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Abctrect

A computational derivation of the Klein-Gordon quantum relativist equation and the
Schrôdinger quanturn equation with forward and backward space-time shifts was

developed in Dûois (1999,2000). The forward-backward space À and time t shifts are
related to a phase velocity u = ?uh. The ratio v/u, where v is a group velocity, is related

to the mass of paticles: for v < u, particles have a real mass and for v = ll, there is no
mass, as for photons.
In this paper, it is shown that this formalism gives rise to a quantum interpretation of
the mass in relation with plane \ilaves. Moreover there is a third case for mass of
particle: when for v > u, particles have an imaginary mass, as for tachyons.
From these considerations, we look at the possibility to develop a dual relativity
including these three types of mass.

Keywords: Quantum Schrôdinger equation" Relativist Klein4ordon equation, forward-
backward space-time shifts, mass, dual relativity'

I Introduction

A computational derivation of the Klein-Gordon quantum relativist equation and the
Sckiidinger quantum equation with forward and backward onedimension space and

time shiffs unas developed in Dubois (1998,1999).
Withthroe-dimension space and time shifts, Klein€ordon equation for elætromagtetic
field was derived lPubo;s- 2000).
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This paper introduces firstly the forward and backward derivatives for discrete and
continuous systems. Generalized complex discrete and continuous &rivatives are
deduced. The Klein{ordon equation is deduced from the space-time complex
continuous derivatives. These derivalives take into ac,oount foruaard-bsckward spce I
and time r shifts related to a phase velocity a = A,lr. The ratio v/u, where v is a group
velocity, is related to the mass of particles: for v < u, particles have a real mass and for
v = u, there is no mass, as for photons.
From this formalism, new inkrpretations are obtained which deal with a dual Relativity:
three fundamental particles velocities are obtained: v < c, particle with real lnass; v = c,
photons; and, v > c, particle with imaginary mass for tachyons.

1.1. A Generalized Forward and Backward Discrete Ilerivative

Let us consider a function F(t) of the time t. Two discrete
defined: a forward and a backward derivatives

arF / ̂ t = (F(t + ̂ 0 - F(t)y^t

^b F / Ar = (F(t) - F(t - A0yAt

time derivatives can be

(1a)

(lb)

(4)

where Ât is the discrete time inûerval. The successive application of the forward
derivative to the backward derivative, or the inverse, gives the second order derivative:

t2p  t t (  = [F( t+a t ) -2 r ( t )+F( t -^ t ) ] / ^ t '  e \

A generalized discrete derivative by a weighted sum ofthese derivatives was defined
(Dubois, 1998) as follows:

a* F/ar = w.ÀrF /at+(1-w).À6 F/At = [w.F(t+Ât)+(1-2.w).F(tF(1-w).F(t-^ùy^r (3)

where the weight w is defined in the interval [0,1]. For w = 1, the forward derivative la
is obtained and for w = 0, the backward derivative lb. For w = ll2, derivative 3
becomes

Lvz F / Lt = (F(t+^t) - F (t- Lt))/2 Lt = [^r F/^t + Lb F l Lt]12

which is an average derivative. From eq. 3 ofthe generalized discrete derivativg the
second order derivative is given by the successive application ofeq. 3 for w and (1-w),
or the inverse:

A*Âr-*F/Âtz =

[F(t+Ât)-2F(t)+F(r-^r)]/^t2 + w(l-w)[F(t+2Ât)-4F(t+^t)+6F(tFaF(t-^t)+F(t-2,lt)ltLt

= Âr-*Â*F/Ât'

26
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which is the sum ofthe classical discrete second order derivative and a factor, weighted
by (l - w), which is similar to a fourth order discrete derivative (multiplied by Ât'?;.
For w = 0 and w = l, the classical second order derivative is obtained: w(l - w) = 0.
For w = ll2, w(l - w) = 1/4, the second order derivative is also obtained but with a
double time intewal2 At.

1.2. A Generalized Complex Discrete l)erivative

In choosing the value of the w(l - w) equal to 1/2, we obtain weights w, solution of

r a l - w  + l l 2 = 0

which are given by the complex numbers

(6)

w = (  |  !  i ) 1 2  ( 7 )

and l-w = ( I t ( - i )) i 2 = ( | tl' ) I 2= w', where w' is the complex conjugate ofw.

So eq.3 of the generalized discrete derivative can be rewritten as (Dubois, 1999):

^* o l^t = w.af o/at + w* Ât, o /Ât = [w.<D(t+Ât) + (w'- w).<D(t) - w'.o(t-At)] /Ât

= [<D(t+Ât) - o(t-^O] /2Lt!i [O(t+^r) - 2o(0 + C(t-^0] /2^r (8)

where the generalized complex derivative is applied to a complex function @ = F + i G.

The second order derivative is given by the suûcessive applications ofeq.8 for w and
w', or the inverse:

À*A*.rD/Ât2= [O(t+^tF2O(t)+At(t-A0y^f

+(l I 2j[@(t+2^tF4o(r+^t)+6o(t)-4o(t-Ât)+@(t-2À t)U Ltz = Â*.Â,,O/Âr2 (e)
which is the sum of the classical discrete second order derivative and a factor, weighted
by the real number 1/2, which is similar to a fourth order discrete derivative (multiplied
by Àt2).

1.3. Generalized Complex Continuous Derivatives

We will consider successively generalized continuous time and space derivatives
deduced for the generalized discrete derivative and applied to complex space-time
functions.

1.3.1. A Generalized Complex Continuous Time Derivative (Dubois, 1999)

From the generalized complex time derivative applied to the complex space-time
function O(r,t), let us write

2'.1



T<D(r,t)/ôt*v [@(r,t) - <D(r,t - ^t)y t (l lb)

which give the discrete forward and backward derivatives for Ât > 0. Then, the
continuous version ofthe forward and backward discrete derivatives are:

d'@(r,t)/ôt= ô<D(r,t + rl2)/ôt = ffi(r,t)/ôt + (rtz\daÎ,tvôtz (l2a)

fliD(r,t/ât = ôo(r,r - rlz)lôt= âÔ(r,t/âr - (r/Zfiol(r,tlôt (r2b)

where r > 0, in using the development in Taylor's series until the first order. These
continuous forward and backward time derivatives mean that the derivatives are
computed in a future and past times t ! rl2, respectively, which conespond to
anticipatory and memory effects. The total time duration is r around the cunent time t,
which can be interpreted as a temporal non-locality. If the function O is related to a
particle moving in one direction, the forward and backward derivatives mean tlat the
particle anticipates the time in the direction of moving and has a memory of the time in
the opposite direction. This can be also interpreted as a time extension of the particle
around ûe current time.
These continuous forward and backward derivatives give the discrete ones in taking
t = Àt > 0, with the following discrete versions of the continuous derivatives:

&(r,tlôt = [<D(r,t + ̂ t) - @(r,r - Lt)]l2\t (13)

A<D(r,t/Ât = (A*O/A + T @ | ôt\2 t (flO/At - d- O I Aù12

where

t@$9/ate [@(r,r + Àt) - <D(r,t)]/Àt

dO$,t)tôt2:, [<D(r,t + At) - 2@(r,t) + O(r,t - ^t)]/^t:

Thus

Âô(r,t/Ât = ô<D(r,t)iôt t i(rD)do(r,ùôf

which can be written as

A<D(r,t/Ât = ôO(r,t t ir/21 ôt = N(r,t)/ ôt x ilrl \d AQ,t)/ ôt2

(10)

( l  l a )

( 1 4 )

( l5a)

(15b)

With the forward and backward time derivatives applied to continuous functions, the
onedimensional time domain is transformed into a two-dimensional time domain with
one real time t variable and one complex time tirl2.
Tf

<D(r1) = $(r,t) exp(t iVr) ( t6)

the first order derivative disappears

[ôiD(r,t]ôr t i(r/2)do(r,tydl/O(r,t) = t i[(t/2)d0(t,flôÊ + (l/2r]$(r,t)l/Q(r,t) (17)

28



Proof: With

@(r,t) = (r,t) exp(iat)

we obtain

ô@(r,t/âtti( r I \ I a ç trY af =

(18)

[âS(r,t/ôt+ia(r,t)]exp(icr.t)ti(rl2]ldffir$la(+2io,lôo-r(r,t\lôt-c2$(r,t)lexp(iot) (19)

and the first order derivative ô$(r,t)/ôtdisappears for

1+ i(rl2)2ia=0 (20)

or û = * 1/r so that the coeffrcient of $(r1) becomes ia t i(t/2[-42) = ti/2r I

1.3.2. AGeneralized Complex Continuous Space Derivative (Dubois, 1999, 2000)

ln three space dimensions, partial space derivative is given by a gradient V, and second
order derivative by the Laplacian written as V.V or V2 instead of Â to avoid confusion
with the discrete operalor A.

From a similar reasoning as for thc time derivative, we obtain successively:

Â@(r,t/Âr = (V"<D + V-O)/2 t i(V*O - V-@)/2 (21)

in considering the forward and backward derivatives, with a space shift vector À :

V"O(rI)=VO(r +Ll2i\=VO(r,t)+(X.12)V2O(r,Ù (22a)

V-@(r,ù = V@(r - ^"12,t) = V@(r,t) - (L/2)Y' @(t J) (22b)

These continuous forward and bachmrd space derivatives mean that the derivatives are
computed in two opposite directions r + îu12, respectively. The total space lengh of
computation is l, around tfte current position. This can be interpreted as a spatial non-
locality. If the function @ is related ûo a prticle moving in one direction, the forward
and backward derivatives mean that the particle anticipates the space in the direction of
moving and has a memory of the space in the opposite direction. This can be also
interpreted as a spatial extension of the particle which is no more represented by a point
but a ball (a wave packet).

ÂiD(r,t/Ar = vô(r,t) t (1./2)v2o(r,t) Q3a)

which can be writienas

ÂO(r,t/Âr = VO(r tiul2,t)= V@(r,D + (À/2)V2O(r,t) Q3b\

With forward and bachmrd space derivatives applied to continuous functions, the
three-dimensional spatial domain is fransformed into a sixdimensional space domain
with one real space r variable and one complex space volume +iL/2.
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If

<D(r,t) = Q(r,t) exp(+ i/I)

the fïrst order derivative disappears:

[V<D(r,t) t (i./2)V2o(r,0]/o(r,t) = ! i\Qul2)Y2,$(r,t) + ( l/2ÀMr,tl/ô(r,t)

Proof: With

@(r,t) = $(r,t) exp(ip.r)

we deduce

V<D(r,t)ti(t/2 ) V',tr(",tF

lvo(r,t)+ipo(r,t)J ex(ip.r)ti(Il2)[V2{1r,t}+2ip.Vo(r,Èpt0(",t)] exp(ip.r)

and the first order derivative VS(r,t) disappears for

F= t1 l 1 .
so that the coeffrcient of $(r,t) becomes iP * i(f/2x-9\ =Xi/2L I

2 Deduction of Quantum Relativify Equation Systems

2.1. A Generalized Continuous SpeceTime llerivetive (Dubois, 1999,2000)

(?4)

Q6)

Qs)

Q7)

Let us consider the equation

ÀO(r,t/Àt = v. ÂO(r,t)/Âr

where v = Lr/Lt is a velocity. In using the forward and
derivatives 15a and 23a,we obtain

ô<D(r,t/ôt x i@l2F.ûQ jy æ =v. [VrD(r,t) x i(Ll2)V2O1r,t;1

with

(D(r,t) = $(r,t) exp(t ithtir/î')

(28)

(2e)
backward continuous

(30)

(31)

(32)

we obtain

t it(r/2)d0(r,tY# +(l/2rMr,Ol = * i v. (r./2)V2ô(r,ù + (l/2À)(r,t)l

or

tqç gt aÊ = v.uV20(r,0 - Otrz)U - g/u)lg(r,t)

with u = I/t.
Let us give the phase and group velocities in introducing a plane wave solution

@ = exp(irot + ik r)

in this equation. \ily'e obtain

30

(33)



I
(rr2 = v.u k2 + 1llr2;1t - (v/u)l

and

ro = t i{v.u tr2 + (Ur)[t - (v/u)]]

so the phase velocity is

vo = 6/ft = + e*rl1v.u + ( l/d)[l - (v/u)l/k2]

where e1 is the unit vector li/lkl, and the group velocity

ve = do/dk = t er v.u/{ {v.u + 1 l/r2)[1 - (v/u)l/k2 ]

so the product vo.v* is

V p . V g = V . l l = C ?

where c is a speed, and when

Y = U

so

v o = Y s

and we can write the relation

u.dv = - v.du

If

u  2 v

then

c > ek.Yg and el.vo > C

(34)

(3s)

(36)

(37)

(38)

(3e)

(40)

(4r)

(42)

(43)

Thus we may interpret v as a gtouprelated velocity and u a phase-related velocity.
Dubois (2000) called v and u, the internal (endo) and external (exo) group and phase
velocities, respectively. This remarkable property is that the product vo.v* is equal to the
product v.u which is equal to c', with the same inequalities.

Let us now show that the Klein-Gordon quantum relativist equation and the Schrôdinger
quantum equation can be derived in our formalism.

2.2. Deduction of the Klein4ordon Quantum Relativity Equation

In taking v.u = c2, where c is the light speed, and multiplying both members of eq. 32
by ft2, where ft is the Planck constant, so that the equation dimension is a square energy,
one obtains (Dubois, 1999,2000):

n'zt6gt* =h2 c2 vt4(.,g -ft2Ér(t-v/ug(r1)

3 l

(44)



This equation is the Klein-Gordon equation in taking

@'z\êXl-vlu)=mq2ca

or

h/r  =+moc2/{1t-vlu;

where ms is a rest mass so that the relativist mass m is

m = m o / { l - v l u )

When the mass is negative, t is negative. Eq. 45 could be written as

@21ê)( - vlu) = 72 çt o2

or

h / t  =+hroç l ' l1 t -v /uS

so the forward-backward time shift t satisfies the relativist equation

1/r = rrr = oo i {(1 - viu) (49)

From the relation u = îv/r, we deduce that the forward-backward space shift I satisfies
also a relativist equarion.
Thus, equation 44, with equation 45, gives

- n2 S41:rgtaf =-n2 c2 dqg,tytôr2 + m62caq1r,t;

which is the Quantum Relativity Klein-Gordon equation for bosons.

Let us remark that v/u = v.u/u.u = c2lu2.If u is parallel to v, similarly to vo was parallel
to v* lbr a plane wave, we have also vla = v2 lc2.
In this case, eq. 48 can be wriften as

(h2 k21l - v' I c21 = h2 rù02

or

(t fiir)(l + v/c) (+ hk\{l - v/c) = (t fior*) (t hro-) =12 6r,2

so

ft2 rùs2 = (t ârrr*) (t Ëro-) (5lc)

which define two frequencies, which could be related to forward (positive) and
backward (negative) shifts, similar to the Doppler effect.
Similarly, the rest mass could be interpreted as the product of two masses

62tlyt - v/u) = m42c4 = (t m*c2) (t rn-c2) (52)

where mn and m- could be defined as masses related to internal group and phase
velocities.

(45)

(46)

(47)

(48)

(48a)

(50)

(5 la)

(5rb)
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Phase and group momentum can be also defined as

Po= mo U

Pt = lÏlu v

in infioducing phase and group mass€s

m+ = mv and tn- = mu

(s3a)

(53b)

(53c)

See the interpretation of Schrôdinger equation as a fluid with a complex momentum, a
phase and a group momentum (Dubois, 199).

23. Quantum Interpretation of the Mass in Relation to Plane \ilaves

In usual presentations of quantum mechanics, most authors introduce wave functions
having imaginary exponents without any explanation but just relating them to the
classical case ofplane wave propagation.

This is not a pertinent justification to use plane wave functions, and some authors seem
to choose such functions to simplify the calculus.

Moreover, the usual quantum theory has never proposed a quantum definition of mass.

The above demonstration has introduced a plane wave function, such as eq. 3l:

O(rI) = $(r1) exp(1 it/rttu/î')

which has allowed to eliminate first order derivatives from eq. 30 and has led to give a
quantum definition of mass by eq. 45 in relation ûo quantum time shift:

*z = 1vCXn2Éyt -'f tê>
Obviously, plane wave propagation is required to allow enerry to exist as being mass
bodies, because without it, energy would dilute with the propagation in several
directions.

This new concept in physics is extremely important, and we think that :
The plane wrve pnopegation is the cause of mass in relation to time shift-

2.4. Wave Equation for Photons

If equation 67 is satisfie{ v = u, So
equation 32 which becomes

tqç,tya( = c2 v2ô(r,t)

the term (lÆXl - v/u) = 0 disappears from

5 5
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which is the wave equation for photons. The condition y = u implies that the rest mass
is null, me = 0, from eq. 45.

This result is remarkable in the sense that we do not deduce that the phase velocity u is
equal to the group velocity v from the fact thât the mass is null, but the inverse: wlren
the phase and group velocities are equal, then the mass of the particle is null.
Can we conclude that the creation of rest mass in particles is due to a difference from
the phase velocity u to the group velocity v, the phase velocity being related to forward
and backward space-time shifts 1" and t.

Another remarkable property is the fact that the sign of the mass of the particle is
related to the sign of the time shift r. A positive time shift creates prticle* with a
positive mass and negative time shift creates particles with a negative mass.

Last but not least, the time shift r is also at the basis of the finite light speed. When t is
null, the pmticles can propag&te with an unlimited group velocity, as in the non-
relativist Schnidinger equation.

2.5. Deduction of the Schrôdinger Quantum Equation (Dubois, 1999, 2000)

In taking t = 0 in the equation 30, we obtain

&(r,t'lôt= v. [VO(r,ù !i(Llz) V2O(r,0]

with

!D(r,t) = S(r,t) exp(+ 171;

we obtain

ôo(r,t)/ôt = r i v. [(1',/2) v20(rg + ( 1 /2]r.)$(r,t)l

In taking v.L= h /m, where È is the Planck constant and m the rest
after multiplication by i fr

ih ôg(r,t)lôt=tï(-h2l2m; v241r,ty - (nznmx2)Oî,t\1 (57b)

which is the Schrûlinger equation for a free particle in a constant negative potential
v = - h2 l2rn]'? = = ftvl2?u.
This supplementary term is particularly intriguing: is it related to quantum void?.
Its study will be made in a next paper.

Remark l: The second term in the second member of eq. 57b disappears in introducing

(ss)

(56)

(57a)

mass, we obtain

(58)$ = {1ex(+ iv t/2},,)

so we obtain
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i ft ô91(r,r/ôt = çh2am) v?4r1r,t; (59)

the classical Schrôdinger equation for a free particle of positive mass.

Remark 2: from eq. 52 (h2 I t2)(l - vlu) = Gt2 k2\(1 - vrl}") =mo2c4 = mo2v2 î'2 /r?,
so, with T = 0, we can write l? = ffiov.I.

Remark 3: We write m instead of m0, because when t = 0, they are equal, which
corresponds to a non-relativist case.

3 Towards a Dual Relativitv

From eq. 45

(d i  r2 ) . (  | -v lu )=mo2cr

the rest mass can be defined as a function ofthe phase and group velocities:

m6=(f i /c2r)r11 t-v iu;

where c2 = rr.Y ârrd u = À/r.

The square root may be imaginary and three cases can be defined.

If v < u the rest mass is real:

rno=( f i / c : t ) ( t -v lu )

If u = v the rest mass is null (photons):

f f i t t =0

If v > u the mass is imaginary (tachyons):

m o = ( i É l c 2 r ) ( v / u - 1 1

(60)

(60a)

(6ob)

(60c)

Einstein's relativity deals only with the first two cases, eqs. 60ab.

So, a dual relativity can be developed in including the third case, eq. 60c.

Several avenues may be considered.

In previous papers R. Dtmtn and G. Nn,cRr using the tensor formalism, have shown
that particles named tachyons (Bilaniuk et al, 1962) have a superluminal velocity in
Tachyonic Referential Frames, may exist (Dutheil et Nibart, 1986) and do not violate
the Causality Principle (Nibart et Dutheil, 1986). According to their reinterpretation
principle, (the TBI Principle) (Nibart et Dutheil, 1986) tachyons would always be

J)



perceived by any natural observer, using Ordinary Referential Frames, as being
antiparticles having a subluminal velocity. See also G. Nibart (2000).

Another way is to consider a 6-dimensional universe with a 3-dimensional time
1= (t1,t2,t3) similarly to the 3dimensional space r = (x.y,z), so ds = dr + i c dt
and the dual relativity would be defined as ds = i ds = i dr - c dt
In the dual universe, real space - imaginary time would be replaced by real time -

imaginary space. It has already been suggested to formulate physics in a six-
dimensional space by Marchildon and Antippa (1983) to generalize the lorentz
transformations to superluminal velocities.

ln looking at eq. 60c, if r is transformed to i q the mass remains real, but for conserving
u real. we must also transform À to i ?,,, because u = ),"/r.
This case will be developed in a forthcoming paper.

Let us finally point out some questions which will be answered in a next paper.

The sign of a scalar variation has not the same physical meaning for time or space.

What type of coordinate variation can be known as forward or backward ?
In the discrete model, developed above, can At be related to the time arrow, to define a
forward derivative and a backward derivative. Moreover, Âr depends on the choice of
the referential frame, i.e. of an arbitrary convention of the observer.

In the space derivative AO(r,t)/Ar of eq. 21, the variation of the function O is divided
by the vector Âr. So, to introduce a generalized space derivative in a three dimensional
space, we may have to define the division by a vector. But here we have just defined the
space derivative by using the space shift 1,. Because À is here a vector of the three
dimensional spa.ce, the space shift vector ?v is to be considered as having a particular
direction. So, a privileged direction has to be granted for the space shift of the
generaliznd discrete space derivatives in the three dimensional space. In the above
demonstrations the privileged directions is the normal direction of the plane waves.
In a next work we will show that a vector derivative can always be define4 in relation
with the scalar product, and thus the vector derivative expression depends on the
metrics of the space-time manifold.
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