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ABSTRACT

V/e begin with a brief review of the basic notions of classical computability theory and
the Turing machine. The concept of decidability and computability, as well as the
Church-Turing thesis are also introduced. The recently formalized foundations of
quantum computability theory are surveyed next. Included are such topics as the
universal quantum computer; the use of quantum parallelism in computation; and the
Church-Turing principle. We highlight some avenues of research for new computational
paradigms and suggest that undedying the new advances in both the theory and practical
aspects (actual devices), is a new conceptual basis for interpreting the interactions that
produce complex and partially understood processes.
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1. INTRODUCTION

All higher animals seem to have internalized certain models of computation that enable

them to distinguish between the one andthe many (Melzak 1976). Like tool making,

counting skills exhibit a graceful degradation from the higher to the lower animals. As

civilization evolved, more sophisticated models of arithmetical operations were

developed to meet contemporary and, sometimes, future needs. From Archimedes' "The

Sand Reckoner" to the Arabic utilization of zero, elementary methods to aid computation

were adapted by various civilizations as they recognized the superiority of methods

developed by others. Gradually, it was realized that mechanical means could be used to

perform arithmetic operations. Both Pascal and Leibniz dreamed of artificial means to

perform the drudgery of computation. They even considered artificial means of thought.

By the nineteenth century, further innovations in arithmetic seemed unlikely and the

search for improved methodology led instead to a search for improved mechanical means

to accomplish computation. The British navy funded Babbage's research concerning the

construction of a mechanical gear based computer which he termed the "Analytical

Engine". Although it was never built it was realizæd that this machine could act on

symbols other than numbers. This led to some of the fust notions concerning machine

programming such as those suggested by Lady Lovelace.

The late ninetieth century saw logic reduced to simple arithmetic by Boole and others.

Early in the twentieth century, Russell and Whitehead wrot€ a book entitled Principia

Mathemoticawhich purported to derive matheinatics from logic without contradiction.

David Hilbert then proposed a challenge to his fellow mathematicians to prove by the

methodology of Russell that mathematics was both consistent (contradiction-free) and

complete (every true statement could be derived within the conceptual framework set

within Principia). This would reduce mathematics to mechanical theorem proving which

could then theoretically be done on a machine. This program was demolished by Gôdel

in the early thirties when he showed that consistency is not compatible with

completeness. Alan Turing, using the insight gained from Gôdel, quickly managed to

prove a similar result applicable to computing machines. As part of the process of doing

this, he defined conceptually what is meant for a machine to be a computer, i.e. he

defined those operations required for a machine to do elementary arithmetic.

Furthermore, his machine is universal in the sense that anything normally thought of as

computing could be done by his machine. Shortly after this work was done, the first

mechanical universal computers were built. After World War II, the first electronic

computers were built and the applications of this new tool to a wide variety of problems

quickly grew. In recent years, theoretical computer science has been concerned with two

main questions based on Turing's model of computers: can one develop rules that capture

the essence of intelligence (AI); and what, if any, are the natural limitations imposed

upon computation by a Truing machine model? In this paper, we ignore the first of these

questions and concentrate on the second. The second question has led to the study ofthe

computational complexity of various problems, as well as that of certain natural processes

in the external world.
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A renewed interest in the foundations of quantum mechanics has recently been exhibited
within the physics community dealing with such fundamental issues as quantum
measurement theory, wave-particle duality, nonseparability, decoherence, and associated
geometric interpretations. Concurrently, the computer science community has directed
its efforts towards a more thorough understanding of such basic concepts as
computational complexity, parallel/distributed processing, reversible computation, and
component miniaturization. A new cross-disciplinary science is emerging based upon the
growing recognition of the many common aspects that physics, certain biological
systems, and theoretical computation share. Revolutionary advances in micro- and nano-
technologies, as well the highly competitive and demanding environment of the
information age, is driving a rapid evolution of the associated technologies to new
unconventional approaches for collecting, storing, processing, and transferring
infomration. Quantum mechanical superposition is just one example of a host of
families of types of superposition that Nature provides to us.

Biology, even more than physics, provides a rich source of potential interactions that
may also serve as new models of computational processes. Thus, we believe that the
search for new ways to combine data based on new types ofsuperposition (generalized
superposition or homomorphic) will likely lead to a deeper understanding of complex
systems. ultimately, we believe that these complex systems are both amenable to
computation and serve as a source forpotentially new models of computation more
general than the "universal computation model" proposed by Turing. Alternatively,
they may help provide an understanding of hierarchies of computational models similar
to Gôdel's discussion of how adding additional axioms to a system results in a "speedup"
in theorem proving.

We begin with a brief review of the basic notions of classical computability theory and
the Turing machine. The concept of decidability and computability, as well as the
church-Turing thesis are also introduced. The recently formalized foundations of
quantum computation theory are surveyed next. Included are such topics as the universal
quantum computer; the use of quantum parallelism in computation; and the church-
Turing principle (a physical extension of the church-Turing thesis). The massive
parallelism that can be obtained from quantum me,r:hanical superposition, as well as the
associated interference effects are currently being explored as novel approaches to solve
difficult computational problems. Finally, we speculate on some avenues of research for
new computational paradigms and suggest that a new understanding ofthe interactions
that produce complex physical process will likely result from the quest for these new
paradigms.
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2. MODELS OF COMPUTAION

2.0 Introduction

The basic notions ofclassical computability theory (these discussions are based on

Hopcroft (lg7g) and Sudkampf (1988)) are of fundamental importance to our discussion.

Since these ideas may be unfamiliar to readers whose focus is not in the computational

sciences, we provide an overview ofthe basics that are found in the standard texts.

Classical computability theory is structured around the formal notion of a classical Turing

machine (TM) in terms of efective pracesses,i.e. those processes which can be

performed in a determinate and precisely specified manner using steps which can only be

èxecuted by finite mechanical means. Thus, in order that a process be effective, it must

possess the following ProPedies:

o mechqnistlc- it consists of a finite sequence of instructions each of which can be

carried out without insight, ingenuity or guesswork

t deterministic- ,*,hen presented with an input string, it always produces the same result

Note, that in general, it is not sufficient to have a pseudo-algorithm as a solution to a

decision (yes/no) problem; one must be able to transform the decision problem from its

natural domain into an equivalent problem that can be decided by a TM. This

construction of a representation of the problem is not trivial and is often ignored in

discussions about computation. However, in physical applications it is the important

problem while the TNtaspect, i.e. computational model, is considered trivial.

21 Turing Machines

A TM can be pictured as a box with a tape running through it. The tape consists of a

sequential coliection of squares which may extend infinitely in either direction. The box

is capable of being in any one of the intemal states contained in a finite set Q,v'there qs e

Q is atways the initial intemal state. It is also able to scan or print on the tape any symbol

in a finite set S which contains as an element a distinguished symbol "b". The machine is

started by being given a tape, which may have some symbols printed on it (one to a

square), ânA Uy Ueing set to scan some tape square while in some initial intemal state qs .

The action of the machine is determined by a partial transition function @: Q x S -+ Q x

s x {L,R}, where L(R) means shift the tape one square to the left (right). Thus, at any

instant, the box is in an intemal state qi < Q *td is scanning a tape square that bears a

single symbol s; e S. The machine may continue working indefrnitely oI may eventually

stof when the intemal state and symbol scanned form a pair not in the domain of @.

Note the transition function can be considered to be equivalent to an instruction set of

quintuples of the form 4is.iÇl*s,,6,ôe {L,R}, with the meaning: "if the machine is in

internal state qiand scanning symbol sj , then (1) change to intemal state qk; (2) replace

s; with r. ; *à (3) shift one tape squâre in direction ô." Because of this equivalence'
'/transitiàn function" and "instruction set" are used interchangeably. A TM operates on
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an infinite tape, though only a finite number oftape squares are occupied at any instant
by symbols other than "b". It is therefore possible to provide an instantaneous
description of the TM using a string consisting of a finite number of elements of s
(possibly with repetitions) and a single element of Q which is not the rightmost member
of the string. This string represents the symbols on the tape, the intemai state, and the
tape symbol being scanned. If a, and c[,*, are instantaneous descriptions, a basic move,
denoted cr.1 -) cr,;a1 , means that cr,i*r is obtained from cr, by applicatLn of @ to the
associated intemal state-scanned symbol pair in u,. A comfutation of a TM is a finite
sequence of basic moves cri -+ c[,i+r , i = 0,1,2,...,n-1, where cr, is terminal, i.e. there is
no B where cr; + Ê.

Let M be a TM rvith state and symbol sets e and s respectively. If w is a finite string
comprised of symbols (possibly with repetitions) from s, a word, then M(w) exists if
there is a computation with ao = Qow, s0 e e.If e is the set of all words on s and ).(M)
: {w € a: Mfu) exists\, then Mis said to enumerate }"(M). This set of words is also
referred to as the language accepted by M. Note that for arry w e e,ttrere is no way of
telling a priori, whether M(w) exists. If c) is the set of words on any finite set of
symbols, then a subset E of Cl is recursively enumerable (r.e.) when there exists some TM
that enumerates (or accepts the language) E. Thus, every TM defines a r.e. set. A r.e. set
Eisrecursive if i tscomplement,E'ineisr.e., sothatifMandM,enumerate EandE'.
respectively, then either M(w) or M'(w) exists for each w e lz rhus, it can be decided in
a finite length of time whether or not w e E.

A decision problem is a general question which contains a description ofall parameters
and which has either a "yes" or "no" as an answer. Many generJ problems can be stated
withour loss of solution difficulty as decision problems. The quesiion of whether there
exists a TM for solving such a problem is equivalent to determining whether an
associated language encoding instances of the problem using a finite set of symbols is
"ecursive. Ifthe language is recursive, then the problem is sàid to be Turing decidable.
otherwise, t:t is undecidable and there is no TM which determines the answer.

The TM may also be viewed as a computer of functions. Let e be the set of words on a
finite symbol set and c)" be a n-fold cartesian product. A partial function/ o,' --> c) is
Turing computable if M is a TM such that for all x,,xr,..xn , y eçt, when M is started with
tape configuration x'bxrb...bx., it terminates with tape content / whenl(x,,xr,. ..,x) = y
and does not terminate if f(xr,xr,...,x) is undefrned.

Decision problems or functions which are evaluated using effective processes are said to
be effectively decidable or ffictively computable. A TN[is an attempt to formalize what
is meant by an effective process. while there is general agreement that an effective
process captures what is meant by computation, it cannot be proven that there exists a TM
for every effective process. Thus one has the formalization ofthis conespondence, the
Cùurch-Turing thesis (CT): A problem (unction) is ffictively decidabie (computable)
if and only if it is Turing decidable (computable). Adopting tire cr is tantamount to
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assuming a formal theory of computation, because it implies the existence of a well
defined boundary between that which is decidable (computable) and that which is not.
The statement'the problem P is not Turing decidable" and "the function $ is not Turing
computable" assert within the context of the CT that there are no TM's which solve P or
compùe q.

The model for probabilistic computation is obtained from the TM by allowing machines
access to the simplest type of randornness. Aprobabilistic TM (PTM) is a TM with
distinguished internal states called "cointossing states". For each such state there are two
possible next states. PTM computations are deterministic except for'ocoin tossing"
states where an unbiased coin is "tossed" by the machine to decide the next state. An

input word is accepted by a PTM only if it produces a final output word with a
probability greater than 0.5. The class of partial functions computed by PTM's is the
same as that computed by TM's. Nondetemrinistic TM's arise when the codomains of
their transition functions are finite subsets of those for the associated deterrninistic
machines. This implies, in general, that tJrere are a finite number of fixed transition
choices for any domain elemsnt. Although the addition of nondeterminism to TMs does

not change their overall language acceptance capabilities, these type of machines remain
usefirl for the study of computational complexity.

One of Turing's most interesting findings is that there exists a universal TM (UTM,

which is a TM that is capable of simulating any other TM. It can be shown that the TM's
can be enumerated by an eflective process. lf M1, M2,... are all the TM's, then given an

n, M2 canbe effectively found. In addition, if an initial tape configuration w is provided,

then M2(w) can be computed if it exists. Thus, the procedure of going from a put (n,w)

to Mn(w) is an effective process and the TM which implements this process is the UTM
denoted by U. (Observe that as a result of this, we may make the following equivalent
restatement of CT afunction is efectively computable if and only if it can be computed
by a UTM.) The UTM is an important abstraction of the general purpose computer that
has proven useful. Given any digital computer with any input, there is always an n and w

such that U(n,w) produces the same output. Conversely, if a computational problem

cannot be solved by {1, then it cannot be solved by any digital computer.

2 2 Tbe Mechine/Language Hierarchy

As noted above, TM's can be viewed as Langrrage açceptors. There is a hierarchical
classification of TM's that is naturally induced by the "grammatical" properties of the
families of accepted languages. We do not address grammar theory, but it is useful to

define the hierarchy and summarize the properties of each machine class. Using class

name abbreviations, the machine hierarchy is given by the following chain:
FA c. PDA c. LBA c T Q.l)
where Zis the class of TM's. LBAis the class of linear bounded automata, PDA istJl.e
class of pushdown automata, and FA is the class of finite automata. Each class represents

a special kind of TM.
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The simplest TM's are the FA's which function as word recognition devices. When
given a word, the device scans each symbol sequentially from left to right. This action,
along with the associated state changes is represented by a transition function @.o : e x S
+ p, where Q and Shave the usual meanings. The word is accepted by fZ when its state
is an element of a distinguished subset of p. The family of languages accepted by class
FZ is denoted by t r.

A PDA scans input words from left to right and has a possibly infinite auxiliary tape
called a pushdown store. The stored information must be used in the reverse order to that
in which it is inserted (last in first out). Upon scanning a symbol s while in some intemal
state withp the topmost letter in the store, the PDA emsesp and inserts a (possibly
empty) word ptpr...p* into the store; goes to another intemal state; and either continues to
scan r or goes to the next tape symbol. The action of the PDA is given by the transition
function @ oro : Q x (S t, { a} ) x P -> Q x { where p and S have the usual meanings; p is
a finite set of pushdown symbols withpo the store bottom symbol; lI is the set of all
words on P including the empty word; and ol is a distinguished symbol which allows the
PDA to act under the influence of the current internal state and stack top without
reference to the input tape. An input word is accepted by a PDA in the same manner as
for -F7's. The family of languages accepted by the class PDA is denoted by l,r.

A LBA can move in both directions when scanning an input word and may replace
scanned symbols by another symbol. However, while doing this it may only use as much
tape as is occupied by the input word. This action is described by the tansition function
@rro: Q x S -+ Q x S x{L,R}, where all sets have the usual meanings. A word is accepted
by LBA in the same manner as previous machines. The family of languages accepted by
the class LBA is denoted by L,.

It can be shown that there is a language hierarchy associated with (2.1) given by:
L r c . L r c l r c L o  Q 2 )
where Lo is the family of languages accepted by class r. This inclusion chain clearly
delineates the power of each machine class in terms of its language acceptance capability.
Thus, for example, Îs which are not LBA's are more powerful in this sense than LBA's.
vy'e note that the utilization ofnondeterminism does not change the overall language
acceptance power of class r and FZ machines. However, it does enhance that for the
PDA class. The effect of nondeterminism upon the power of the LBA class machines is
unknown.

2.3Logic Gates and Universality

Although mathematicians prefer to think abstractly about computation as ascribed above,
it is sometimes more insightful to think of computation in terms of more physically
tangible concepts such as logic gates. Thus, in our discussion of the TM, we assumed
certain primitive operations that were fundamental to its operations are logical primitives
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that could be assumed (move left or right, read, write, store, erase). While it doesn't, in
principle, matter how we implement our calculation on a machine, it is helpful to
consider a specific model for building a computing machine. Digital computers are
useful for this purpose, even though we could use a number of other physical models,

such as hard-sphere gasses, nonlinear dynamic systems, billiard balls, an abacus (moving

stones around), etc, (Lloyd 1994). Thus, we can build up to very complicated
computations using simple electronic circuits which are designed to do simple binary

addition for binary inputs I and B. In fact, Claude Shannon, of information theory fame,

was the first to realize that binary arithmetic could be implemented electronically. His

master's degree thesis was devoted to this subject and has proven to be very influential.

As an example, let us add two binary digits together with a sum S and a carry C as shown

in Table 2.1 . Logical relations AND' XOR, OR are subsets of binary addition (Table

2.1). The carry is AND, the sum is XOR, while the OR, is a combination of sum and
carry. Because of this equivalence, one can implement a method for doing arithmetic in

terms of electronic circuits. Such implementations are called Boolean logic gates or

simple logic gates.

A B S C

TABLE 2.7
(BINARY ADDITION)

A  B  A a n d B

TABLE 2.2
(AND)

A  B  A x o r B
0 

--*ô*-ï

0 l l
l 0 l
1 1 0

TABLE 2.3
(xoR)

0 0 0 0
0 1 1 0
1 0 1 0
l l 0 l

0 0 0
0 1 0
1 0 0
1 1 1
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0 0 0
0 l l
l 0 l
l l l

A  B  A o r B

TABLE 2.4
(oR)

One additional logic gate that is commonly used in discussions of gates is the not-and or
NAND gate which is implemented as complement (negation) of the AND gate. Logical
operations that can be used to construct all other logical operations are termed universal.
The NAND gate is an example of a gate that is universal.

Ekert and Jozsa (1996) have provided the following useftil summary of this classical
computation: "For any input of size n we set up the input in n bits, followed by a string of
bits in a standard state 0, providing extra working space. Each step ofthe computation
consists of selecting two bits-bits (i1ojp for the k+h step-and applying a speci/ied
Boolean gate B to these bits, which are subsequently replaced in the string. Here a
Boolean gate Br is a Boolean operation vtith two input bits and two output bits. The gates
Bo are chosenfrom some finite Jïxed set oJ gates. It can be shown that various small
Jinite sets of gates sffice to perform qny computation in this way. Thus for any input size
n we have a specified sequence ofBoolean gate operations (the program), and their
concatenated sequential application may be viewed as a network of gates Gn The full
computation C conesponds to afamily of networlcs C={G,G,,...}, parqmeterized by the
input size. " (Note there is an additional regularity condition, (Papadimitriou 1994),
needed to avoid uncomputable functions in the structure of G,.) Thus, to transfer any
computation into a physics based computational model, it suffices to do two things:
transform the digits into the equivalent physical string, billiard balls tbr example, and
then find a physical implementation of the Boolean gates or logic tables (proper
geometrical combinations of comers of billiard tables for example). Thus, if nature
provided us with a new universal gate, then we would have a new potentially richer
means of accomplishing a computation. An example of this is the universal quantum
mechanical gates and their physical implementations which have recently been discussed
in the literature, i.e. Barenco (1995) and Milburn (1989).

3. Quantum Theory and Quantum Computation

3.0 Church-Turing Principle

A physical system is perfectly simulated by a computing machine if there is an
instruction set which renders the machine computationally equivalent to the physical
system, e.g. equivalently prepared inputs yield outputs that are statistically
indistinguishable. A machine is said to operate by Jinite means if, and only if, during any
step in its motion only a finite subsystem of it is involved and the motion depends only
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on the state of the finite subsystem and is finitely specifiable in the mathematical sense.
Deutsch (1985) has reinteqpreted Turing computable functions to be those which can be
computed by a real physical systems. Thus, he has taken the mechanistic aspect of CT to
mean emulated by a real physical system, i.e. one that obeys the laws of physics. While
classical computers clearly operate according to the laws of physics, they can certainly
simulate systems that "don't obey the laws of physics". Thus, one must be careful with
the langt'age being used. What is meant is the logic gates that comprise the physical
components must be based on the laws of physics and specifically those of quantum
mechanics. (If the gates were biological, such as DNA for example, a non-reductionist
would claim the gates were not based on physics, since it has never been proved that
biology reduces to physics.) With these assumptions, one might conclude that it is
useful when searching for new computational paradigms to view computer science as a
branch of physics.

Deutsch combined these ideas about computer science with the concept of "perfect
simulation" and "finite means", and replaced the CT with one based on physics (denoted
DCT): everyfinitely realizable physical system cqn be perfectly simulated by a universal
model computing mochine operattng by finite means. While both the universal Turing
machine and the quantum computsr, which we discuss shortly, operate by frnite means,
Deutsch argued that DCT is not satisfied by the universal Turing machine in classical
physics. He argued that a universal Turing machine cânnot perfectly simulate any
classical dynamic system because there are an uncountable number of continuum input
states for the latter. We believe that this argument is false, though it does not effect the
design of quantum computers and subsequent discussions about them. The reason for
this comes from communication and information theory. The sampling theorem shows
that any physical system can be simulated digitally provided it has finite bandwidth.
Since only mathematical fictions have infinite bandwidth, one can always simulate
almost all systems with the correct application of the sampling theorem. Thus, we prefer
to view DCT as a useful fiction to guide the search for new models of computation
principles, e.g. a usefirl principle of ontology, rather as a principle of nature, e.g. a
principle of epistemology as Deutsch does.

It is useful to note that Deutsch is not the only one to argue for a physical interpretation
of CT. Another physicist, Wolfrarn (1985), has observed
"There is a close correspondence between physical processes and computations. On the
one hand, theoretical models describe physical processes by computations that transform
initiql data according to algorithms representing physical lqws. And on the other hand,
conputers themselves are physical systems, obeying pltysical laws."
One might argue that he has formulated a more general form of a physical CT:
" . . .One expects in fact that universal computers are as powerful in their computational
capabilities as any plrysically realizable system cqn be, so that they can simalate any
physical system. This is the case if in all physical systems there is ofinite density of
information, which can be transmitted at only at afinite rate in afinite-dimensional
space. No plrysically implementable procedure could then short cut a computationally
irreducible process. "
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We term this the Wolfram CT (WCT). It is amusing to note that Wolfram anticipates
some of the subsequent claims of speedup of quantum computing by noting that the
parallelism of the path integral approach to quantum mechanical systems will allow
intractable problems to be solved in polynomial time.

3.1 Quantum Weirdness and the Principle of Superposition

The mathematical formalism for quantum mechanics was originally developed by von
Neumann. Here we provide a non-rigorous summary of the axioms of this formal system
which are accepted as the basis of quantum theory: AXIOM 1. Every physical system
can be represented by a Hilbert space X and the state ofthe system described by a vector

lY) of X. AXIOM 2. To every physical observable there corresponds a Hermitian
operator on Hilbert space. AXIOM 3. The only permitted physical results of
measurements of an observablel are elements ofthe spectrum of the operator 2 which
corresponds to ,?. AXIOM 4. If ameasurement of an observable 2 is made upon a
system in the state lY), then the probability of obtaining the measurement value a of A

is l(alV)lt,where la) isaneigenvectorof 2 correspondiugtotheeigenvalue aand
(a lV) is the scalar product of I a) and lV) . ,tXlOnn 5. There exists for every system

an Hermitian operator Ê 1th" en"tgy or Hamiltonian operator) which determines the tirne

development of lY1rl) through the time-dependent Schrôdinger equation:

4vr'l) = infilvo>l , (3.1)

provided the system is not disturbed. AXIOM 6. Immediately following a mçasurement
of the value of cr of an observable l, the system is in the eigenstate I a) , corresponding
to the eigenvalue a.

It should be noted that other axiomatizations exist which include poshrlates that address
subsystems, spin, continuous spectra, state degeneracy and commuting observables. A
consequence ofthe first axiom is the superposition principle, i.e. the states ofa physical
system obey the principle of quantum linear superposition. There is no classical
equivalent of this property. In addition, when combined with the other axioms, this
axiom provides for the on-classical quantum interference efFects. The second and third
axioms mean that a measluement must lead to a real measurement value. From the fourth
axiom, it can be seen that the result of an observation is in general unpredictable before
the observation is performed. This is true even when the state is known, unless, of
course, it is an eigenstate of the observable. Axiom 5 means that the dynamical evolution
of an undisturbed (e.g. by measurement) system is a causal, deterministic, and reversible
process. The final axiom is often referred to as the "projection postulate", since it implies
that the pre-measurement of state is "projected onto" the post-measurement state. This
discontinuous, irreversible transition cannot be explained by Schrôdinger's equation and
is aptly called the " collapse of the wavefunction" .
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The principle of superposition is the bedrock of much of classical and modern physics.

It is the heart of the quantum weirdness that is the central source of the non-classical
nature of quantum mechanics. Classical superposition in mechanics is just the realization
that combination of forces is linear, e.g. when a new particle is added to a system of
particles the system can be treated as one force acting on the particle rather than treating
the effect of each individual. Classical waves obey a similar rule for combination.
Arbitrary combinations of solutions can be combined to give another solution to the wave

equation. Uniqueness of solutions occurs when boundary conditions are imposed. Wave

superposition superficially resembles quantum mechanics. The following explanation is

clearest from Dirac (Dirac 58) and further illuminates the previous axiom set: " ...The

non-classicsl nature ofthe superpositionprocess is brought out clearly ifwe consider the

superposition of two states A and B, such that there exists an observation which, when

made on the system in state A, is certain to lead to some particular result, a say, and
when made on the system in state B is certain to lead to some dffirent result, b say'

What will be the result of the observation when made on the system in the superposed

state? The onswer is that the result will be sometimes a and sometimes b, according to a

probability low depending on the relative weights of A and B in the superposition
process. It will never be dffirertt from b<tth a and b. The intermediate character of the

state formed by superposition thus expresses itselfthrough the probabiliry of a particular

resultfor an observation being intermediate between the corresponding probabilities for
the original states, not through the result itself intermediate befween the corresponding

resultsfor the original states."

To illustrate the superposition principle in its full weirdness, consider the famous feline

murder scheme of Schrodinger. Obtain any quantum mechanical system that can be in

one oftwo states, say lexcited) or lground) and map the state ofhealth ofthe cat into

these two states as follows: place the cat, preferably white, into an opaque enclosure with

a flask filled with poison; attach a hammer 1o the side of the flask with a trigger that is set

to activate at the end ofan hour, depending on whether the quantum mechanical system is

an excited or ground state; using a radioactive atom with a halÊlife of one hour for

definiteness; wait one hour; and then seal the poison from enclosure with the cat'

According to the observer, prior to any measurement of the flask at this time, at the end

of the hour, the cat is in a state that is the combination of the two states, namely lhealth)
= crlexcited) + c,lground), where the c's are complex numbers and llc' + 

"rll= 
1 ' Thus,

the cat is in a state that is neither alive nor dead but is in a mixture of these two states.

The cat, by the act of observation, is forced into a definite state, namely dead, if the flask

is broken, or alive otherwise. (It is not entirely clear what this combination of states

really means.) Quantum two state systems, such as spin-up (labeled lf ) ) ana spin-down

(labeled l0); states for an electron, are fundamental to quantum computers. Many

examples of quantum two-state systems are known in physics and any of these can
potentially be used to implement a quantum bit or qubit. Unlike classical bits which exist

in either I t) or I O) state, qubiti can exist as superposition of both, i.e. co | 0) + cr I t) .

281



3.2 Quantum Turing Machines

There has been an explosive growth in interest in quantum computing since the early
work by Feynman and Deutsch (e.g. see the surveys by DiVincenzo (1995) and Ekert
(1996). V/e will concentrate here on Deutsch, because of his emphasis on physical
principles. Deutsch's work is important for the following reasons: (i) it provides the
underlying theory necessary to study whether computing machines capable of hamessing
quantum mechanical effects can solve problems more efficiently than classicai machines,
and (ii) it provides, via the DCT, a partial equivalence between physics and computer
science. These ideas are beginning to have a significant influence upon the physics and
çomputer science communities.

The architecture of a Deutsch quantum computer (denoted DM) abstractly resembles that
of a TM. A DM is a normalized vector in the Hilbert space h spanned by eigenvectors

l t  n ;m)=lx nn,nr , . . .n ,1-1,n1-1,nts,m,, . . . )  o f theobservables î ,k={û, : ieZn, \ ,and,

,ù=b , : i eZ \ ,whe reZ i s these to f  i n tege rs ,2T6 {0 ,1 , . . . ,M- I } ; and  n , ,m ,e {0 ,1 } .

Here lZ) encodes the intemal state of the DM, Irn-) seryes as an infinitely long tape with

input, and lx)conesponds to the tape location being currently scanned. The dynamics of

a DM are produced by a constant unitary operator Û which specifies the evolution of any

state in fi during a single computation step of duration A/ . fhus, lV1Èlrl)= ff-lV1O)),

where fr is a non-negative integer, lV(O))= \orlO:6:n) with a finite number of the

a, * 0, and llarl' = l. Here l0) = 10....,0)lu) contains the input, and the a, vanishes

wlren an infinite number of m, =linm. The matrix elements of Û are constrained to the
form:

(3.2)

where â,,.,., ensures a unit change in tape position and Â = fI6,,,,.,,, constrains memory

involvement to location x during a computational step. The operators Ût *" arbitrary

functions which are consistent with the unitarity of Û and describe the dynamical

motion. There is a DM for each permitted choice of Û* and each exists, i.e. there is a
quantum computation for a given input lZ) , if its run time expectation value is finite.

The observable âo can serve as a completion flag which can be set intemally to unity if
the associated DM exists.

The operators f}"r for the DM's that are equivalent to reversible TI\4's are given as
* +  . - .  - . ,  -U'(n' ,m' ln,m)=I6,.o,6^-, l l t f l ,  (3.3)
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where the functions v : (n,m) è rt", P : (f,m) ts) m", Qnd y :(n,m) t-+ +1. (These are

essentially composite TM transition function projection maps.) Clearly, there is a DM

that is equivalent to the UTM.

The universal quantum computer (denoted UDM) not only subsumes the properties of the

UTM, but also simulates with arbitrary precision any quantum computer by permitting

the utilization of eight distinguished instruction sets which provide the following four

unitary tansformations and their inverses for the evolution of single computational

binary basis states, i.e. lt) and lO) into linear superposition, qubits:

I  cos9 s ingl  [cos9 is ingl  [e 'e  0 l  [ t  0 l
I l : l  l : l  l ; l  ," | (3.4)

f-sinJ cosJl ' [ isinJ cosJl ' [  0 l l  L0 e'" I
Here <p is sorne irrational multiple of æ. These transformations generate under the

operation of composition a group G' that is dense in the group G of all unitary

transformations on the Hilbert space spanned by {10),11)}, i.e. G'c G and every open

subset of G contains elements of G'. Thus, desired transformations of individually

specified binary states can be produced with arbitrary precision via generator composition

using catenations of these distinguished instruction sets. Indeed, there are instruction sets

which induce analogous evolutions for finite numbers of such states.

3.4 Computation Using Quantum Parallelism (Shor's Algorithm)

While the class of functions (on Z) computable by the UDM is the same as that

computable by the UTM, the UDM employs the quantum mechanical property of state

superposition to provide massive parallel processing capabilities. In particular, the UDM

can in a single executon compute.ly'valuations of a function f. This is done via the

required unitary evolution of an initial state prepared as a superposition of N basis states

with domain values u; encoded in each eigenvector lfr) ,, i =1,2,..., N . Upon completion,

the resulting state is a superposition of N basis states with the associated image values

f(u) encodedin each lZ),. Unfortunately, the peculiarities of quantum measurement, i.e.

"collapse of the wavefunction", allow a "readout" of only one of the values/(n4. Thus,

the prôcess must be executed many times in order to provide a complete readout and the

mean time required to measure all of the valuesf(uil computed in this manner is at least

as long as that needed to compute them sequentially. However, quantum mechanical

interference effects can, in principle, be used to reinforce results ofinterest and cancel

results that are not of interest.

Shor (1994) has employed the properties of massive quantum parallelism and interference

phenomena associated with the quantum mechanical superposition of large numbers of

states to develop algorithms which will allow quantum computers to efficiently perform

prime factorizations of integers. Shor's work has provided the first real indication of the

intrinsic computational power of quantum computers. His algorithm will factor integers

on a quantum computer in polynomial time. This result has created a gteat deal of
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excitement within the computer science community, since heretofore, no polynomial time
factoring algorithm was known. Indeed, the factoring problem was believed to be so
diffrcult that encryption systems are based on it. Thus, if a quantum computer could be
built, codes that require months or years to crack using contemporary classical computers
could be broken in seconds using a quantum factoring device. More recently, Grover
(1996) has harnessed the power ofquantum parallelism and interference to provide an
algorithm to solve the data base search problem, to find a specific record in an unsorted
list, in a m€rnner that is significantly more efficient than classical approaches.

4. Towards a Generalized Theory of Computation

4.0 Gôdel's Principle

It is instructive to return to a paper written by Gôdel (1936) shortly after Turing's paper
on computability appeared. In this paper, he considered the question of what was the
length of a proof in a formal system S. He noted that those functions that were
recursively defined were not necessarily provable in a system of logic,gl , where i denotes
the system of axioms one is using, whereas going from i to i+l indicates going to a
system with additional axioms, but could be provable in a system of logic S;a7. He
observed: Thus, passing to the logic of the next higher order has the effect, not only of
making provable certain proposilions that were not provable before, but also of making it
possible 1o shorten, by an extraordinary qmounL infinitely many of the proofi atready
available . . . It can, moreover, be shown that a function computable in one of the systems
s1, or even in a system of transfnite order, is computable already in s1. Thus the notion
of 'computable' is in a certain sense 'absolute', while almost all meta-mathemqtical
notions otherwise lcnown (or example, provable, definable, and so on) quite essentially
depend upon the system adopted. We thus have an interesting dichotomy between proof
and computability; there are levels of proof depending on what system of logic one is
using but there is only one level of computation. A function is computable or it is not.
There is no middle ground. Thus we have a principle that should be ingrained in our
system of knowledge..

A reading of Gôdel suggests is that if a problem is computable, it may be worthwhile
looking for a speed-up approach to the problem if the computational time bound exhibits
significant nonlinear growth as a function of problem size n. one could attempt to
reverse engineer the time complexity of the problem via the application of the appropriate
logic gate(s) that absorb some, preferably all of the problem complexity. An example
that illustrates this point is the binary search problem which is exponentially time
bounded (is of the order 2n). Some of this problem's complexity could be offset by using
a massive quantum superposition of states so that the superposition effectively prunes the
individual search paths to produce a polynomial time bound for the problem.
There are two essential features of computability that need to be considered as
fundamental to new understanding of computation models: speed and computability.
There are problems, the so called intractable class, which have algorithmic solutions
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which have time bounds that are inherently exponential with problem size n. These seem

ripe for application of a speedup theorem. Another aspect is whcther Turing's notion of

computing is suffrciently broad to encompass all functions which are computable in the

intuitive sense of the word (effectively computable). If we accept CT, then the Turing

computability is universal and any new form of computability must reduce to it. In order

to demonstrate a more general form of computability, it would sufftce to demonstrate a

solution to the classical halting problem (to decide a priori whether a TM exists. Since

the halting problem is essentially equivalent to the Cantor's proof that the real numbers

are uncountable, this demonstration seems unlikely. (It might be interesting to consider

the question of proof of the halting problem relative to somç conceptual basis of

operation such as relative to the rational numbers, irrational numbers, or the real numbers,

for example.)

4.1 Computational Tools Drawn from Nature

At this point, we adopt the WCT rather than DCT and proceed with a discussion of how

models taken from nature may aid the search for new models of elements that might be

used to perform a computation. Vy'e choose to view the DCT as a broader inclusive

physical principle than the restrictive metaphysical interpretation of Deutsch. The

external world provides a number of mechanisms that are not really modeled in our

current conceptions of computing. The philosophical status of these has not tdy entered

into the phenomenological literature, but it.is clear that four of the five mechanisms are

clearly attributes of the extemal world. The phenomena we wish to discuss in relation to

sourçes of potential deeper understanding of computation are:

r true randomness: (computational speedup) Randomness as a phenomenon of nature

versus probability-which is an artifact of human reasoning in the absence of complete

knowledge. It provides a potential mechanism for the speedup of computations.
. superposition: (new logic gates based on physical law) Fundamental forces for

padtctes combine in a manner so that they obey a law of composition or superposition

such as occurs when multiple objects are brought together'
. occupancy: (new types of memory architecture) The statistics of how quantum

mechanical particles (fermions, bosons) behave indicates that there are potentially

multiple models of how one can store bits
r locality: (potential solution to halting problem) Would time travel effect the ability to

ômpute in a manner that allows one to get around the halting problem?

o genetic evolution: (encoding randomness to increase predictive ability) Can correct

predictions, such as the tossing of a coin, be mapped into the computation process to

aid computation?
Each of these phenomena deserve a fuller treatment than we provide here. We will

outline what we mean by these in further detail in the next sections.
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4.3 True Randomness

There are some who take probability as an attribute of the natural world and consider it a
"measure of randomness" that applies to non-repeatable events or experiments. Thus, a
probability is a measure of our state of knowledge about a set of events, rather than a
number with some "physical meaning". Physical meaning is possible only when a
frequency of occurrence of a countable set of outcomes can be determined so a measure
ofoccurrence ofthe number ofexpected events for a specific number ofevents can be
determined. Probability is the calculus of reasoning in the absence of certain knowledge
about a subject, hence it is subjective knowledge. It becomes objective only when
subjective knowledge has been reduced to certainty. Thus, probability reflects our state
ofknowledge about events or objects.

That said, randomness is a different matter. Randomness is an attribute of a partially
understood physical system that reflects unmodeled initial or boundary conditions. Thus,
the answer to the question (wolfram 1985) "How is apparent randomness produced?" is
always conditional. Randomness is always defined with respect to degree of complexity
of the procedure used to produce it. Thus, it is meaningless to discuss randomness,
without conditioning it with respect to the measure one used to characterize it.
Randomness is in some sense formally equivalent to proof (this observation
encapsulates the contents of Chaitin's body of work (chaitin (19s9))) in mathematics,
thus it is in a sense either trivial (see the article by da costa in (casti 1996)) or a
measure of the information content of the axiomatic system being used. (Long
proofs are an indication of low information content while short proofs are an indicator of
high information content, hence triviality.)

Randomness can be used to drive the behavior toward a solution when we don't know a
priori what the solution should be. It therefore serves the useful function of preventing
the biasing of our computations when we are dealing with a situation where we don't
have detailed prior knowledge about the systems phase space portrait (complex dynamics
characteristics). Following the analogy between proof and randomness, it can be argued
that computationally complex randomness can be used to help tackle computation
problems that have solutions with "high information content" with respect to that
measure. Thus, a properly designed computer experiment with a physically realistic
model of the randomness, can be used to significantly reduce the computation load
necessary to do a detailed computation or simulation.

4.4 Superposition or Composition as a Basics for Computation

The principle of linear superposition plays a major role in the analysis of wave fields.
We are accustomed to its failure when we analyze finite amplitude waves and in the high
field case, so it is not sacrosanct. If we know that the rule for combining subsystems into
the whole is nonlinear, the principle of generalized superposition allows us to look for a
rule that gives the appearance of a rule of composition that can be used to create logic
gates which are the basis for building a universal computing machine. Consider a system
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with inputs r, (n) , scalars c,and a system transform T. This system will be linear
provided the system obeys the principle of superposition

4r,@) + xr@)l= r[x' 1n)]+ 4t,@)l and scalar multiplication 4o@l= "4*@)f 
.

Linear systems arc genenlizsd by denoting the rule for combining inputs by E, and the
rule for combining outputs by @. We can then write the generalized superposition
principle for the system as (Gray 1996)

a[x, (n) 8 x,@)f =a[r, 1n;] @ 4r,@>1. (4.1)

A similar condition can be defined for scalar multiplication by a constant ci,

It[c:x@)f = ciAx@)f (4.2)

Systems that have inputs and outputs that satisff both (l) and (2) are referred to as
homomorphic systems since they can be represented as algebraically linear
(homomorphic) mappings between the input and output signal spaces. Not€ that the
formalized view of homomorphic transformations can be relevant to a number of other
physical systems, such as quantum mechanical systems. There are other likely physical
system in nature that can be used to construct logic gates.

4.5 Occupancy

The standard memory architecture of a Turing machine is simple: either a tape position is
occupied or it is isn't. This is based on the principle that two objects can't occupy the
same place at the same time. While this is an appropriate model for classical Newtonian
physics, it doesn't capture what happens in either wave physics, quantum mechanics, or
particle physics. Solitons, for example, can piNS through each other without interacting.
If a soliton wave were used as a memory device, it might be possible for multiple units of
information to be stored at the same location. Thus, it would be possible to obtain a
speedup by using higher order arithmetic in the elementary logic units of the associated
computing machine. The statistics of how quantum mechanical particles (fermions,
bosons) behave suggest that there may be multiple approaches to information storage.
Fermions obey Fermi-Dirac statistics (no two particles with the same spin can occupy the
same spin state, so one spin state can model "1" while the other models'00"), and can be
mapped into binary arithmetic systems that produces the standard Turing model of
memory. An unlimited number of bosons can occupy the same state without interacting.
Thus, if there were a means to accomplish arithmetic without requiring uniqueness of the
bits, a vast parallelism of memory may be possible which would increases computation
speed. Particle physics offers even stranger possibilities. Fractional statistics are
postulated for quarks, which lead to strange occupation characteristics that could
potentially offer very interesting models of memory.

4.6 Locality

All computations are assumed to be local in the following sense: tlrere is a connectivity
between mû step and the (m + l)'h step of a computation which could be viewed a.s
tantamount to assuming an arow of time. Moreover, the modeling of time is immutable,
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resembling a Newtonian model of absolute time. It is known that the current theory of
gravity favors a model of time that exhibits spatio-temporal characteristics (general
relativity which is geometric in nature). Another one of the curious aspects of Gôdel's
career is that he studied general relativity because of close contact with Einstein. He
arrived at the rather remarkable conclusion that in a rotating universe, time travel was
possible provided closed causal loops were formed between the past and the future.
Essentially, these are four-dimensional touri in the structure of space-time. Thus, a non-
paradoxical means of the future communicating with the past is possible. If this type of
geometry could be mapped into a model of computing it may offer a way of bypassing
the paradox associated with the halting problem. In principle, a more general theory of
computing would then be possible. continuous geometry offers a possible way (Melzak
1976) around the obstacle that the halting problem places on computing. Geometrical
considerations seem to be the most likely source of truly new theories of computing
rather than just speedup potential.

4.7 Genetic Evolution

Some aspects of computation resemble trying to predict the outcome of a random event
rather than a deterministic computation. An example would be trying to match a series of
coin tosses or some other simple binary event such as survival of an encounter with a
predator. Evolution seems to deal with this computation problem by the usage of the
genetic code to encode random predictive ability to increase survival skills. Since
prediction can be viewed as a class of computational problems, it is possible to use this
mechanism for some types of computation. The genetic code can be shown to be a
universal computing machine and offers speedup potential (see Adelman (1994). Thus it
provides a potential speed up mechanism, though there are significant diffrculties with
encoding and decoding.

5.0 Conclusions

By assuming a physical interpretation of CT, e.g. WCT, rather than the DCT, it is
possible to consider a wider range of physical mechanisms that might be employed to
enhance computational power. As a result, many new insights can possibly be drawn
from nature to help improve or subsume standard approaches to computation and
computability.
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