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Abstract
The spread of an epidemic can be studied on a discrete space into small cells arranged into
a ds-dimensional regular lattice [Durett & l-evin, 19941. Each sites are occupied by

healthyindividuals may be infected by neighbours, after which they recover completely,

they recoverand are subsequently immune, or they die. Such a model is a generalisation

of the differential equation approach. It corresponds to a modification of the directed

percolationproblem, useful to describe alarge number of disordered systems in physics

and chemistry. A critical concentration separate a phase where the epidemic dies out after

a finite number of time steps, from a phase where the epidemic can continue forever.

In the simplest models, we assume that the vicinity, in which the infection process takes

place, is a small domain surrounding the healthy individual considered. This vicinity is
made up of the first layers of ll = 3e-l cells surrounding the central cell considered

(Moore neighbourhood). The purpose of this article is to generalise the dimension of the

substrate by introducing a fractal distribution of the sites. For each distribution of infected
individuals in this vicinity, there is a certain probability € of infection. Due to the self-

similarity, the infection quantities are significantly modified on fractal substrate.

The fractal distribution of the sites can be related to the spatial distribution of the epidemic

vector [Meltzer, 1991]. Vectordistribution is a matter of suitable habitat, which is a sum

of a wide range of environmental factors (humidity, soil moisture, ground temperature,

parasitic-host population deosity, etc..). The distribution of the sites can be also related to

the genetic distribution of the susceptibility of the host population. In a herd, the laws of

inheritanceform a discrete and recursive system which mixes and distributes the genes of

susceptibility. We can propose an aggregation model of relatives around an individual,

which is based on the direct inheritance.
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1. Introduction
Variousauthors have already demonstrated that the potential spread of diseases, such as

cattlediseases, can be anticipatedby studying environmental and/or genetic factors which

affect the diffusion of the vectors or the susceptibility of the host. The existing work

focuses on identifying and mapping potentially suitable sites often using averages taken

from time series (for example, climatic data). The issue of the fluctuations in the amowt

and distribution of suitable habitat sites, or susceptible host genotypes, has not be fully

addressed. Such fluctuationscould destabilise enzootically stable disease populations, or

introduce the vectors and diseases into previously naive herds. In either case, the

subsequent mortalityrate among susceptible cattle could be significant. Even if there are

no fluctuationsin the suitable habitat sites, or susceptible host genotypes, knowledge of

the area involved dehnes potential control sites. In order to study some epidemic

processes, such as diffusion of scrapie which is a diseases with genetic susceptibility, we

aim to analyse the organisation of a related population.

2. Distance of kinship between individuals
The studies of genetic relationships between relatives propose to connect distance and

genetic resemblance. The principle is based on the notion of identity which forecasts, with

reference to Mendel's laws of inheritance, the probability of gene similarity in two

individuals. It is a complex function of the number of generations between them. This

purpose is expressed in the methods of "Analysis of genetic variabiliry using geneelogical

datu" lYuTien Khang l9t39l .

The whole genealogicaldatawhich mav- be obtainedfor an individual (i.e. its ancestors,

its pedigree) gives, retrospectively, the morphogenesis of specificit.v of this individual

within the gerrctic varietv of the relaledpopulation. Anlt part of pedigree holà in common

bv two inrlividuals involves thal they are, more or less, similar (at least in probability).

Anywa."-, the deJinition of kinship mav be expressed by the following senterx:e.' n Two

individuals are related when they have part of their pedigree in common (...) The fact thal

relatedinrlividuals resemble one anotherwas no doubt the startingpoint of dl gerrctical

thought. The most casual observcttion shows thu chil.dren resemble their pctrents, or

sometime are strikinglv like u more distant relative, and that sibs resemble one another "

[Jacquard 19821 ..
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Theoretically, the number of ancestors of an individual

number of generations. The measures of kinship are

taken two by two.

increases as 2n, where n is the

performed between individuals,

In a limited size population, it is obvious

that two individuals must probably share

several ancestors between them. The direct

relatedness leads to illustrate this sharing by

a graph in which any relationship is an

oriented arc.

However compler such a graph may be, the genetic involvement of the connection

between X and Y can be erpressed as the probability that they harbour in common a gene

which are copies of the same ancestor gene. The measures of kinship aim to quantify the

probability of identity. The coefficient of kinship @xy, which is one of these measures,

is equal to the probability that. in any autosomal locus taken at random. one get the sarne

gene in X and Y :
,  t .  i . . i . '
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where {A;} is a set of ancestors that tr,lo chains of descendants connect to X and Y. }'' et

i' are the length of these chains.

This property. which defines ultrametrics, is characteristic of the hierarchical structures.

In a hierarchical tree structure, the respective distances of lea'r,es can be measure b1 the

height of their first common root. If we consider a triplet of individuals, X, Y. Z, their

respective distance of dissimilarity ,lQ . a kind of Hamming distance, form either

equilateral triangles, or isocele triangles whose two equal sides are always longer than the

third side. The distribution of the attractors. however. is not arbitrary.

3. Distribution of population attractors
We propose an aggregation model of relatives around an individual X. The process of

iterativeconstitution of the X family group may be performed using a syntactic formalism

[Dekting 1987] .We propose the following coding system in which R, B and F are

individuals and k is a mean (or stochastic) number of descendants per individual :

- B is an individual which neighbouring is totally defined,

- R is an individual which roots remain to be defined,
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Fig. I : Graph of relatedness between X and l'



- F is an individual which descendants remain to be defined.
At every iteration, the following substitution (a 0 momhism) applies :

0(R) = RRB(k-l)F ; e(B) = B ; 0(F) = BkF

At the first step, we start with an individual and its neighbouring :
f  k l i æ r l

lR,R.EFliTl= {X father, X mother, X, l" descendant,...,k" descendanr}. Then
r . J

others aggregate by the transformation process. That gives a sequence of "words"

{M(o) ,M( l ) ,  . . . }  (F ig.  2) .

It may be observed that, as the size of the group increases. a property of autosimilarity
seems to appear. Considering the asymmetrical tree. on which is based the family group
constitution, a property of strict autosimilarity is not possibie. Though, it can be defined
autosimilarities by classes r( I ), . . . Én), if a t-ractal F(i) can be a partition {{',} such as

any part is similarro one of the F(l)....p(n). The morphism which leads to the famill,
group constittttion- gives the properties of autosimilarity by classes. This svntactic
formalismshows thata set which components organise themselves locally, may harbour
global properties of autosimilarity. These properties, when they apply to an intensir.e
value (such as an incidence rate), allows us to make a change of space for the approach of
diffusion processes.

RR
B

FF

Ir(o)

RR RR
F BB F

B
BB

FF FF
\t( 1)

B B
B B  B t s

F F  F F F F  F F

F F F F
RR RR RR RR

B B  B  B
B  B B  B

F F  B  F F

M ( Z R c . . .

Fig. 2 : Graphic representation of the syntactic model application

In this model. a scale law associated to the autosimilar structure is revealed by a special
behaviour of the kinship relation. lf r is the number of relatives distant of n generations
from X, and Ô their coefficient of kinship with it. the biJogarithmic represenûation of r
versus (D shows a quasi-linearity. This linearityand the family group properties (revealed

by the syntactic model) suggest that a fractal model of kinship may exist within a
population.

The zipf law, used in the complex systems analysis. connects an intensive value @
(frequency) and a value of counting r (rank) :

e. rT = K (Eq.2)
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An extended power law, called this equation Zipf-Mandelbrot law, generalise the rank-

frequency relation [Iæ Méhauté,ly74l :

iD. ( r+f t ) r  =a Gq.3)
where 86 gives the degree of organisation of the system. When r.^))Q (4nax =

maximum rank in the set) there is a high dependency to the model. On the opposite the

system is totallyfree [I-e Méhauté, gnl .

This transformation produces a family of curves (Fig. a)' For Bp = O, the npf'

Mandelbrot law returns to the pure Zipf law. For the last ranks the Zipf-Mandelbrot

distribution tends to the Zipflaw values.

The equation (Eq. 3) may be rcplaced with a logarithmic one :

-In (.0 ) =t In (r+Bd - ln (K) (Eq. 4)

o. La(r) o.La(r) ? , ,
|â.
e
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Fig.3 : Bi-logarithmic representation of the relation @ .'r.

(a) Zpf law. (b) Zipf-Mandelbrot law.

This conjectuehave bæn tesæd with real genealogical data, obtained from 5l breeds of

sheep, which pedigree were well known [Guigal, 1995] . The coefficient of kinship'

which may be viewed as an intensive property, is connected to the rank of any

relationship in the ordered set of the whole kinship identified. The range of size of these

s€ts was 30O to 16000. The figure 4 shows an example of adjustment of the kinship

relations between the young's of the year and all adults within a breed. In a large majority

of the cases (39151), the coefficient of correlation between the data and the Zipf-

Mandelbrot law was over 0.95. For the remaining cases, we must put forward a new

hypothesis which allows us to use another rank-size law (called the nBrcken-Stick rank-

size law").
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Fig.4: Adjustment of the "rank-coefficient of kinship" relation

by the Zipf-Mandelbot law :

Bo =2100 i t =?-6,73 i Car. -- 091. (Herd N' 3370- 1990).

zuuu 4000 6000 8000 10000 12000 14000
Bo

Fig.5: Localisation ofthe herds in a control plane (86, y).

(Bp : [60O, l4O0O], y :13, 431, Con. : [0,70, 0,93])
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In a control plane (B0, 1), the experimental dâta, reveal (Fig. 5) :

- an adjustment of the herds by an exponential À ;

- the discrimination of the herds according to the values of the parameters B0' y :

x 80 increase with the size of the herds, and with the replacementrate ;

* y increase with the dispersal of the sires (males and females lines)'

4. Potential use of fractals in epidemiology

The majority of epidemic models are formulated in terms of eitherdifferential equations or

stochastic processes (Bailey, 1975). In an SIR model, based on disease status, the

individuals are divided into three disjoint groups :

(S) the susceptible group, i.e. those individuals who are not infected brrt who are capable

of contracting the disease and become infective;

(l) the infective group, i.e. those individuals who are capable of transmitting the disease

to susceptibles: and

(R) the removed group. i.e. those individuals who have had the disease and are dead. or

isolated, or have recovered and are permanentiy immune-

The possible evolution of an individual may. therefore. be represented by the following

transfer diagram :5 p. 11 p, rft where p, and p, denotes. respectively-, the

probability of being infected and the probability'to be removed. The spread of the disease

is governed by the first following rule (i) : susceptibies become infective b)' contact' i.e.

suceptibles may become infective if and only if. it is in a neighbourhood of an infective.

This hypothesis neglect latent periods, i.e. an infected susceptible become directly

rnfective. But there is another rule (ii) : an individual selected at random may move to a

vertex also chqsen ar random. If the chosen vertex is empty, the individual will move,

otherwise the individual will not move. The set in which the vertex is randomly chosen

depends on the range of the move.

More precisely, during one time step, the probability of a susceptible having z infected

neighboursbecomeinfectedis(1-(1- Prl/10'\.",ç=p,.1/N istheprobabil itythatatatimeta

susceptible is infected by an infective located at a specific neighbouring site. Then, if : is

the number of neighbouring vertices of a given vertex, (l - Prx)' is the probability that

such an events does not occur, and finally /.r )=( I -(l - p,. x)') is the probability that such

an event occurs at any neighbouring site. Note that, within the framework of this

approximation, the interaction terns are not bilinear as in most models (Bailey' 1975)'
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Non-bilinear interactions have recently been shown to exhibit very different dynamic

behaviour (Busemberg and Van den Driessche, 199 I ).

The shaky basis of the SIR model is found on these two rules by reference with the
< chemical law of mass action >. All individuals are assumed to << move " randomly

and to << contact > other individuals of various types in proportion to their density; upon

contact the infective agent is transmitted with a certain probability, i.e. given a

" collision >> the .. reaction '> takes place with a certain probability. The classical SIR
model of an epidemic given by the following equations (Kermack and McKendrick,
1927\:

( / "  =É(/) . f .s -  y. t  =E(/)-s( / )
L ^ - :  t E q . 5 )
ioYa, = -putJ.s = -s(s) = -Et Il
I ( t ) + S ( t ) + R ( t ) = N

where E(l), S(1), etS(S) denote the input and the output of infected /, and susceptible S
individuals. And R denote the number of infected individuals who have been removed
from a community of total size N. In brief, B is the infection rate, /5 is the number of
possible contact-pairs between susceptibles and infectives, and 7 is the death or removal)

rate of infectives. And. for convenience, we define e = 
% 

as the relative removal rate.

The < incidence > referring to the number of new cases per unit of time per unit of area
(when the spatial domain is two-dimensional) is :

E( I )  =rP,t-  t  t  -  p,  { r '  I
? '  

' À

where r is the number of infected neighbour, and .r is the number of neighbouring
vertices of a given vertex. For :=2. when p, is small and when we arc interested at a time
scale at which 0, the number of low-tides per unit of time, is very large, rve take for the

incidence (which is a rate) the expression
I

E(l l= p.+J.S v 'here ë =2p,0' N

For theepidemiologyof the scrapie. the following expression of the. incidence, have
been proposed :

Ërlr  = s. : )  ,n *  
=s. : . f  ) rao,  +pr

We can propose an agregation model of relatives around an individual, which is based on
the direct inheritance. The study of the system has been performed with simulations. The
rateof prevalenceforinitialconditionsis6Vo, wichcorrespond to introduce six sheeps in
the herd. The rate of prevalence obtained to the endemic equilibrium is accordance with
the epidemiological data of the publications between 07o and 127o. When this equilibrium
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happen, all the individuals seem to be germ carrier, but only someone become contagious.

This equilibrium depend on the kinship. The closing of the reproductive line control the

emergence of the scrapie. The simulation SIM5, show a prevalence rate of OVo for an

closed situation, and l27o for an open line (SIM1). If we consider a ten year simulation,

we cf. that the results evolve from an open situation, to a closed situation. We can see

that the initial infection disappear imediatly, and next come back next to an endemic

equilibrium. a closed situation to (Fig. 6)

l 2 ls I

2 S
I

37.-s 5 0

Fis'6'cineticsit"i"JJi:itris,$it'tr1;idisease
(a=2.85, Ê=0.0S, 5t4.25' l=30) (Guigal, 1995)

The equations of Kermack and l\tlcKendrick do generate useful qualitative predictions

about possibles modes of behaviour. At the start of an epidemic, I et I(0) = 16 ; S(0) = $ o ;
R(0) = Rp, and we can see from (Eq. 5) rhat at rime t = o : dl/6= 

Élo(so - p). so -

epidemiccanonly buildup (i.". dI/A>O) if So >p. Thus 56 :p definesa deterministic

threshold density of susceptibles below which an epidemic can not develop, since

infectivesare removedatfasterratethan new infectives can be product. But tlresc results

are on the inlluence of the degree of mixing of the individuals from their diffusive motion.

The spatial correlation created by the application of the first rule (i) can be partially

unde-stroyed according to tle degree of mixing of the population from the application of

the first rule (ii).
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5. Discussion
Vectordistribution can be a matterof suitable habitat, which is a sum of a wide range of

environmental factors (humidity, soil moisture, ground temperature, parasitic-host

population density, etc..) lMeltzer, l99l]. The distribution of the sites can be also related

to the genetic distribution of the susceptibility of the host population. In a herd, the laws

of inheritanceform a discrete and recunive system which mixes and distributes the genes

of susceptibility lcuigal, 1995].

What we have performed is a reduction of the complexity. The Zipf-Mandelbrot law,

which has been used to adjust observed data, allows us to substitute a Pareto's

distributionfor a complex set of binary relations [Mandelbrot, l99O]. The parameters of
this distribution are y, 86 and K, that simple methods permit to quantify. The number of

these parameters may reduced because of theircorrelation.

This a-djustmentby thezipf-Mandelbrotlaw and the syntactic model are different aspects

of a same class of organisation . The structure given by continuity (direct inheritance) is

analogous to an hyperbolic tree. The entropy principle (conceming the probability of

identity)superpose on this tree, Such a phenomenon has been described, under different

formulations, by some authors when studying complexity and organisation of natural and

artificial systems lSchroeder, l99l]. They calledit: "the notion of cost" (Mandelbrog,

"the principle of least effort" (Ztpf), 'the principle of partition" (Hill), "the equilibrium

law" (Orlov) or "the invariance of the lexicographic tree" [Schapiro, 1994]

The autosimilar organisation constrains hardly the material of the system and gives it a

hierarchical structure. This minimises the general entropy of the system. Its

characterisationallows, using a change in space of parameters, to reduce complexity from

a high number of discrete components to a few global values. In the study of infectious

diffusion process within a limited size population and conceming diseases with genetic

susceptibility, It mightbe very useful to perform this change of space. ln heterogeneous

systems it is often important to substitute for averages (like the mean rate of

consanguinity). The notions of organisation give a new approach where global values

may be a way of simplificationof the diffusion processes [Sugihara & May, 1990'1.
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