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Summary: Cognitive and other neural processes emsrge from the interactions be-

tween neurons. Major advances have been made in studying networks in which the interac-

tions occur instantaneously by means of graded synapses (Guckenheirner and Rowat 1997).

In other networks, the interaction between neurons involves time-delayed signals (action

potentials or spikes) that activate synapses on other neurons discontinuously in a pulse-like

manner. These interactions can also be treated as being graded if, when appropriate, the

infomration transmitted between neurons can be measured as the average number of spikes

per unit time (Freeman , 1992); i.e., the amount of information carried by individual spikes

is relatively low. We refer to both of these qæes of interactions as "graded." There is a large

armamentarir.un of matiernatical and dynamical systems tools for studying the computa-

tions that such neurons perforrn. There is also a complementary connection between these

tools and biological exper.imentation'
The subject ofthe present paper is on networks in which averaging can not be done.

The generation of spikes in these neurons is significantly af[ected by the temporal order of

spikes sent to them by other neurons. Two input spike trains, having the same average

spikes per unit time but different temporal spaclng between the spikes, produce different

outputs in targct neurons; i.e., the amount of inforrration carried by individual spikes is

relatively high. We refer to these networks as "spike-activated." By comparison to graded

networks, there is little formal or experimcntal work on the general principles underlying

these networks.
There are many nonlinear physiological processes in spike-activated networks that

need to be considered. We have begun by focusing on a single nonlinearity analysis, the

threshold tansition between spiking and nonspiking behavior, and use linear perturbation

to examine it. The findings indicate that there may be an çisternological distinction be-

tween graded networks and spike-activated networks. This is reminiscent of the distincfion

between endophysics and exophysics whose resoluÎions requires an external observer hav-

ing information about a system and its external wriverse (Rôssler, 1989). Interestingly, the

philosophical roots of our approach and the study of dynamics more generally may be

traceable to Jacob Bôhme (1575-1624), a mystic and conternporary of Descartes. Bôhme

influenced many philosophers and scientists, and may have provided Isaac Newton the

metaphorical insight into his laws of physics (Mpitsos, 1995; Yates, 1972,1979).
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l. Introduction: Two Types of Biotogical Neural Networks
Neural systems are hierarchies of interconnected neurons. A great deal of information

exists about the anatomic details of these connections (synapses), about the physiology of
single neurons, and the chemistry of the synapses. But these important facts describe how
nefworks are built, not how they behave.

Much of the commerce between neurons occurs by means of electrical signals. In
neurons, as in all living cells, an electrical potential difference of roughly -70 mV exists
across the membrane between the inside and outside of the cell. In neurons, this potential
may be endogenously oscillating or it may be induced to change by means of some external
influence, which may be the input from another neuron via a synapse. For the purposes of
this discussion, consider that there are two broad categories ofnetworks. In one, the syn-
apses are activated instantaneously by graded voltage changes between the neurons. These
changes may be chemical (chemotonic) or electrical (electrotonic); some neurons receive
both types. Much of the dlmamics of how activity emerges in networks can be analyzed (at
least numerically) using similar methods as used to analyze systems of differential equa-
tions used to model single neurons (Harris-Wanick, Coniglio, Barazangi, Guckenheimer
and Gueron, 1995; Hodgkin and Huxley, 1952; Rinzel and Ermenfrout, 1989; Rowat and
Selverston, 1997). we shall refer to these as "graded-synapse networks" or "graded net-
works." Much of what is known about the dynamics of their activity has come from study-
ing the autonomous activity of single model neurons.

In other types of networks, neuons do not interact by means of graded fluctuations in
their membrane potential, but by a rapid, regenerative process that propagates along the
length (axon) of the neuron. At each, successive region of tbe cell, the mernbrane potential
first rises toward or above zero (depolarizes) and then recovers (repolarizes) toward its
original "resting" potential until perturbed by some extrinsic or intrinsic process. Because
ofthe quickness ofthe depolarizing and repolarizing phases, the process is often referred to
as the neuron "firing" action potentials or spikes. These spikes propagate along the axon
until they reach the terminus. At this point, the spike-related voltage initiates a series of
events that release a neurotransmiter. The transmitter attaches to receptor sites on the postsyn-
aptic neuron which open or close channels controlling the discharge ofionic batteries across
the cell membrane. If the currentraises the membrane potential above a threshold, the postsyn-
aptic neuron also fires one or more spikes.

An understanding of the dymamical principles underlying the activity in such net-
works has been more problematic than in graded systems. One can numerically integrate
the model equations that describe each neuron and its synapses to observe the activity in the
network. Important phenomenological information has been obtained in this way, and in
equivalent experiments in real neurons. Because of the discontinuous, spike-activated na-
rure of the interactions it has been difficult to understand the dynamics analytically or nu-
merically in a way that provides generally applicable principles. An approach, justfied by
experimental evidence, is to bypass the effects produced by individual spikes by using
average firing rates to describe the output firing of a neuron with respect to the firing of its
input neuron(s). This approach requires that the relative timing of individual events in a
train train of spikes carries relatively little information. The dlmamics of the activity in the
network can then be described using similar mathematics and phase-space analyses as in
graded networks (Freeman, 1992). Because of this similarity we shall refer to neuronal
interactions in both ofthe above types ofnetworks as being graded.
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Our interest is in networks in which individual spikes carry a significant amount of
information such that averaging techniques can not be used. Studies into these networks
must consider the synaptic currents activated by individual spikes. We shall refer to such
networks as being "spike-activated."

The possibility that the specific temporal order in a series of spikes carries important
information in neural integration was proposed a long time ago by Lord Adrian (1928,
1946). The idea was significantly advanced in the 1960s and 1970s (Bryant and Segundo,
1976; Segundo, Moore, Stensaas and Bullock, 1963; Segundo and Perkel,1969), andhas
receivedrecent attention in studies ofbiological and artificial systems (e.g., Judd andAihara,
1993; Segundo, Stiber and Vibert, 1993). However, work in spike-activated networks has
lagged far behind the work on graded systems.

We believe it is necessary to proceed experimentally in order to obtain insight into
how to freat spike-activated networks, but the implication of the results must be applicable
to many systems, if any formal understanding is to emerge. The simplicity of the model
networks (or more appropriately, network fragments) that we employ (Edstrom and Mpit-
sos, 1998; Mpitsos and Edstrom, 1998) is forced by the multiplicity of nonlinear processes
that occur in even small biological nefworks. The findings, however, are quite similar to
those obtained from very complex biological neurons (Mpitsos, Wildering, Hermann,
Edstrom and Bulloch, 1998).

2. Model Network & Perturbation Methods
Network fragment. The network we use in these initial studies is designed to focus

on a single nonlinear process; the threshold between the ability ofa neuron to fire a spike
and failure to produce a spike. We use linear perfurbation analysis to sfudy how the menr-
brane behaves around this threshold.

The network consists of two neurons (Fig. 1), each
having a membrane model ofthe squid giant axon (Hodgkin
and Huxley, 1952). This model has voltage-activated con-
ductances for sodium and potassium ions, and a leakage
conductance fornonspecific cations. The membrane is nor-
mally at rest at its single fixed-point attractor. Cell- 1 is used
to drive an excitatory postsynaptic current (EPSC) in Cell-
2. The amplitude of the EPSC raises the membrane poten-
tial of Cell-2 slightly above the threshold at which it gener-
ates a single spike. The cells are spherical so that the neu-
ron is isopotential. The projection (axon) from Cell-l to
Cell-2 is shown to illustrate the connection between the two cells, but no neuron membrane

is included whose responses must be simulated. The activation of the synapse is simply a
delay parameter that adjusts the time in the simulations when the EPSC is activated. These
simulations consist of 40 msec sweeps. After each sweep the network is set to the same
initial conditions, such that there is no memory of effects produced from one sweep to the
nexl.

The final component of the experimental setup consists of brief, current impulses that
are used to perturb the EPSC-evoked membrane changes. Two fypes of current impulses
were used, ones that depolalize the membrane toward more positive potentials, and ones
that hyperpolanze it toward more negative potentials. The duration of the impulses was the

same as the 0.01 msec time step used in the digital integtations, but, as shown below in

HI
Figure 1: Network fragment
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Fig. 2, the membrane response to these impulses lasts far longer. We refer to these as depo-
larizing impulses (DI) and hyperpolarizing impulses (HI), and show them schematically in
Fig. I as small extemal inputs to Cell-2.

This little network is only a fragment of a network, but it reflects realistic situations
where cells are driven by convergent currents ofdifferent magnitude. Our approach hinges
on the condition that Cell-2 is not autonomously active. It is quiescent until activated by the
input currents, and once activated it retums to the resting conditions. The nefwork consists
only of feedforward connections since there is no feedback from its output. All we seek to
understand here is how the relative timing between the input events (the DI or HI and the
temporally fixed EPSC) affect the rimrng of the spike.

Perturbation ofthe spike thresh-
old nonlinearity. The perfrubation ex-
periments consist of a series of 40 msec
simularion sweeps. Three superimposed
simulation sweeps are shown in the pan-
els of Fig. 2 (15 msec segments are shown mv
to expand the time scale). Panel (B) shows
the onset of the EPSC at time zero. The
timing of other events is referenced
against the EPSC. Since the EPSC is tem-
porally fixed, all three EPSCs are coinci-
dent. Panel (A) shows the three spikes.
They are shifted from one another because
ofdifferences in the pernrrbation condi-
tions described below. Aquanfitative mea-
sure of this shift is provided by the spike
latency, which we define as the interval mv

between the onset of the EPSC at time
zero and the time when the membrane
crosses above -30 mV

Presenting the EPSC by itself pro- .os.s+Ë 
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Figure2: Example perturbations.
pairing the EPSC with DI (solid trace) or HI (dotted trace). The impulses were presented ar
about 6 msec before the EPSC. The blow-up in panel (c) shows the small changes in the
membrane potential that the impulses produced. In response to these brief, 0.01 msec im-
pulses, the membrane potential decays slowly. ln this example, the trajectories meet at time
zero, where they rise with the EPSC. Also shown in the 6 msec preceding the EpSC is the
membrane potential when no impulse is presented (horizontal dashed line).

Panel (C) contains a fourth superimposed trajectory, the membrane potential changes
produced by a DI when it was presented in the absence of the EPSC. The initial segment of
this trace coincides with the frrst DI, but extends past time zero, falling below the resting
membrane potential and rising again as part of a series of exponentially damped oscilla-
tions. Their amplitude depends on the polarization of the membrane and on the amplitude
of the perturbing impulse. These oscillations arise from of the complex impedance of the
squid axon membrane.

330



Compler impedance. The complex impedance of the membrane and these oscilla-

tions are critical in understanding the computations spike-activated networks perform. Thcre

are two conditions t}at force this requirement: (1) The neuron membrane acts as an electri-

cal circuit composed ofresistors, capacitance, and inductance. (2) Such circuits are sensi-
tive to temporally spaced pulses of input currents. As the presentation time of the impulse is

varied, the EPSC will encounter different impedances that affect how rapidly the mqn-

brane potential crosses the spike-generating threshold, or whether it crosses it at all. Imped-

ance is also important in networks in which neurons communicate by means of chemotonic

and elecûotonic synapses, but the simpli$ing factors here are that the communication oc-
curs instantaneously and in a graded fashion. These factors allow for more tractable math-

ematics and biological experimentation than in spike-activated communication.

3. InpuUOatpû (i/o\ Functions
We can begin to understand how neurons in spike-activated nEtworks respond to and

transfomr their input signals into output spikes by extending the expriments in Fig. 2 to

obtain a relation between the timing of single input current events and the time (latency) at

which the ouQut spike occurs. We refer to these as i/o functions.
Figure 3 shows the results of four experirnents, two in whic'h fte EPSC was paired

with DI (solid traces) and two in which it was paired with HI (dotæd traces). The ampli-
tudes of the two DI were the same as the corresponding two HI impulses. In the region

where the dotted curve is brokeir, the HI completely zupressed spike genesis. The EPSC is

included as a reference point to show how the timing of the impulses affect the latency of

the ryike it produced. ahs enrFlitudes of the different phanes of the i/o functions scale

linearly orpiecewise linearly with the arrplitude of the impulses, and their shape resembles
fteinpulse respmse function (RF) which is obtainedfromthe complex irnpedance (Edstrom

andMpitsos, 1998). 7-,
I

.

Figure 3' ItJfi3,tiifflrt run.tionr.
The IRF is a linear model of the membrane, whereas the i/o functions require the

generation of a highly nonlinear processe s that generates the spike. This similarity between

the IRF and i/o functions suggests that it may be possible to use linear process theory to

study spike-activated networks.
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Many-to-one mapping of the timing of the input to the timing of the output spike.
It is obvious from the complex shape of the curves that multiple impulse presentation times
produce the same output spike latency. A given latency crosses the i/o curves at multiple
places. However, the uniqueness of the i/o mapping in all cases can be shown (and should
be expected) by examining the state space of the membrane variables (Edstrom and Mpir
sos, 1998; Mpitsos and Edstrom, 1998). The intemal state variables are membrane changes
relating to the ion conductances. In spike-activated networks, these internal processes un-
derlie the spikes but their full disclosure remains hidden to other neurons. as shown for
example, by the fact that different impulse presentation times can lead to the same spike
latency. An "all knowing observer" who has information of the time at which the impulse
occurs and of the intemal state variables can state precisely when the spike will occur.
Conversely, given knowledge of the spike latency and the internal state variables, the ob-
server can state precisely the time at which the impulse was presented. Without information
of the intemal state variables, such complete i/o mappingis not possible. By analogy to the
dynamics of quadratic maps, there are multiple temporal preimages for each ouçui spike.
Although this is consistent with a detsrministic system, it is clear that under the experimen-
tal conditions used here, the spike latencies can not convey information about the exact
timing of the events in the input data stream. As all-knowing, extemal observers, we have
the EPSC with which to define absolute timefor all events within the system.

Converting spikc latencies into '6spike intervalst. As noted earlier, the transfer of
inforrnation is through the generation ofspikes that travel from one neuron to another. An
important aspect of this method of cornmunicafion is presumed to occur by means of the
ternporal spacing between the spikes. HoweveE our methods involve the generafion of only
a single spike and the measurement of its latency. The model is not setup to generate trains
of spikes in each simulation s'weep. We have taksn these steps, which initially may seem
counterproductive, to create a simplified" controlled environment in which to start the pro-
cess of resolving the complexity of spike-activated networks. Nonetheless, a type of "spike
train sequence" ortime series can be consffucted from single sweep data. There are two sets
of input/output data: (l) The set of fimes at which the perturbing current impulses are pre-
sented in each sweep, and (2) the set of spike latencies that emerge from each sweep. The
two sets are in one-to-one registry. We take the impulse presentation series to represent the
input "spike train" and the series of latencies as the output "spike train." As in the case of
the simplifications used to construct the nefwork in Fig. l, these simplifications yield only
a caricature of real spike trains, but we believe that they provide a way to obtain useful
information about spike-activated networks that would be difficutt to obtain otherwise.

Membrane filter properties and the temporal order of input currents. The shape
of the i/o functions is independent of the order in which the impulses are presented from one
simulation sweep to the next. This is because we reset the membrane to the same initial
conditions after each simulation sweep. There is no memory in the membrane of conditions
produced by previous simulations sweeps. However, a çre of order can be introduced. The
experiments are the same as before, except that the signal generator controls the placement
of the impulse so that its temporal relation to the EPSC has some order from one simulation
sweep to the next. The function we use to generate the placements is the recursive logistic
finction, f(xn+ ù = k(|-x")xz. The constant È can have a value between 0 and 4, and r is
between 0 and L Setting k: 3.7 produces a chaotic regime. The presentation time of the
current impulse within the simulation sweep was controlled by scaled values of this func-
t10n.
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Figure 4: Placement of the same input dynamics on different regions of /o functions
(A & C) induces variable output dynamics (B & D).

Figure 4 (A & C) shows the results of two experiments using HI for the perturbations.
The same sequence of logistic values (large dots) were used in both. Their presentation
times were scaled to fall over different spans of time covered by the fuller lâ fi.rnction
(small dots) which was also obtained with the HI. We include the fuller curve only as a
landmark to indicate the differences in the placements. It is clear from these curves, that the
range of output spike latencies is smaller than the range of input times, and because of the
differences in the shapes of the i/o functions in the two locations, the compression is greater
in panel C than in A.

It is not obvious inthe i/o functions of panels A and C how the membrane impedance
affects the dynamics in the long-term correlations of the logistic. These effects can be ob-
served in return maps. These are constnrcted by the map of one value, rn+1, of the data
series against the previous value, x,1, for all values. The results appear in panels B and D for
the latencies obtained in A and C, respectively. The retum map of the impulse presentation

times is the well-known inverted hump or fold of the quadratic map (not shown), but the
return map of the spike latencies in panel D has two humps. More interesting is the looped
retum map in panel B. The overlap is apparent only because the map is a two-dimensional
projection of a higher-dimensional map; i.e., there are higher order (longer range) correla-
tions in the spike-latency data than are present in the chaotic logistic. The higher order
correlations can be seen in three-dimensional maps, by plotting xn, xn+ t, and xr+2 on the
three axes shown in Fig. 5. Rotating the image uncovers neu/ structure.

Linear low-pass filters, such as the membrane impedance, can increase the dimension
of chaotic data by adding the dynamic of the filter to the dynamic of the data (Badii, et al.,
1988). Here the change is in the embedding dimension; the number of dimension for view-
ing the structure of the return map unambiguously. The membrane has not changed the
dynamics ofthe logistic since the logistic receives no feedback from the neuron. The change
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in the embedding dimension comes from the filter properties of the membrane impedance
of Cell-2.

Figure 5: Rotated, 3-D return map of spike latencies shows
complex multifolded structure.

The information Cell-2 adds to the input signal depends on three factors:

( I ) The state of the membrane. Tbe i/o functions derive from the ion channels whose
activation state defines the impedance. For example, by affecting these channels,
neuromodulators can affect the membrane impedance and, thereforg change the
information that a neuron makes public.

(2) The relative timing of the input signals. The timing of the input is important be-
cause the span of time over which an input signal falls within the range of the
r/o function (Fig. a A & C) clearly alters the hlter information that a neuron adds
to the input signal (Fig. 4 B & D). By these differences, impedance can be thought
of as storing a wide range of information that can be selectively accessed by the
timing of the input over the span of time covered by the i/o function.

(3) The information of the input signal that a neuron appears to transmit faithfully has
to do with the correlations or dynamics in the signal, not absolute nmes.

Taken together, these factors suggest that the flow ofinformation in spike-activated
networks contains information relating directly to neuronal impedance. The neuron broad-
casts the details of its impedance not in Ohms, of course, but as bits of information in trains
of spikes that we can see geometrically in retum maps and compute quantitatively using
information theory. One might say that the neuron uses its input signal to add its own "fwo
bits" to the public discussion.

Difliculties in extending the experiments beyond network fragments. It is easy to
generate /o functions. After dealing with them for a while, it is also easy to see what they
mean. For example, the change of shape of the i/o function with neuromodulation, noted
above in (1) is easy to understand because of the simplicity of the experiments of pairing a
current impulse with a spike-evoking EPSC, and measuring the spike latency. We are
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encouraged that the /o functions of the simple model neurons used here may have broader

applicability since they resemble i/o functions obtained from complex biological neurons
(Mpitsos, et al., 1998).

Problems arise in extending the approach to more realistic network activity. For ex-

ample, we refer to the neuron in our simple feed-forward network as having filter proper-

ties. It does, but they are not the complete filter properties one would expect from a network

in which neurons receive feedback of their effect on other neurons. However, within each

simulation sweep, the diflerent membrane effects produced by the impulses and the EPSC

evoke important features of the membrane filter.
The "relative timing" between input events, noted above in (2), is the major culprit

behind the problem of implementing the notion of the i/o functions in networks with feed-

back. In our network fragment, the EPSC is the simplifring time mark. We can think of

relative timing in a quantitative way, perhaps mathematically, because all else is measured

against it. But in a free-running network, events that organize the timi4g within the network

do not necessarily exist. This poses problems in unrlerstanding the principles of how even

two interconnected neurons work in spike-activated networks. Therefore, our present chal-

lenge is to implerrent the ideas behind the /o functions within a ûlore realistic model in-

volving feedback frorn temporally unpredictable events.

3. D*scussion
We have altwrpted to show how output spike trains that a neuron generates can con-

vey sigrrificant but lirnited information about the tsrûpoml strucûre of input signals. Al-

thongh the i/otlrrrsformation is intemally completely deterministic, inthe abssnce of infor-

mation about the internal conductance states the spike latencies appeâr as degeneÊte or at

least incomplete representations of the iryut signal. Consistcnt with rrany other studies,

begirming with the seminal work by Segrmdo and coworkers (Segundo, et a1., 1963), small

input currents can be important to normal function, and in many cases they may be the

principle vehicle of informæion that the system is trying to process. It is clear that a signifi-
cant feature of the information tlnt is processed has to do with the dynamics of the inputs.

Because of the simplifications introduced by the temporally fixed EPSC, it also appears

that the specific timing of any evant is lost. Hory dris ryplies to more realistic networks than

we have used here is the subject of our present work. Overall, the findings indicate that the

membrane is quiæ sensitive to dynamical structurg ûre long-term correlations between

input events. If this structure exists, it will be transmftted. This agrees with the notion that

neurons are analyzers of temporal structure or serial order in spike trains (Segundo and

Perkel, 1969). It is interesting that neurons may use (so to speak) the structure of the input

dyna:nics as a carrier of information related to the low-pass filter properties of their mem-

brane impedance.

3.1 Dichotomous Approaches and Concepts: Autonomous vs. l/o Functions

We also raised a number of questions or problems relating to the internal-extemal

dichotomy. This dichotomy extends to the way one conceives of neurointegration and the

language one uses to describe what neurointegration is. This dichotomy also constrains the

types of experiments one performs in search of answers to ultimate questions. In the follow-

ing sr$seCtions, we discuss three issues: mathematics, the observer(s), and the emergence

of activity through interactions between intemal and external sources in which we give

special reference to Jacob Bôhme.
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Mathematics. In studies of neuronintegratton, the focus is on the mathematics of
differential equations and the dynamics of autonomous systems. lVhen relating neuronal
dynamics to single-cell conductances, the attention has been mainly on single unconnected
cells or on networks of continuously coupled neurons which share many of the same ana-
lytical features of analyses used on single cells. In these cases the neuron is a generator of
information. The dynamics are wholly within the systems itself and the evolution of the
system is specified by its initial conditions. The description involves inspecting the attractor
associated with those conditions and using phase spaces constructed strictly from the pri-
vate, internal parameters. Similar approaches have been applied in networks in which spike
firing can be averaged.

In spike-activated systems there is not much of a formal framework, nor even of con-
ceptual constructs, with which to begin to establish experimental hypotheses that might
leadto uniffing constructs. Mathematics will be importan! butwhereas $owth in continu-
ous systems already has a long history of development, growth in the understanding of
spike-activated networks lags far behind- Moreover, the implications of the mathematics
may be different. The two approaches are cornplementary but where one deals with the
mathematics of internal conductances, the other must deal with the biology of how neurons
transform the language of the external world. The first has to do with activity, whereas the
second has to do with communicatioq flexible interpretation and transformation.

In our case, the evolution of the neuron or the nefwork as a whole is not specified by
the initial conditions of the neuron nor by the strengdË of its synaptic connections to extrin-
sic influences. The feæures and contingencies of our system are as follows:

(1) The evolufion is contingent on the dyramics of the driving function. rryhateverit
is, it is not a structural property ofthe neuron, its aflerent synapses or any part of
the local fragment of the network we look at.

(2) ln fact the one structural feature of our neuron is its /o functions. For a given
intemal state, these are always the same, regardless of the driving function

(3) The stmcture of the input signal is encoded by the difference between the time of
the impulse and the time of the EPSC. Even here there are contingent aspects of
the input that are not fixed locally, such as the temporal scope, the width and offset
of the projection on the /o function (as in Fig. 4). These are determined by the
correlation of the firing in the two input sources for the impulse and the EpSC,
and by the afferent anatomy, such as conduction distances and the relative con-
duction velocities.

(4) The output has no fixed or single interpretation. It can be read in different wavs bv
different observers. An observer can:

a. ignore the structure and treat it as a dumb signal; e.g., as firing rate, or as a
semaphore ("Heyl Something just happened here.").

b. read the filter function if the input structure is also known to the observer.

c. recover the input structure, if the filter function is also known.

d treat it as a new source of information without caring about the input function
or the neuron impedance.



The hallmark of an adaptive system is its ability to cope with or adapt to as many

snvironmental conditions as possible; i.e., on its ability to be multifunctional,to ad lib,such

that a response that might seem "error-prone" in one context becomes adaptive in another

(Mpitsos, 1989; Mpitsos, 1998; Mpitsos and Cohan, 1986a; Mpitsos and Cohan, 1986b;

Mpitsos and Soinila, 1992; Soinila and Mpitsos, l99l). By being transformers of informa-

tion, spike-activated systems seem to be highly attuned to such flexibility.

Who is the erternal observer? As noted previously, the definition of spike latency,

the resolufion of the apparent degeneracy in the i/o functions, and the definition of informa-

tion requires an external observer. Individual neurons are internal to the network. They can

not make such definitions based only on the afferent spike trains. External observers, the

experimenters or, more importantly, other neurons, can make such cognitive dcfinitions, or

can devise networks that extract information from spike trains and assign functional mean-

ing to them.
The important question is whether evolution has devised neural analogs of extemal

observers. This may be the crucial step where "network consciousness" first rears its ugly

head.
Jacob Bôhme's hammer and bell & metaphysical equivalents of outside and

inside. Dalenoort and de Vries (1994, 20, p. I I l) assert "that all properties emerge from
interactions." The aim of the work reported here has been to begin the study of what is it

that neurons do when they interact; how they respond to and interpret afferent signals through

the impedance filter. Neurons are "fair arbiters" because they transmit the dynamics of the

extrinsic arguments they receive along with their own internal conductance states. It aP

pears that the inherent separation between opposites, the separation between internal and

extemal solyces of information, renders spike-activated systems necessarily flexible. Aneu-

ron will express its membrane-stored information differently depending on how the input

signals address it (Fig. 4).
This flexible interpretive interaction befween opposites is what Jacob Bôhme saw so

clearly. He was neither a matlematician nor an academic philosopher, but it may well be

that rhe development of modem philosophical thought on dynamics can be traced to him,

certainly on the inherent dialect in dynamics. He viewed all material and spiritual existance,

including ultimate Being, as the manifestation of an unstable dialectic between polar oppo-

siæs in which the system and its world continually redefine themselves. Bôhme deeply

understood this movable tension between endo- and exo-systems and expressed it meta-

phoncally in theosophic terms that were probably more understandable in his culture than

in ours.
Hidden in the density of Bôhme's writing, one finds what might be his only humor-

ous, though meaningful comment: Understanding occurs when one person has the hammer

to ring another person's bell. Incorûemporary language. understanding between two people

occurs when they both already have similar internal (dynamical) representations of knowl-

edge. We might think of these representations as attractors (Cohen and Grossberg, 1983;

Frèeman and Skarda, 1990; Mpitsos, Burton, creech and Soinila, 1988a; Mpitsos and

Cohan, 1986a; Mpitsos and Cohan, 1986b; Mpitsos, Creech, Cohan and Mendelson, 1988b;

Skarda and Freeman, 1987).
Bôhme's comment has meaning at different levels in the dialectic between intemal

and external worlds. The hammer (external world) and the bell (internal world) have differ-

ent intrinsic characteristics. These internal and external representations can never be the
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same over time. This is also because the result of the interaction has yet another character-
istic, sound, the cognitive reply to the source that sent the hammer. Sound introduces quali-
ties that are different from hammer and bell. With each interaction, sound emerges as a new
"hammer" to strike the other person's bell, and so forth as the interaction continues. The
transfer of information within this universe is incomplete, unless an all-knowing observer
provides the missing elements. Neither person has complete knowledge of the other.

In our open-loop model, the one skuctural feature or "bell" is the i/o function. The
"hammer" is the extrinsic input signal provided by the impulses. How the bell responds
depends on how and where the hammer hits it (Fig. 4). As the membrane changes through
leaming or neuromodulation, the network gains new dynamics and functional fluidity.

Bôhme came from an era foreign to us, but as we strive to understand adaptive sys-
tems we begin to understand a little of what he might have experienced. Bôhme's vision
implicitly included multiple, interdependent layers of dialectic interactions between pri-
mordial substances and all creation. This universe is always under perturùation, and the
dialectic dynamic is unlikely to resolve into a stable synthesis.

Bôhme's impact has been broadly discussed. It may have been Newton's genius to
transform Bôhme's dense, seminal cogitations into useful mathematical terms and concepts
(Yates, 1972, 1979), our own "byte-size" summary of his ideas isfor every action there is
a re1ction, Newton's third law, and the embodiment of dialectic interaction (Mpitsos, 1995).
william Law (1686-1761) spoke with more than a linle irony when he said, "when Sir
Isaac brought forth his laws, he plowed with Bôhme'heiffer" (see the URL in Mpitsos
( lee5)).

Four hundred years later, we, too, plow with Bôhme's heifer. The self-organization of
neural activity has been viewed as a dialectic between neurons and between the animal and
its environment to grasp how error-prone behavior might prove useful in allowing a given
network to be adaptively multifunctional md how the vast cornplexity of neuromodulæion
take part in the process (Mpitsos, 1989, 1998, Mpitsos and Cohan, l986ab; Mpitsos and
Soinila 1993; Soinila and Mpitsos, 1992).

Physics was not Bôhme's goal, nor perhaps Newton's, and, ultimately, the under-
standing of adaptive behavior of complex systems is probablv not ours. One wonders whether
Bôhme's striving was also an attempt to define himself and to understand his place in the
universe. At least in Western minds, there is always the quest for an ultimate observer who
can answer our quesfions. The dichotomy between inside and outside seems inescapable.

'Is my team plowing,
That I used to drive

And hear the harness jingle
When I was man alive'?

Ay, the horses frample,
The hamess jingles now;

No change though you lie under
The land you used to plow.

'Is football playing
Along the river shore,

With lads to chase the leather,
Now I stand up no more?'

Ay, the ball is flying,
The lads play heart and soul;

The goal stands up, the keeper
Stands up to keep the goal.

Housman, Is My Team Plowing?)(4 .E .
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