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Abstract
In order to gnderstand the complex behaviors in megaloscopic systems, it is neces-

sary to analyse the detailed mechanisms of non-separability in nonlinear processes. The

essential roles of nonlinearity are pursued in the local-global linkage from deterministic

points of view carrying out with nonlinear dynamical models; onset of subliminal thresh-

old, self-organization of soft interface, and scaling relation in barrier-free cascade. It is

emphasized that the non-separability and fluctuations in soft interfaces are closely asso-

ciated with emergent behaviors of megaloscopic systems and that the law of unbroken

wholeness is described by a relation of relations.

Keywords: Locat-Global Linkage, Subliminal Threshold, Soft Interface, Allometry,

Many-to-Marry Causality

1. Introduction

In nonlinear processes, it is generically impossible to decompose many degrees of free-

dom into mutually independent variables. Each variable or process couples with others in

non-separable manners. As well known iu many recent studies of nonlinea,r dynamics, a

number of interesting phenomena axe generated owing to the non-sepa,rability of coupled

nonlinea,r processes; chaos, turbulence, resonance, bifurcation, synchronization, etc.. In

the megaloscopic system which includes a lot of nonlinear processes, it is exceptionally im-
portant to analyse the essential mechanisms of the non-separability iu nonlinear processes.

Nonlinearity often brings about two conflicting effects such as creation and destruction

in megalo-systems. In other words, nonlinear processes endow the megalo.system with

remarkable coherence as well as disorder. In both cases, however, nonlinearity seems to
play some signiûca.nt roles in integrating all the parts of a megalo'system. What are the

essential meùanisms of nonlinearities in megalo-systems? One of the most important
points is to develop new ideas and methods necessary for the collective descriptions of

the local-global linkage in megalo.systems. The purpose of the present paper is to discuss
fundamental features in megalo-systems from the viewpoints of the local-global linkage
generated by nonlinear processes.

In this paper, we will study basic problems concerning the local-global linkage or

the unbroken wholeness of megalo'systems carrying out with three dynamical-theoretical

subjects.
The first point is to show that subliminal thresholds are universally generated in

megalo'systems. The subliminal threshold is quite different from other critical points

which have been studied so far in relation to bifurcations and phase transitions. The
universal structures near the sufliminal level. which intervenes between observables and
non-observables, a,re analysed by use of a simple dynamical model called the modiûed
Bernoulli map. The studies of subliminal levels will elucidate the interrelation between
chance and necessity, and that it will be stressed that the unbroken wholeness in megalo-
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systems should be approached by taking a lot ofnon-observable processes into account.
The second point is to show the significance of the liquid-like soft interface by use

of a theoretical model for the cellular slime mold Dictyosteliurn discoid,eum, where the
coupled processes of reaction, diffusion, a^nd motility are studied to describe the local-
global linkage of clustering cells (pseudoplasmodium). How does chemical oscillation
control the clustering process? What kind of coherent motions can be created in a quasi
cluster? These problems will be a.nalysed by computer simulations of our model. The
results seem to be firll of suggestions; the phase information in each cellular rhythm plays
an essential role in the onset of coherent movements, and that remarkable positional
information is associated with the soft interface which surrounds the quasi-cluster. The
unbroken wholeness ofthe quasi-cluster acquires a variety ofpossibilities by self-organizing
the soft interface. It is surmised that the Ll f fluctuations, which are universally created
in the soft interface, guaxantee the high stability and adaptability of the quasi-cluster.
F\rrthermore, the positional information in the soft interface seems to play the same role
not only in the onset of coherent motious but also in the differentiation processes from
pseudoplasmodium to the fruiting body in the life cycle of D. discoid,eurn.

The third point is to show the onset mechanism of global scaling relations in megalo.
systems, where we consider the open system for polymerization processes in barrier-free
cascade. How is the time-scale self-organized in megalo-systems? How does the nonlinear
process control the entropy production in complex chemical reactions? It will be shown
that both the time-scale and the bulk-quantities of the megalo'system a,re self-regulated
in the barrier-free cascade to create scaling relations such as "the allometry law' and the
Zipf's law. The scaling relation obtained here seems to originate from the hierarchical
reaction networks among polymer ensembles. Our results do not show the uuiversal-
ity of the scaling indices, but do elucidate a typical mechanism which creates unbroken
wholeness in megalo-systems,

Unbroken wholeness is a central concept in studying the local-glob;l linkage in megalo-
systems. The viewpoints discussed in the present paper are not enough to understand the
wholeness of nonlinearity but they inspire the internalist's stance toward the theoretical
exploration of complex behaviors in megalo-systems. The law of the non-observa,bles, the
positional information stored in soft interfaces, and the scaling relations induced by the
ba,rrier-free cascade all stem out from the remarkable rules of non-separability in nonlinea,r
processes.

In the last part of the present paper, we discuss a theoretical or arciomatical framework,
in which the non-separability ofprocesses is postulated as a trst principle. The essence of
unbroken wholeness seems to be unreachable from the reductionist approach in modern
science, so it is pointed out that the non-separability completely alters the standing of
the causality in science, and that the ma^ny-to-many causality should take the place of
the traditional one-to-one causality in nonlinear megalo-systems.

2. Onset of Subliminal Thresholds

There are two kinds of interfaces universally in megaloscopic systems. One is the
material layers between several phases, the other is the threshold in the sense of phe-
nomenology. Both interfaces are always fluctuating and changing under the environment
generated in the system itself. Here we consider the interface problems as thresholds,
which discriminate the global characteristics into different classes, just like pha.se tran-
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sitions and/or bifurcations. Tbaditional approaches, especially in statistical mechanics

which deals with huge ensembles of micro-scopic elements, are more or less based on the

decoupling techniques to get the phenomenological descriptions of renormalized fluctu-

ations. However, ùhose decoupling ideas are not adequate in dealing with the complex

phenomenon near the thresholds of megalo-systems, which a,re often composed of huge en-

sembles of macro-scopic local elements. Local elements themselves are not always pa.ssive

but active in megalo-systems.

2.1. Observables and Non-observables

There exist a great ma,ny non-observable paths as well as observable ones in non-Iinea,r

processes. From the ergodic-theoretical considerations, two kinds of measures describing

each path are universally embedded in a dynamical system, and the totality of such

measures defines the dynamial law of the system under consideration; observable paths

usually obey the dominant measure which is absolutely continuous with respect to the

Lebesgue measure, but non-observable ones belong to the singular class of minor measures.

In comparison with the case of statistical mechanics, the observable phenomenological

paths are determined by averaged quantities in a given ensemble, since the micro-scopic el-

ements are more or less stochastic and uncontrollable due to the essential difference in their

time scales. But in megalo-systems, this type of coarse-graining is not justified, because

the phenomenology in megaloscopy must be understood in terms of macro-scopic behav-

iors including macro-fluctuations. In other words, both observables and non-observables

have the simila,r scales not only in time but also in space.

The measure-theoretical structure of megalo-systems is always cha.nging by the long

time fluctuations of the global state, so that the dominant measure is also changing

and alternating. For insta,nce, the most dominant measure changes into the second or

third one, and vice versa. This kind of alternation in measure-theoretical order happens

frequently in the course of time, and as a result the behaviors of megalo-systems acquire

remarkable diversity and complexiy. The most dominant measure describes the observable

path, which will be actually realized in the course of time, but the non-observable ones

are all hidden behind reality though they have had the possibility to happen with almost

the same probability as reality.
The formation of the subliminal level is one of the new features in self-organization

processes. A subliminal level sorts out one real event from many other possible events

. which are all embedded in the law of time evolution; necessity is one realized path selected

uniquely from all the possible paths. Therefore the subliminal threshold could be under-

stood as a criterion self-orga,nized in megalo-systems. On the other hand, the remaining

paths which have had the possibility to be realized but did not appear, are the latent

reality or the chance which lurks behind the reality; strictly speaking, the chance is the

realization of the non-observables beneath the subliminal level. To summarize, the thresh-

old imposed by subliminal level not only distinguishes observables from non-observables

but also decouples the necessity from chances.

2.2. Non-stationary Chaos Beneath Subliminal Threshold

The onset of the subliminal level can be described by a simple dyna,mical system which
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genererates non-stationary chaos. Let us consider the modited Bernoulli map defined in
un i t i n te rva læe [0 ,1 ] .

(0  (  r "  <L l2 )  / 1 \
Gl2 < o"  (  1)  \^ '

Where æ, is the real number at discrete time n. The paramter B changes for I ( B I æ,
and the limit of e + 0 is studied in what follows. The case for B : 1 is the Bernoulli
shift well known in ergodic theories.

Here we quickly review the previous results (Aizawa, 1989; Tanaka a.nd Aizawa, 1993),
where the time courses generated by modified Bernoulli map axe strictly analysed. In the
region for B I 2, the time series is stationary and ergodic in the ordinary sense; in the
Gaussian regime (I < B < !), the mean value as well as the variance are well defined, but
in the non-Gaussian regime- (t 3 B < 2), the variance d.iverges though the mean value
converges. Furthermore, the law of large number as well as the law of small number hold
in the stationary regime where the large deviation theory is successfully applied. But, on
the other hand, in the non-stationary regime (B >_ 2), both laws of large number a,nd
of small number completely break down. That is to say, there is no dominant measure
in the non-stationary regime, but the most dominant measure is uniquely determined in
the stationary regime. The transition from observables to non-observables occurs at the
threshold point B : 2, although the intrinsic non-observability (at e = 0) is suppressed
in the asymptotic limit (e -+ 0). The observable/non-observable tra^nsition can be clearly
described by the power spectrum function S(/) - l-' Q = (28 - 3)l@ - 1)), i.e., the
1// spectrum is exactly obtained at the subliminal level.

The observable region (B < 2) is characterized by the Kolrnogorov-Sinai entropy
(a) and the Allan varience's index (b), but the non-observable region (B > 2) must
be cha,racterized by the Kusinirenko's A-entropy (o') and the stable law's index (ô').
These four characteristics completely describe the global aspects in the onset of subliminal
threshold (see Fig. 1).

2.3. Bergson Diagram -complexity and chance-

Non-stationary chaos is not an exceptional singular phenomenon in large nonlinear
systems, e.g., non-stationary wandering motions are generically created in non-hyperbolic
Hamiltonian dynamics and also in dissipative dynamics (Aizawa, 1995; Mannerville,
1990). Therefore, the onset of subliminal threshold is also universal in megalo-systems.
The results mentioned above will be summarized in Fig. 1. It is the essential difference
between obserrrable and non-observable regimes that the probablistic description does not
hold in the non-observable regime, and that all motions in the non-observable case appear
as transient variations or remittent processes. For instance, a non-observable path comes
up accidentally into the observable region beyond the subliminal level, but it passes off
again into the non-observable region. It is shown in Fig. 1, such paths always pass by
the subliminal level, so that the Ll f spectrum is universally observed in the tra,nsition
between chance and necessity. These kinds of dynamical phenomena are often called "self-
organized criticality". F\rrthermore, Fig. 1 seems to explain the dynamical mechanism of
the creative roles of cha,nce that was discussedby H. L. Bergson (Bergson, 1907).
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Figure 1: (a) Universal Diagra,m near Subliminal Threshold. (b) /-" spectrum in non-
stationary regime (B = 3).

3. Self-organization of Soft Interface

Next problems are to discuss the roles of the material boundary layers which are

separating many different local phases. Tbe formation of such boundaries contributes to

the globat functions of megalo'systems in two different manner6; one is the unification of

the total system, and another is the functional differentitation of each local elements.

3.1. Pseudoplasmodium of Dictyostelium discoideum

Here we consider the clustering motion of the cellular slimemold Dictyostelium dis-

coideum, where the self-organization of soft interfaces plays significant roles not only in

the differentiatiou processes of earch cell but also in the global behaviors of the quasi

cluster. Fig. 2-(a) shon's the life cycle of D. discoideurn. ln. a less nutritious environment,

each a,noeba cell emits the attractant (cAMP) which induces motions of other cells, and

all cells begin to aggregate into a big migratory cluster called pseudoplasmodium (or

slug), of which motion is rather more coherent than that of a single a,moeba cell. After
sometime each cell in the slug proceeds with its own differentiation process towa,rd the
fruitiog body, where some of them become stalk and others spores. In the life cycle men-
tioned above, there are many nonlineax processes in the iuter-cellular levels as well as in
the iatra-cellular ones, but the present paper only studies the clustering motion based ou
the chemotæris of cells. Thus our minimal model should include three basic processes:

chemical oscillation, diftrsion, aad motility.
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Figure 2: (a) Life cycle of D. d,iscoùleurn. (b) snapshot of a euasi-cluster (N = 30).

3.2. Miuimal Model for Cell-clustering

The dynamics of cell movement have been theoretically studied by Aizawa.Kohya,ma
model following,

ry : iutw(t)+ (1 - lw(ùl\w$)
r N r t

+ù 
E l_o,.(l"i(t) 

- r"(r)1, t - r)wo(r)e;6' dr

1.3(t

1.20

>  1 .10

t .@

0.90

e(r,t-l=ffi,r^"-r{-ffiil
where we describe the state of the ill-cell by two variables W; arrd ri. The complex
variable I4l; stands for the concentration of a certain kind of chemical substances which
are essentially determined by the metabolic process in the cell. For the sake of simpûcity,
we iusume that the real part of W; ( * W;) corresponds to the concentration of cAMP in
what follows. r; iudicates the position of the irr.-cell. The cells obey the gradient field of
the attractaat (cAMP). In order to describe the oscillatory emission of cAMP, we adopt
the TDGL type equations wbich a,re the universal normal form near the super critical
Hopf bifurcation. The last term of Eq.(2) expresses the interaction among cells, where
the interaction kernel iD is theoretically determined by solving the 2-dimensional linear
diftrsion equation for cAMP. At is the memory time due to cell membrane, D is the
difrrsion constant and rs is the effective radius of ea,ch cell.

In Eqs.(2)-(4) there are two types of para,meters; intensity parameters (c,o and e),

(2)

(4)

*,æ
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and phase parameters (ô1,2 and At) that control the inter-cellular communications. The
phase parameters are especially important in unifying the phase information of the cells
whose natural frequencies are denoted by or;. In order to describe the total life cycle
of D. discoideun\ maloy other nonlinear processes such as the detection of cAMP, cell
contact, cell sorting, synergism, etc., must be ta,ken into consideration. Here, however,
we only discuss tbe dyna.mical aspects of the quasi-cluster (pseudoplasmodium) based on
the minimal model of Eqs. (2)-(a)

Fig. 2-(b) shows a snap shot pattern of the quasi-cluster in the late stage, where in
the early stage all cells are dispersed very sparsely over a large space. In this clustering
process, the chemical oscillations I4 in each cell begius to synchronize with others, a,nd
a phase-locking state is gradually established anong a iarge part of the clustering cells.
The finat stage of the synchronization depends on the parameters of our model a.nd also
the distribution of natural frequencies ari.

1

0.9

0.8

0,7

0.6

0.5

0.1

0.3

0.2

0.1

0

'0.1

Figure 3: Mean motion of quaslcluster (N = 30). The center of gravity moves in a
alomost constant speed for the case of full synchronization (e : 1.0), but it does not show
a^ny coherent motion in full asynchronous case (e = 0.01).

The coherent motion of the quasi-cluster depends sensitively on the number of syn-
chronizing cells as shown in Fig. 3; the quasicluster does not reveal any regula.r motions
for completely asynchronous cases, but coherent motions appear for the full (or partial)

synchronizing cases. It is very surprising that the average velocity of the quasi-cluster

takes a ma:cimum value at the critical point between synchronizatiou and asynchronization
(see Fig. 4).

3.3. Emergence and Positional Information Controlled by Soft Interface

The pseudoplasmodium of D. discoid,eurnaxe surmised to be surrounded by soft inter-
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Figure 4: The mean velocity tr" reveals a sharp transition at 6c = 0.14 in the case N :2.
Rhythms do not synchronize for e < e".

faces composed of high motiliW cells. One of the most remarkable differences between the
central core and the interface of a slug is recognized in the phasic information of each cell
which generates the positional information in a slug. The cellular rhythms in the slug-
head have relatively advanced phases, but in the slug-tail the cell oscillation exhibits the
phase-retardation. These a.re quite consistent with the oçerimental obseryations (Weijer,
McDonald and Durstou, 1984). The positional information act as triggers to open some
new chemical networks for morphogenesis, and the differentiation of D. d,iscoid,eum is ac-
celerated in each inherent position toward the fruiting body (Earl5 Abe and Williarns,
1ees).

The formation of soft interfaces is also important for the unification of the total sys-
tem. As was shown in Fig. 4 the malcimum speed of the pseudoplasmodium is obtained
near the edge of synchronization, where the big driving forces to push the quasi-cluster
are generated due to the large phase difference arnong contact cells. Then the long time
fluctuations like l/f noises are usually generated, since the mutual phases are intermit-
tently unlocked, and pseudo-synchronized states recover after a long itinerancy (Sawai
and Aizawa, 1997). Here we may expect that the intrinsic motive force that integrates
the megalo-system lurks in the soft interfaces of the peripheral region.

4. Universality of Scaling Relation

Unbroken wholeness is a central concept in megaloscopic systems, where the globality
and the locality are simultaneously self-organized. The traditional reductionist approaches

o q D o o o o o r ù o o o o o o o o
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a,re baaed on the realiff of local elements, so they must be extended. The individual lo-
cality should be self-generated in every pa,rt of the whole system and differentiates toward
a new stage of the local-global linkage. Such internalist's viewpoints were discussed by D.
Bohm in relation to the measurement theory in quantum mechanics of which dynamics
is based on the nonJocality of wave functions (Boh-, 1976). Recently, the sa,rne kind
of problems are also pursued in the local-global linkage of morphogenetic processesl for
instance in reaction-difusion systems the onset of the locality is discussed in terms of
T\rring type instability, and the differentiation is subordinated to micro-scopic reaction
networks ignitioned by agonistic and antagouistic molecules (Meinhardt, 1995).

It is evident that nonlineax processes guarantee the establishment of a v-ariety of local
phases, since the spatial and temporâl scales are associated with the process beforehand,
for exa,mples, diffusion lengths, relanation times, and dispersion relations for unstable
modes. To go beyond these trivial well-detned scales, the unbroken wholeness should be
explored in the local-global linkage with non-trivial scales. To that end, we consider the
origin of scaling laws which a,re ofrben observed in megaloscopic systems.

4.1. Polymerization Process in Barrier-free Cascade

Consider an open reactor with constant volume, where monomers a,re injected from the

outside at a constaJnt rate and polymerization processes occur. There are many polymers

created by the coagulation and collapsation processes, but let us suppose that polymers

of which length n is longer than S (" > 5) are immediately removed from the reactor.

Namely, the para,meter ^9 stands for the mærimum length (or weight) of a polymer in the

open system under consideration. The birth and death processes of polymers obey the
follon'ing Smoluchowski fipe equations,

9:o
dt

* : ar!- {u+ 1 + É,t', + Ks(Ë ia; + 2aL)}xz * xla',
À+

i=l  i= l
1 t

+ = baz-a?æ'z-2Ksx2æ'z
d t s

* = | 2 nrrr, - t *of,, * 2Ksn2æ'2* 2Ksx22 - 4Keaaa2
dr 2,*7n

I

.9

ka;a; - ka.\ a; + (" - 2)K sæn-2a2 - nK sa,a2
i=l

( n : 3 , 5  <  n  <  S )

Here r; denotes the number of the i-polymer in the reactor. As we are interested in the
self-organisation of the time scale, one simple autocatalytic process (so-called Brusselator)
is assumed in the dimerization kinetics (rz,*L), and the kinetic coefrcients are all fixed
constant in this paper; K" = 0.001 and o = 2.0.

In the stationary state, variables oi reveal periodic oscillations with the sârne period ?'
that is to say, the attractor in our model is a ^9-dimensional limit cycle. When we change
the details of kinetic processes, it can be surmised that the structure of the attractor will

be deformed la.rgely. However, it will be shown next that the global scaling laws hold
inva.riantly in spite of large deformation of the attractor (Aizawa and Suzuki, 1997).

(5)

dc. I \-
dt  

= i rk ,

243



r3.5

125

F- t t 2
r t 5

I t

r05

l0

9.5

9

,s
Figure 5: Scaling law of time.

4.2. Allometry Law and Zipf's Law

In our simulations, the para,nreter ,S is increased up to several thousands, since the
main concerns of the present paper is to study the megaloscopic features of huge systems;
mass spectrum rnn = ntnt total mass M : Dn1sno, efrux J" = K"Di+irs(i # j)x;x;t
and entropy production o.

The entropy production a (for a period ?) is determined by use of the ideal gas
chemical potential, i.e., o f T = E oArVo, where A, and Vo are the e{ffnify and the reaction
velocity of the preaction respectively. First, we calculate those quantities for rrarious
values of the pa,rameter ,S, and then the mutual relations are obtained by eliminating S,
e.B,  ? -To-  (S-So)" ,  M -Mo -  (S- ,Ss)e,  then T-To- (M -  Ms), / t ' ,where t iese
scalings a.re well conûrmed by fitting the adjustable rralues: so, ?0, Ms, etc.. Figs. b and
6 show the allometry of our model; the numerical plots and the ttting curves in the case
o f ô = 7 g i v e ,

T - T o - ( M - M s ) t '  a = 0 . 5 8
o - o o - ( M - M ù Ê  p = 0 . 5 L 2
J - J o - ( M - M s ) 1  7 = 0 . b 1 8

The scaling properties obtained here do not sensitively depend on the values of pa-
rameters, though the numerical values of the indices a,B, and 7 change in a systematic
way. It can be surmised that the scaling laws are stably maintained under a certain loose
condition. Indeed, the sarne kind of scaling laws have been obtained even when we adopt
the chaotic autocatalytic process such as the Williamowski-Riissler reaction instead of

(6)
(7)
(8)
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the Brusselator reaction. The essential mecha,nism leading to the scaling laws might be
found in the generic features of barrier-free cascades, one model of which is proposed in
the present paper.

The microscopic theory may also be possible for the barrier-free cascade if we describe
the Brownian motion for one molecule. Every molecule wanders from one polymer to

another due to the coagulation a,nd the dissociation processes. These molecular processes

Iook like fractal Brownian motions in the hierarchical structrue composed of a number
of polymer ensembles. The detailed a,nalysis of these molecular pictures will be studied
in a forthcoming paper, but here we will see an evidence which reveals the hierarchical
structure in the barrier-free cascade.
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Figtue 6: Allometry laws a,nd size-distribution.

Fig. 7 shows the distribution of the polymer-size in our model, which is illustrated in
the rank-size relation. The size rni is measure by the total weight of i-polymers, and the
lank n; is the integer which shows the order of the abundance measured by the weight
m;. The most abundant polymer takes rank 1. By eiiminating i in the rn; a.nd n;, the
rank size relation is obtained as is shown in Fig. 7. When the paramter ,S becomes large,
the Zipf's law realizes,

size x. (rank)e (9)

where the Zipf's index ( = -0.45 for ,S = 1500 and b = 7.
The allometry as well as the Zipf's law have been extensively reported in many mega-

loscopic systems (Huxley 1932; Zipf,1949; Schmidt-Nielsen, 1984), but so far there is no
clear-cut explanation for the interrelation between them. As seen in Eqs. (6)-(8), they
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reveal a relation among some scaling relations. The results presented here suggest that
both scaling laws originate from barrier-free cascade proce$es which are omnipresent in
megaloscopic open systems.

5. Concluding Remarks

In this paper we studied some universal aspects of tbe local-global linkage in megalo-
scopic systems from the viewpoints of nonlinear dyna,mics, where the coherence as well
as the disorder are described completely in deterministic frameworks. The significance of
each model was discussed alreadly in the text, here we will discuss about the theoretical
frameworks in which the unbroken wholeness must be studied.

We have pointed out that fluctuations are also deterministically generated in soft in-
terfaces, and that sofb interfaces play a signitcant role in self-regulating the unbroken
wholeness of megalo-systems. Though the extraordinary functions of soft interfaces have
not yet been completely analysed in the present paper, it was shown that the l/f fluc-
tuation cha,racterizes a remarkable feature of soft interfaces. Generally speat<ing, 1//
fluctuations are associated with two emergent behaviors in megalo-systemsl one is the
preservation of long time memories, a.d the other is the creation of coherent processes.

Lf f fluctuations €ue analogous to biological evolution in some sense, i.e., the singular
point (at the ghost frequency .f = 0) of the spectral density s(/) - /-, implies the tran-
sitional growth of reference states (Matsumoto and Aizawa, 1997), where time averaged
quantities are not fixed, but reveal non-stationary evolution in the course of time. In
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other words, though 1// fluctuation is stochastic, it can drive the process toward a new
regime of local-global linkage.

The case of. y = t seems to have a special me"ning. The homeostasis of megalo-systems
cannot be guaranteed anymore in non-station:ry case (, > 1). But in the opposite case
(, < 1), the homeostasis is too stiff to renew the present regime in unbroken wholeness.

The subliminal threshold can always give rise to an innovation in the local-global
linkage, where the behaviors of megalo'systems must be analysed by taking into account
communications between obserr"ables and non-observables. This point of view postulates
a new theoretical fra,mework of the causality in complex behaviors of megalo.systems.

future

Plesent

past

(a) (c)

Figure 8: Schematic diagra,m for maay-te.many causality.

In small systems, the arrow of time is clearly assigned by a series of observable events
in reality, e.9., an elementary process of a particle which is strongly localized in space is
simply described by one-to-one causality as is illustrated in Fig. &(a). F\uthermore, in
the case of a few coupled processes, the arrow of time must be assigned by a bundle of
many processes as shown in Fig. 8-(b), where the non-separability of nonlinear processes
plays an essential role in integrating processes into each cone. However, in megaloscopic
systems, which a,re usually composed of a huge number of local elements, the arrow of
time should be expressed in a completely different way from the previous two cases. This
is because the reality at the present time is not the unique cause that generates the state
in the future; the omnipresence of a number of subliminal levels induces the latent reality
of non-obsenrèbles, and that the long time memories embedded in llf fluctuations are
f,lanrfsrrsd into the future. Let us call the arrow of time mentioned above the many-to-
many causality, of which conceptional diagra,m is shown in Fig. &(c).

It should be streseed that the many-to-many causality be recognized in the context
of subliminal thresholds, and that it is quite different from the traditional one-to-one
causality which describes physical realities. The many-to-marny causality ir lelhing but

(b)
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a theoretical postulation we have made to formulate the local-global linkage in megalo-
systems by taking into account a number of latent realities beneath subliminal levels. In
the traditional fra,mework of causality, the present is imprisoned into a point on the arrow
of time. However, in the many-to-many causality, the present is extended in a finite region
which intervenes the past and the future. Thus, in the overlapping region, which are ruled
over by the many-to-many causality mentioned above, \ire can expect to find out the law
of unbroken wholeness.

Both the allometry law and the Zipf's law could be correctly understood in the fra,me.
work of the many-to-many causality. In fact, they a,re not the laws that describe simple
relations among some physical quantities, that is to say, what they ma'ifest is uthe rela,
tion of relations". The laws of unbroken wholeness should be explored in the relation of
relations, which obeys the many-to-marry causality.

Acknowledgement

Author thanks Dr. Peter Davis and Mr. Satoshi San'ai for critical readings of the
ma,nuscript and rraluable discussions.

References

Aizawa Y. (1989). Non-stationary Chaos Revisited from Large Deviation Theory, Prog.
Theor. Phys. No.99, pp.149-164.

Aizawa Y. (1995). Chaos, Ergodicity and Anomalous Fluctuations in Hamiltonian Dy-
namical Systems, J.Korean Phys.Soc., 28, pp.310-314.

Aizawa Y. and Suzuki Y. (1997). in preparation.

Bergson H.L. (1907). Creative Evolution. (Tbanslated by Arthur Mitchell, 1975, Green-
wood Press).

Bohm D. (1976). Fragmentation and \{holeness. van Leer Jerusalem Foundation.

Early A., Abe T. and Williams J. (1995). Evidence for Positional Differentiatiou of Pre-
stalk Cells a,nd for a Morphogenetic Gradient in Dictyostelium, Cell, 83, pp.gl-gg.

Huxley J.S. (1932). Problems of Relative Growth. The Johns Hopkins University Press.

Sawai S. a^nd Aizawa Y. (1997). in preparation.

Schmidt-Nielsen K. (1984). Scaling - why is animal size so important? Cambridge Uni-
versity Press.

Tanaka K. and Aizaura Y. (1993). Fine Structures in Stationary and Non-stationary
Chaos, Prog.Theor.Phys. 90, No.3, pp.547-567.

248



Mannerville P. (1990). Dissipative Structure a^nd Weak Ttrrbulence. Acad. Press.

Matsumoto T. and Aizawa Y. (1997). Effects of the Non-stationary Fluctuations in the
Morphogenetic Evolution of the Heteromorph Ammonites, Prog.Theor.Phys. 97, No.5,
pp. 739-747.

Meinhardt H. (1995). Development of Higher Organisms; How to Avoid Error Propaga-
tion and Chaos, Physica D, 86, pp.96-103.

Weijer C.J., McDonald S.A. a,nd Durston A.J. (1984). A Flequency Difference in Optical-
density Oscillations of Early Dictyosteliurn discoideum Density Classes and its Implica-
tions for Development, Differentiation, 28, pp.9-12.

Zipf G.K. (1949). Human Behaviors and the Principle of Least Efforts, Addison-Wesley
Press.

249


