
Artificial neural networks
and anticipatory systems

Jean-Philippe Draye

Senior Research Assistant of the Belgian National Fund for Scientific Research (F.N.R..S.)

Faculté Polytechnique de Mons

" P arallel Inlormation Processing " Laboratory
Rue de Houdain, 9

7000 Mons (Belgium)
Dmail :  jpd0pip.fpns.ac.be

Homepage : http: //pip. fpns. ac. bel-jpd

Keywords : artificial neural networks, time series prediction,

system identification, anticipatory systems, control.

Abstract : Neural networks are structures consisting of highly inter-

connected elementary cornputational units. The network map input

patterns into orrtput patterns. These devices are called neural not be-

cause they rnodel the nervous systems but because they are inspired'

by them. Due to their features (adaptive behaviour, learning process,

robustness, ...) , artificial neural networks have interested the antici-

patory systems field of research. In particular, we will examine their

interests in th<r field of tinre series prediction and systent identification.

Introduction

Human beings are able to perform some tasks effortlessly ... nevertheless, after several

decades of research, cornputer scientists have only made small progress toward building

a device that can harrdled them. Among those tasks, we can cite : reading a text aloud,

recognizing a face, responding to spoken commands, translating English into French,

driving a car, classifying flowers, ...

However, by the fifties, shortly after the first number-calculating computers were first in-

troduced, visionaries such as John Von Neumann and Alan Turing were speculating about

the construction of nrachines that might exhibit intelligent behauiour. Turing proposed

two possible lines of investigations : one line starts from the study of biological systems

(the brain), searching the lowest cognitive structure and trying to mimic them. The other

line starts from a study of efficient problem-solving and searching for rules by which eo-

pert systems approach their tasks and, finally, building machines that would apply these

rules. Thring preferred this second path and many, in the field of artificial intelligence,

followed his lead. On the contrary, Von Neumann was fascinated by electronic circuits

whose structure was inspired by the nervous systems of animals. Unfortunately, he died

before he could have followed this path. The field of neural computation has been built
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by those who followe<l the Von Neumann path.

Neural networks are structures consisting of highly interconnected elementary computa-
tional units. The network map input patterns into output patterns. These devices are
called neural not because they model the nervous systems but because they are inspired
by them.

Neural networks perforln a great variety ofpattern mappings. A network can reconstruct
a stored pattern when the input is a partial match for that pattern : the netç-ork acts
as an associative mernorv (such as the Hopûeld network). A network can retrieve a
second pattern associatcd with a given input pattern (for example, the classical task of
handwritten characters recognition). Following new developments, a neural network can
even proposed a desirexl ternponrl signal in response to temporal input signals. It can
generate a pattern representing the solution of a combinatorial problem. It may be asked
to group similar patterns into clusters and provide new representative of clusters.

The best-known neurâl network nrodel is, by far, the multilayer perceptrons. The simplest
perceptrons, proposecl bv Frank Rosenblatt in the mid-5O's, have all their units arranged
in a single layer. Several authors have demonstrated that additional layers to this sim-
ple model can greatlv increase its power. The interest for this model emerged in 1986
after the publication of t,be. backward,-error-propagation algorithm by David E. Rumelhart
and his colleagues. Since them, many successfirl cases in which learning based on error-
backpropagation has produced excellent results have been reported. The applications
include recognition, process control, robot kinematics, medical diagnosis, etc.

Since then, new neural types have emerged that give impressive results in the field of
auto-organizing networks (like the Kohonen network), nonlinear dynamical systems iden-
tification or control (using fully-connected recurrent neural networks) or associative mem-
ories.

We must emphasize that the power of neural networks does not arise solely from the high
degree of parallelism in the computation of output patterns. The power of neural models
derives from the high number of interconnections among elements and from the network's
ability to alter its internal structrlre (or weights) via a learning algorithm.

To summarize, we carr sav that artificial neural network models can be superior than other
methods under these qrnditions :

o The data on which conclusions are to be based is fuzzy. If the input data is
human opinions, ill-defined or is subject to possible large error, the robust bevaviour
of artificial neural networks is impressive.

o The patterns important to the required decision are subtle or deeply
hidden. One of the principal advantages of an neural network is its ability to
discover pattertrs in data which are so obscure as to be imperceptible to human
researchers and standard statistical methods.

o The data exhibits significaut unpredictable nonlinearity. Tiaditional time'
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series prediction rnorlels are based on strictly defirred models. If the data does not
fit these models. rcsttlts will be uselcss. Artificial neural networks are ideal for these
cases.

e The data is chaotic in the mathematical sense. Chaos can be found in tele-
phone line noisc. sto<:k rnarket prices and oiher phvsical pro<:esses. Srrch behaviour

is devastating to rnost other techniques. brrt neural models generally work quite

well.

It is thus quite obviorrs that, drre to their features (adaptive behaviour. learning process,

robustness, ...) and duc to the prcvious t:onsiderations, artificial neural networks have

interested the anticipatorl' systems field of research.

In particular. artificial rreural networks are very interesting to simulate externalistic antic-

ipatorv svsterns. In nranv arcas of scientific research, the problern of predicting the future

of dynamical svsf elus arises. Closr'lv rolated problerns have also irrterested the scientists :

I)rocess corrtroi aud svstern irlcntification. Urrfortunatelv. u,hen the observe<l <lynatrtics are

nonlinear n'ith a conrpkrx rk'perrrlerr<:c on tinre. the formulatiorr of reliable predictions (or

control or identificatiorr) be<:ornes extrernelv rliflicult. These problems have been studied

as a problem of multirlinrensioual furrction approximation. This approach has produced

new methocloklgies f<rr the analvsis of ruxrlirrear svstenrs or time series (irrclucling local

procedures). Nerrral rrctwork architcctrrres have dran'n consirlerable attention in recent

vears lrecause of their irrtcrt 'stiug learrring all i l i t ies. I lorerx'er. thcv are capable of dealing

with the problcm of strrr<'trrral instalri l i tr ' . l larn-strrdies hax'r 't.ported cxceptional results

using rrcural networks.

2 Foundation of the artificial neural network theory

An artif icial network cousists of a lrool of sirrrpk'pro<'cssing urrits which <:rltnmutticate trv

sending signals to ea<:h otlurr or.t'r a largt' uurnber of lveighterl <:ouncctions. Rulmelhart

[8] enumerates the nra.jor aspe('ts of a palalk l distributed processing ttrodel as

set of processing rtnits ("neurons". ' 'cells");

a state of activation ?, for everv trnit, rvhich also determines the output of the unit;

r connection between the units. Each critutection is defined by a u'eight u.r;, which

determines ther effect of the signal of rrnit i on unit j.

a propagation nrle (a governiug equation), which deterrnines the effective input u;

of a unit from its external inputs;

an activation function F which determines the new level of activation based on the

effective input z;(l) and thc <:urrent state 91(t);
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ân external input or offset 0; for each unit;

a method for information gathering;

an environment within which the system must operate, providing input signals and
-if necessary-- error signals.

In this simple model, the sinrplest node sums a collectiou of weighted inputs and passes

the result through a norrlincaritv. The processing unit is therefore characterized by an
internal threshold or offset d and bv thc kind of nonlinearity (e.g.. hard limiters, threshold

logic, sigmoidal nonlirrt 'arit ies. ...).

Figure 1: Simplified functional model of an artificial basic neuron cell and its

symbol

Figure 1 shows a verv sinrpkr pror:essing unit using a sigmoid nonlinearity. The nonlinear-

ity here simply seeks to classifv the n'eighted sum of the n inputs as being greater than

or less than zero and arrordingly assipçns the input vector (i1, iz,...,ir) a continuous value

between -1 or *1. The relative magnitudes of the weights tt.t11, rt)zj,...rur; decide the

relative importance of the inputs it, iz, ... i, in determining the final output. The weights

have the effect of determining a h-vperplane in the n-dimensional hyperspace such that all
points on one side of the hvperplane are distinguished, by the funetion output, from all

those on the other side. The offset d has the effuct to translate the hyperplane.

The neuron will comprrtrr its output by two functiorrs. It will first compute the weighted

sum of its precerling inputs. This weighte<l sunr is called the e.ffectiue input atd is given

b v :

r;(.t) : fut.ii w0) + 0i

The current (xrtput of thc rreurou must be rletermined using the effective input and an
activation function :

a{0 : r(r'1t1)

where F(.) is the actiuotion function.

Let us point out here that we can rewrite the governing equation (1) in order to simplify

the mathematical notation. We will add a virtual input neuron (labeled 0) whose value

( 1 )

(2)

0 ,

, l

i2

i"

i l

t )

I
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remaiûs constant and (lualri to one. The individual offsets 0, are replaced by adaptive

weights ugr associated t,o the virtual iuterconnections between the virtual neuron 0 and

all the network neurons (see Figrrre 1).

2.L Importance of the activation function

In neuron-like units, the conceptual models exhibit a linear term (a weighted sum of the

inputs) followed by a nonlinear function. This actiuation function F(') determines the

new level of activation based on the effective input u;(t) and the current state g;(t). The

essential characteristics ofthese activation functions are the fact that thev introduce some

nonlinearity in the conceptual model of the neuron-like unit.

Without this nonlinearity, the neural models would reduce to pure linear systems. The

linear systems theory is a powerful branch of systems theory and a number of applications

do indeed exploit the methods of linear algebra and linear systems. However, with fixed

input, a linear device has only a single equilibrium point state whereas a nonlinear system

may, depending on its structure, exhibit multiple equilibrium states, Iimit cycles or even

chaotic behaviour. These particular behaviours are interesting : indeed, artificial neural

networks are useful alternatives when traditional techniques (and among them linear

models) fail to success. It is thus these behaviours (multiple equilibrium states, Iimit cycles

or even chaotic behaviour) whose are exploited by many neural networks applications.

Most common activation functions are the sigmoid (S-shaped) function. Such a sigmoid

function can mathematically be described (approximated) for example as :

uj : tanh ('yuil :1 
- exp-2r"'

1 * exP-2r";

for a symmetrical (bipolar) representation or :

(3 )

I

at: u;6't',, 
(4)

for a non-symmetric unipolar representation.

Another important aspect of the activation function is the fact that this one should ideally

be continuous. We have thus to avoid using the simple step function (the Heaviside

function). There are two main reasons for this :

the first one is the noise resistance : a step function can amplify noise which a sig-

moid function may smooth out. Nevertheless, this may be at the price of postponing

a binary decision until after further statistical analysis has been made'

the second one is related to the training methods which exploits methods of the

differential calculus to adjust the free parameters of the model in order to solve the

task to handle. However, most widely used training algorithms (such as the well-

known backpropagation algorithm) make use of the fact that that the activation

functions are continuous and thus differentiable.
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2.2 Neural networks architectures

Obviously, a neural network is a network of neurons. This high-level definition applies

to both biological neural networks and artificial neural networks (ANNs). This section is

mainly concerned with the various ways in which neurons can be interconnected to form

the networks or network topologies used in ANNs, even though some underlying principles

are also applicable to their triological counterparts. The term neural network is therefore

used to stand for artifi,ci,al rr,eural networle in the remainder of this work, unless explicitly

stated otherwise. The nodes ofan artificial ueural network must be called artificial neuron

or neuron-like unit brrt giverr the length of this term and the need to frequently use it, it

is not surprising that its abbreviated form, neuronl is often used as a substitute instead.

-|he architecture or topology of a neural network is related to the way in which the neurons

are organized to form the network. The network architecture is thus the relationship of

the neurons bv means of their connections. The network topology is characterized by

the number of neurons that provide the information (also called the input neurons), the

number of neurons that llroduce the results of the network computation (the output neu-

rons), the number of neurons whose inputs and outputs remain within the network (these

neurons that have no interaction with the "outside world" are called hidd,en neurons) and

the way these neurons are connected to each other (the number of connection weights).

The topology of a neural network thus consists of its framework of neurons, together with

its interconnection structlure er connectiuity.

We can divide neural frameworks into two categories :

o feedforward networks where the information flows from the input neurons to the

output neurons without any feedback connections. These neurons of these models

are usually organized in layers.

o recurrent or feedbacks networks are characterized by cycles (associated to adap

tive connection weights) in its graph. We can find in these networks feedforward,

feedback or self-cotrne<:tions.

2.3 Neural network learning algorithms

The essential differen<:e between neural network models and classical algorithms is the fact

that they do not Iearn by being programmed: they learn by being trained. The learning

phase of a neural network t:onsists in a ûne tuning of its internal pôrameters (classical

its interconnection weights) in response to external stimuli. This parameters adjustment

is coherent with biologi<ral neural networks where both memory and the formation of

thoughts involve neuronal syrtaptic changes; and we have seen that the artificial neural

networks models the synaptic strength using scalar weights. When the learning process

is successful, all the network weights values stabilized.

The learning phase can be superaised or unsupentised:
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when the process is superui,sed, the external stimuli (which form the network input
data) and the corresponding desired target data are provided. The learning process

adjusts in some fashion the internal parameters so that for a given input, the network
will produce the desired associated target. The supervised learning algorithm will
compare the network output for a given input with the corresponding target data
and compute the error difference betrveen both data. This error difference provides

the external feedlla<:k (deternrined using the target data) that is necessâry to adiust
the network varialrles.

in unsuperuised, l,earnin,q. tht' network ad.iusts itself its parameters bv using the inputs

only. No target data are available and it is impossible to determine errors llpon

which to lrase cxternal fee<llrar:k fur krarning. Tltt' u,nsupe,nrri,sed learning method
groups similar sets of in1>uts into chrsters 1>redicatcd l l l)on a predetermired set of

criteria relatirrg thc conrponents of the data. Tht' u,n,suTteruised learnilrg algorithnr

and their relatcrl ru'turrrks ar(' ollt of the scope of this work hrtt readerrs t:an find

rnore infornration in thc rvorks of Î ' ttvo Kohontlt i. or ....

'[he trai,ning ph,ase. of a neural rretrvork refers to the presetrtation of the irrputs (and

possiblv the targets if the learnirlg process is supervised) to the tretwork. The goal of

the trainirrg anri henrt kraruing is to enable the uetwork to exhibit goo<l qen,eralization

capabilities. Ge.n,e.rali.zu,ti,on is the allilitv of the network to produce reasonable otttputs

associated with new inputs (tirat $'ere presellt in the training sets of input data).

3 Neural networks and anticipatory systems

In the context of cxtcrnalistic arrticipatirin. i.e. t itne series prediction, a lot of scientif icr

research have alrearh' 1>rovrrl the great irrtorest of usitrg artificial netrral ttetwtlrks. Another

fi,'ld of llunrerous applicatirurs is svstenr irlt'rrtificatiorr au<l lrrot'ess t:ontrcll.

Moreover, wheu usiug pr<lpr.rlv these appli<'iltions. we ('AIl ('v('n get features that bring

new insights in the fielrl of re,o,l, artif icial intcll ig<'n<'c: anticipation. For exantl>lc, neural

models were sucr:essfullv use<l in preventing babies' <'etttral âpu()âs (rvhich is an important

cause of death). In this particular applicatiurr. the svstem art,t icipates dramatic accidents

bv a thorough anah'sis of cttrrent alrd past data.

We consider in thc following the particular cases of tinre series predir:tiorr and system

identification.
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3.1 Time series prediction

3.1.1 Classical prediction methods

Cla^ssical precliction nrethods are usualll- linear: indeed. these ones have two particularly

desirable features : thev can be rrnderstood in great detail and they are straightfrrrward to
implement. The obvious penaltv for this convenience is the fact that thev ma1* be entirely
inappropriate for everr modcratelv complicated slrstems.

The most known models are usuallv ba^sed on linear combination of previous observed
data, on previous prerlictkrn errors or on both tvpes ofdata. These models are respectively

c.alled autore.qres.siue process (AR.). rnorrinQ aueraee process (l,tA) or m'ixed autoregressiue-

rn,ouin,g o,ueroqe pïocess. Tho' have lleen ilrtrodrrce<l b1' Box and .lenkins in 1976 12].

The ARN{A class of stochastic uxrdels generalizes aud inclucles the AR and MA models.

It depends upon trvo values the .\R or<ler p an<l the \lA orderq. the process can be of p

or q degree. Thrrs

: r7 :  $1  . l : 1 -1  *  , J , z  . t ' t - z  +  " ' +  i ) ,  t 1 - ,  +  f f  -  ( ' l  € r - r  -  Q ' z  ( t - z  -  " ' -  I ; ' q  € t -q  (ô )

where .21-1 .J : t - '2 . . . . . . t ' r -u  ar t '  th t '  t l l lsen 'er l  t i l t tc  ser ies.  ( r .  ( r - t ,  . . . ,  ( t -o aro zero-mean

forecasting errors. Tlx' ruorlt ' l  is rk'txrte<l AR\l-\(p.<1) [2].

Unfortunatelv. the rlisatlvantages of thc Box-,lcrrkirrs rnetho<l are mrrltiplc : identifying

the or<ler of the morlr.l to lrt' rrse<l cau lrr' <lifficrrlt. especiallv for rnultilariate tinte series:

the model identifir'atiorr an<l valirlation pr<l<'ess of tlu' Box-.Ienkins process need expert

knowledge; it is not câsv to rurrlerstand the statistical mechattistn used in the model

identification procedrrrt' an<l the rnethotl is primarilv appli<:able for short term forecasting.

so it is inaccrrrate for kurg ternr prr'<lit'tiorrs (srr' ll]).

New models are thlls ne('essarv : rreural netu'orks can help iir rrrarrv circurrrstan<'t's [6. 9. 10].

3.L.2 Neural prediction methods

In the Sante Fe Time Series Prediction Conrpetition (see [11]), the majority of contri-

butions and also thc bcst predir:tions for each proposed set of data used connectionist
methods.

Nevertheless, one can woncler what differs a neural network from a polynomial regres-

sion for example. Given that ferxlforrvard networks with hidden units (see Section 2.2)

irnplement a nonlinear regression of the output onto the inputs, what features do they

have that might give them an advantage over more traditional methods (i.e. a polynomial

regression). For the polvnomial regressir\n. the components of the input vector (rr, rr,
. . ., r.a) (where d is the dinrensiou of thc input vector) can be combined in pairs (r1r2,

trr3, .. .), in triple (r1:r2:4, r1il2r4, . . .), etc, as well as combinations of higher powers.

This vast number of pos.sible terrns can approximate any desired output surface. The dif-
ference between the neural regression and the polynomial one is the kinds of constraints
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they impose. For the polynomial case, the number of possible terms grows rapidly with

the input dimension, making it sometimes impossible to use even all of the second-order

terms. Thus, the necessary selection of which terms to include implies a decision to permit

only specific pairwise or perhaps three-way interactions between components of the input

vector. A feedforward network, rather than limiting the order of the interactions, Iimit

only the total number of interactions ancl learns to select an appropriate combination of

inputs [11].

Recently, recurrent neural networks have even exhibited more powerful results (see [4, 5]).

3.2 Identification of systems

System identification is a fundamental problem in systems theory; it is connected to the

problem of system characterization. The problem of characterization is concerned with

the mathematical representation of a system as an operator P which maps input signals

into output signals. The problem of identification is to approximate P in some sense using

an identification model. By identifying a particulat system, obviously, we will be able to

onticipate its behaviour [7].

Specifically, the application of neural networks to the task of identification of systems is

supported by their learning capacity, their ability to internally represent related states,

and their good behaviour to approximate continuous functions. Particularly, in the last

years, several works concerned with approximation of continuous functions defined on a

compact set (in a space of finite dimensions) have been presented in the neural community.

Furthermore, in practice. there are situations where we need to compute functionals such

as the output of a dynamical system (at any particular time, it can be viewed as a

functional). At this level, Chen demonstrated that continuous functionals can be approx-

imated by neural networks and showed their application for dynamical systems model-

i"e [3].

4 Conclusion

Artificial neural networks are often considered as mysterious or black ôor systems without

being more interesting than other existing techniques. We have seen in this paper that

they can bring new insights in the field of anticipatory systems, especially for time series

prediction, systenr identification or process control.

An important challenge would be to extent the theory of neural networks in order that

these neural models become autonomous: that would be the real artificial intelligence.
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