). In
the simplest case stochastic resonance is defined a.s follows: Let one have a device
described by the equation

ù+ f ( r ) :F ( t )+€ ( t ) , (6e)

where F(t) : Acoswt is a weak input signal, f@) : dU(r)/d,x, U(x): -r212+
raf 4is a symmetric double-well potential, {(t) is white noise of intensity K, i.e.
({(t){(t+r) : K6(r). It is known from numerical simulations that the response of
the system 69Q(K,w) to the signal of the frequency ar is a nonmonotone function of
the noise intensity K and has a maximum at a certain value of K : K*. The most

(68)
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of the researchers of stochastic resonance (see, for example, (Gammaitoni et al.,
1998; Anishchenko et al., 1999) belive that the dependence of Q on K peaks when
there is a certain relation between the signal frequency a and the mean frequency
of the fluctuational transitions from one stable steady state to another (the so-
called Kramers rate), which increases as the noise intensity increases. However, it
is the author's opinion, that this a,ssertion is false (Landa and Zaikin, 2000). If
this were so, we would obtain the similar dependence of Q on a at a fixed value
of. KlU6; whereas this dependence is monotonically dropping. The nonmonotone
character of the dependence Q(K) at a fixed value of c..r can be explained only by
the nonmonotone change of the mean slope of the function /(r) (of the system
effective rigidity) as K changes. This idea is in agreement with the Klimontovich
hypothesis that stochastic resonance in an overdamped bistable oscillator is caused
by the uonmonotone change of the bandwidth of the lorv-frequency filter described
by eq. 69 (Klimontovich, 1999). As follows from our studies, similar nonmonotone
change of the effective rigidity may be obtained not only in response to noise, but
in response to a high-frequency additive force as well (Landa et al., 2000).
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