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Abstract

Experimental evidence suggests that modification of synaptic strength in the brain does not
depend on co-activation of two connected neurons, as is assumed in most theoretical work
since the proposals ofHebb (Hebb, 1949). Instead, through independent post- and presynaptic
rules multiple modifications occur simultaneously at various sites in the nervous system.
To account for this data" various researchers (Edelman, Fuster, ...) propose an extension ofthe
selÊorganising PDP approach to populational thinking. However, as in the PDP approach, the
selection rules they propose only account for dynamical evolution of the system towards point
attractors. The learning strateg'y of the networks is therefore still a purely bottom-up strategli.
Experiments on visual perception seem to indicate that even low level visual processes can
converge to more than one attractor (ambiguous figures, binocular rivalry), to limit cycles
(oscillatory behaviour) or lowdimensional chaotic attractors. I argue to extend the neural
network models of perceptual categorization to dynamical attractors and to include the
multipticity of tbrms created by the autonomous, nonlinear brain dynamics as a
complementary source of variation on which constraints of higher cognitive processes can
act.
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1. Introduction

ln thrs paper we would like to analyse the possibility to use the principles of neural network
computing to construct a theoretical model of the brain. For this we will compare some of the
basic hypotheses ofneural networks both to actual brain research and experimental evidence
from cognitive psycholog'y. We will see that neural networks - as far as we want to use them
as a model of the brain - are still too much emprisoned in a purely empirical philosophy of
mind and that some of its basic hypotheses needs revision.

2. Associative learning: from individuals to populations

2.1. Neural networks, som€ general principles

A neural network is given by a set of nodes, the formal neurons, and a set of connections
between the nodes (Blayo, Verleysen, 1996). The formal neurons are artificial units of the
kind depicted in figure L
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fç l. Neuron unit : 4 the inputs from the other neurons, \ili the synaptical weights or
transmission efficacies, p the activity level of the neuronL, s the output.

The activity level p of the neuron unit is the sum of the inputs x; multiplicated by the
respective synaptical weights w; (here also called connection strenghts or transmission
efficacies) :

p@=lw,x,(t)=lYli1t)

If the level of activation p exceeds a certain tlueshold 0 the neuron "fires". For sake of
modelisation one can suppose the output of the neuron unit to be a binary function, answering
-1 (no activity) or I (the neuron fires) to a configuration of inputs. One can suppose the
transition from one state to another to be a smooth one (ex. sigmoid output function), a linear
one or abrup.

In figure 2 we give an example of an ou@ut graph of a neuron unit with a linear transition
function. We see that the neuron op€rates as a linear classificator. The space of possible
inputs is classified in two sets, the one correponding to the firing ofthe neuron (y : l), the
other to tle rest state 0/: -l).
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fig. 2. Output graph ofa linear neuron unit

So the neuron "recognisês" a certain input and classifies it in one of the two classes. Appllng
a set of data to two neuron units will give us four output possibilities (l,l), (1,-1), (-1,1), (-1,-
l) ; a network of N units will give 2N possibilities.

The neuron behaves as a small information processing unit. The synaptical weights determine
how the inputs will be processed into the output. However normally we are confronted with
the reverse problem : we have a certain idea of the processing function and we would like to
know which synaptical weights can realise this function. To solve this problem the following
two sfiategies for the modification of the synapic weights have been proposed :
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l. Supeniscd leaming (error correcting Hback) : We present a hst of exalnplesy = (.r) to
the netwofk, if the output s of the network is the desired solution y, or sufficiently close to
this solutiorU connection stnength increases.

2. Unsupervised lcarning (selÊorg;anisatioil) : We present a list of data.r to the network and
if they are correlated in a ce.rtain manner connection strengdls are increased.

As an example of supervised learning rve can state the learning rule for the Adap,tive Linear
Element orAdaline (8. Widrow, 1960) :

unitary transition function : s()=lllr.x(t'S

gradient descent in weight/error space : lf,( +11=W,(t)+ Qt)(y(tl{t)F(t) (delta rule)

Other examples are Rosenblath's Perceptron and the Multi-layered Perceptron with
backpropagation of error (cfr. PDP group of Rumelhart & co.)

An example of unsupervised learning is given by the leaming rule for the network of
Kohonen and Von der Marlsburg (Kohonen, 1982):

maximisation of non-correlation between input data (: statistical analyses in main
components) :

l.we search the neuron i minimizingd(x(t), Wù
2. for i and its closest neighboun : W{t +l)=WIt)+ 4t)(x(tYl,4@)

Other examples are the learning rule of the Hopfield's network and the Boltamann-machine of
Hinton and Sejnowski or the Hérault-Jutten model for seperating mixed up signal from
independent sources

These learning strategies arc both inspircd by the original propositions of D. Hebb (D. Hebb,
1949). He proposed a general learning strategy by means of association of neurons in a
network. The association is created by hodification of synapic weights : if two neurons are
frequently activated simultaneously their connection strength increases, ifnot it decreases.
We find back this general rule in both cases of supervised and unsupervised learning. In firs
case we associate a list of input and output data r and y. In the second input we associate
input data to each other, following a certain rule of ressemblance.

2.2. Comparison with actuel brain res€rrch

Since the 1970's much experimental work has been done to look for support for HebUs rule.
As it turns out the experimental evidence suggests that co-activation of two connected
neurons is neither a necessary, neither a sufficient condition for modification of syrapic
strength. Instead, through independent post- and presynaptic rules multiple modifications
occur at different sites in the nervous system (for a review of different mechanisms see for ex.
Fuster, 1995, ch. 3).
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fig.3. Schematic representation ofinputs kl,k2, k3,j received by a neuron i ; e, presynaptic

efficacy and q;.; postsynaptic efficacy.

ln figure 3 we represented axondentrite connections from one neuron unit to another. We see
that there are two variables specifying the transmission efficacy : the presynaptic efficacy and

the postsynaptic e{ficacy. Presynaptic efficacy e, is defined by the amount of transmitter

released by cell j for a given depotarization. Postsynaptical effrcacy 1;1 is the local
depolarization produced at postsynaptic processes for a given amount ofreleabed transmitter
(Edelman, 1987, ch. 7).

We can now state two modification rules derived from the available experimental data
(Edelman,  1e87,  p.183)  '

1. Presynaptic rule : If the long-term average (over times of the order of I sec.) of the
instantaneous presynaptic efficacy as determined by transmitter release exceeds a threshold,
baseline presynaptic efficacy is modified :

(").,* > o> e*.u4,7"0

The long-term average of a, is a function of a large population of neurons connected with j.

2. Postsynaptic rule : Modification of the postsynaptic efficacy r11i is a function of the
stimulation to other synapses on the same neuron ( heterosynaptic moilification), coactivated
heterosynaptical inputs to a neuron will alter 11; :

Lq, -- flen,...,e ,)

An example of presynaptic modification is given by research on learning in mollusks
(Crommelinck, 1996, p. 210). In two forms of nonassociative conditioning of the gill-
withdrawal reaction of tbe Aplysia mollusk - namely, sensitization and habituation - changes
in ion conductance (concentation of Ca*) lead respectively to the increase and decrease of
neurotransmitter release from presynaptic neurons.
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An example of the postsynaptical rule is given by classical conditioning experiments on the
eyelid reflex of the rabit (Crommelinck, 1996, p. 222). The unconditioned stimulus (US) in
this experiment is a wind blow on the eye, the reaction (R) the closure of the eyelid and the
conditioned stimulus (CS) for example a sound. The conditioning creates an association US-
CS so that the rabit closes the eyelid also when the sound is presented alone.
During these conditioning the efficacy of a particular cell, the Purkinje cell in the cerebellum,
diminishes by a postsynaptic mechanism known as Long Term Depression (LTD). This Long
Term Depression is caused by coactivation of syrapses coming from the prarallel fiber input
and the climbing fiber input to the Purkinje cell. This coactivation results in a decrease of the
postsynaptic transmitter eflicacy of the receptor AMPA responsible for the impulse
transmission (fi gure a).
The Purkinje cell normally inhibits the motor cells controlling the eyelid reflex. If the
inhibition is lifted by the LTD the eyelid reflex will occur.

parallel ftbars

fig. 4. I{eterosynaptic coactivation of synapscs comming from the conditionned CS and
unconditionned stimulus (US) ; P Purkinje cell, e et 4 pre- and posrsynaptic efficacy

respectively.

Using the formalisation given supra the post-synaptical rule for the Purkinje cell becomes :

q,,(A M t' A ) =./(ai,r,t .,)

Finally, for sake of completeness, we have to state the numerous studies on Long Term
Potentiation (LTP) in the hippocampus of the rabit. By artificial synchronous depolarization
at high fiequency (- 100 Hz.) ofboth sides ofthe same synaps one observes an increase in the
synaptic efficacy which can last from several hours, to days and even weeks. [t's a mechanism
instantiating Hebb's rule, by coactivation of two neurons one increases the synaptic weight,
even if - due to the artificial caracter of the experiment - the link to the leaming and
memorisation capacities of the brain is difficult to state univocally (Crommelinck, 1996, p.
236-239).

2.3. Generelisation of Perallel Distributed Proeessing

Several researchers propose to extend the association rules in order to account for the
experimental data. Essentially the suggestions tum around the pre- and possynaptical rules
one can observe in experiment. Fuster, for example, (Fuster, 1995) coins different terms for
the association we can obsewe in the postsynaptical rule. It can be seen as a rule for sensory-
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sensory association (uHebb's second rule"), a rule for rynchronous convergence of
information or also to coincide with Miller'sprinciple of cooperativity (Miller,1991).

Here we will briefly discuss the propositions of G. Edelman. Especially the implications of
the dual character of the two rules and the claim that the unit of selectior/association is not
the single neuron or synaptical connection, but a population ofneurons or neuronal group.

The pre- and postsynaptical rule, together eventually with a Hebb-like rule or even other
mechanisms, opemte in a cooperative manner within the brain. If we combine both rules, we
realise that synaptic alterations ofa neuron i are not governed by correlated firing with one
single nouron, but with a large population of other neurons. ThiS is observed directly for the
postsynaptical rule, but it is also valid for the presynaptical rule. Indeed, the long-term
a\ærage of the presynapical efficacy depends on the activity of all the neurons connected
with th€ firing unit.
As a consequence a slight modification of the presynaptic efficacy in a certain group of
neurons will cause a hierarchy of subsequent short-term modifications among various groups.
We can say that multiple synaptic modifications occur simultaneously at various sites in the
network. These multiple rnodifications are csused by one single synaptic modification, for
example operating on the presynaptical level. This is the fundamental difference with
classical parallel distributed processing, where the multiple modifications are caused by
multiple parallel operating coactivations.
The degeneracy in the synaptical modifications of the network is of cours€ transitory, if not
the brain would give different answers at once to the same stimuli. In the theory of Edelman,
where the brain dynamics follows the principles of natural selection, this degeneracy fulfills
the need for a continual source of variation. After repeated interaction with the environment
the tnost apt answer will be "reinforced" and selected on behalf of the others. In this the
extension of the PDP approach that Edelman proposes is a refinement of the classical scheme
of operant conditionning for animals, combined with a theory of percepetual categorisation
(cfr. Edelman, 1987, p.297).

3. From urnupervised learning to dynamicel attractors

The self-organisation approach in the sense of unsupervised associative learning as we found
it in the networks of Kohonen, Fuster and Edelman tries to satisfu as closely as possible the
available empirical evidence on the brain. In this the generalised approaches seem to offer a
more or less proper theoretical model of the functionning of the brain.
However a second constraint has to be satisfied, this time on the behavioural or cognitive
level. The neural network not nnly wants to simulate mechanisms of neuronal transmission
but also to reproduce some behavioural and cognitive properties, in particular learning,
memorisation and pattern recognition.

The learning strategy adopted, in the classical as well as in the generalised approaches we
discussed, is one of associative leaming. [t's a well-known principle in philosophy of mind
suggested already by Aristotle. It was strongly developped within the anglo.saxon philosophy
from Hobbes to J.S. Mill, before it was introduced in the emerging experimental psychology
and neurophysiolory (Boring, 1950). The basic tenet ofthe proponents ofassociative learning
is one of empiricism, tryrng to derive all knowledge from associations between elementary
sensations (Meyer, 1994, lor a more detailed review). It is this tentative of the emprical
philosophy that we find back in the neural networks :
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"The most fascinating hypothesis, the most tempting dream is the one of a completely general
system, capable of leaming anything at all by cxamples. The properties of discrimination,
generalisation and robustness ofsuch a system should provide it with the capabilities, given
an arbitrary series of examples, to develop a sensible "theoryu about the domain. [...] The
beauty of this hypothesis lies in the fact that it is based exclusively upon self-organisation
properties induced by examples. " (Serra" Zananni, 1 990, p. I 86).

However their is a serious flow in this dream. Human learning operates not only through
presentation of examples, but also by explicit transmission of concepts, methods and
techniques. This is of course a quite obvious remark and leaves open the real question, the
estimation ofthe respective importance of the different leaming mechanisms.
By presenting sotn€ experiments on visual perception, we would like to show that the
associationist approach only is insufficienl to account for perceptual categorisation. By
formulating our examples in the language of dynamical systems theory we propos€ an
account of percepion which allows both for exemplar and conceptual constraints to operate
in category formation. Another way to account for both is the construction of heterogeneous
systems using .both connectionist and symbolic approaches towards Artificial Intelligence
(Serra, Zananni,1990, p. 192).

3.1. Dynamical systems theory

The modi{ication rules for synaptical weights w in neural networks are stated in evolution
equations w(t+l) : F(w(t)) or dwldt: F(v), with w taking real values. We briefly recapitulate
some results from the general study of systems governed by equations of this type.

Starting from an initial value of the varables, in our example w, the system can evolve
towards some time indendent behaviour, the steady state. This steady state is also called the
attractor of the system and the set of initial values for which the system evolves to this
rt t ractorthobasino[attrackrr.  l l ' thcsteadystateisaf ixvaluewetalkaboutapointattractor,
if it shows oscillatory behaviour the attractor is called a limit cycle. By extension one also
speaks ofan attractor ofa system when the system evolves - after a transitory period - towards
an unsteady solution, showing seemingly randomlike behaviour, which is called a chaotic
attractor (Drazin, 1992, p.3). So we obtain :

. point attractor : fix value of w, equilibrium solution

. limit cycle : w oscillates between two values, periodic solution
r chaotic attractor : w has a seemingly random behavior with stationary statistical

properties, aperiodic unsteady solution

lt is easy to show that if F(w) is a linear function the steady state is necessary a point attmctor
(it is sufTicient to calculate rry so that w : F(w), which is obtained, if the solution exists, by
inversing the matrice of the coefïicients of F). So a necessary condition to have limit cycles
and chaotic attractors is to have non-linear evolution equations.
Such a nonlinear system may regarded as a system with a feedback loop in which the output
of an element is not proportional to its input (Drazin, 1992,p.| ). As a typical example one
can think of autocatalyic chemical systems where the product of a reaction occurs in its
proper synthesis (Prigogine, 1919, p.217).
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3.2. Nonlineer brain dynamics

The unsupervised associative leaming networks of Kohonen, Fuster and Edelman all account
for an evolution towards point attractors. Hebb's rule or the extension to the pre- and
postsynaptical association rules are linear principles (no feedback or feedforward loops).
However, experimental evidence on visual perception seem to indicate that even low level
visual processes can converge to more than one attractor, to limit cycles or even to chaotical
attractors.

A first case is the case ofbinocular rivalry. Consider that by some optical trick, your right eye
is shown something quite different from your left eye. What happens is that after a brief
period the percepts start alternating at regular intervals, changing every few seconds (fi- 5 )
The brain allows you to perceive only one of them at a time. This is called binocular rivalry.
This phenomena was already described by Helmholtz in his Pltysiological Optics but it's only
recently that we start to have a idea of the corresponding "rival pathways" in the brain (Crick,
1996 and Leopold & Logothetis,1996).

fixed stimulus
alternating perception :

right eye : /
t -

left eye
t --)

fig. 5. : example of a binocular rivalry experimenl

As Leopold & Logothetis show, the rivalry is not simply occuring at an early stage in visual
processing, when the images from the eyes uue kept somewhat s€perate. lnstead evidence
suggests that the rivalry is between alternative stimulus representations that are encoded in
the activity ofmany neurons in different visual areas.
In any case, with binocular nvalry, we have a clear example of a perceptual change without
any change in the stimulus. Other examples wrth a similar temporal dynamics of rivalry are
obtained when viewing ambiguous figures. such as thc Necker cube and other deplh rcr'ersals
(Leopold, l.ogothetis, 1996, p. 552)

An example of a limit cycle in visual processing is given by Zeernan using a sequence of 8
gradual changing pictures causing suddenly a change in perception (Zeeman.1988). Here the
siimulus is changing, first without any change in perception (in the experiment we observe a
man's làcc), and then showing a sudden change to another percëpl (producing a kneeling
woman), the bifurcation occuring when showing the Tttt picture. When the series of pictures is
showed again in the other sense, from picture n" 8 to picture no 1, one obsewes the same
phenomenon, but the change in perception occurs not at the same picture. Instead it occurs
hallway at picture n" 4.
Zeeman explains this difference by constructing two different models of pattern recognition.
In the first experiment we have an initial recognition and the brain behaves âs a passive
dynamical system. When passing the pictures a second time in the reverse order we have
already some preliminary knowtedge and the brain bchaves as a cognitive system able to
optimise its choice between the ambiguous perceptions. It makes an active choice to judge the
likiest hypothesis.

Finally we mention the low-dimensional chaotic attractors one can observe by nonlinear time
series analys of electroencephalogram recordings in some very particular cases of brain
activity. On basis of their observations on chaotic brain dynamics Babloyantz and her
colleagues constructed a model of a chaotic categonzer. Starting from a dynamical system
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they use the unstable periodic orbits contained in a chaotical attractor as coding devices for
incoming information (Babloyantz, Inurenco, I 994).

Thus, experimental evidence suggests to extend the linear associationist account of visual
perception to non-linear dynamics (ex. through feedback and feedforward loops) in order to
include the multiplicity of forms created by the autonomous brain dynamics. lndeed, as we
have seen, perceptual change can occur in an autonomous manner without any change in the
stimulus and even without being able to find a unique optimal solution, as in the case of
binocular rivalry. To decide between the ambiguous perceptions an active intervention of a
higher cognitive level is needed, which suggests a closer interaction between associationist
and concept guided recognition processes.
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