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Abstract

In this paper we review the evolutionary approach we proposed in previously published
papers, regarding the emergence of a Learning Classifier System (LCS) reward policy.
The idea behind our approach is to induce the emergence of a LCS reward policy,
through the evolution of a population of LCS based agents. The present review intends
to shed light on some aspects that were not sufficiently emphasized in previous papers
and, on other hand, to prospect future work regarding this approach. First, we describe a
simple, but generic architecture of an evolutive LCS based agent. The couple of
modules constituting the architecture are a (LCS based) control model, generating the
agent behaviour, and a biological model regulating the biological aspects of the agent
life. Second, we perform an analysis of the factors influencing the outcome of reward
policy evolution, like the reward regimes to adopt, or the genetic operators that one
should use. Finally, we evaluate the requirements to extend our approach to Special
Classifier Systems (XCS) based evolutive agents.
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1 Introduction

Learning Classifier Systems (LCSs) are a methodology based on a genetic paradigm,
that is able to find solutions for problems involving a large search space. LCSs are a
type of parallel production system where rules — classifiers, are evolved, using a genetic
algorithm, in order to maximize the expected system payoff.

The unit of a LCS is the classifier; a classifier is a codification of an IF-THEN rule. The
classifier is usually encoded in a binary alphabet, enriched with a universal symbol (# -
don’t care) in order to enable the expression of clusters of rules in a single classifier.
For instance, the string 0/:1 is an example of a classifier that could express the
following behaviour rule:

IF lion-right and grass-left THEN left
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The process of classifiers optimisation relies on the categorization of the system
classifiers according their performance. The categorization, and therefore performance
measurement, is based on a variable assigned to each classifier, called utility. We call
the set of criteria establishing the LCS performance metric, the LCS reward policy.

From the above requirements, the LCS architectural cycles (fig. 1) appear naturally.
They can be summarized in the following points:

e Performance cycle: world events are translated in LCS messages and placed in
the system message set: classifiers are selected accordingly the current message
set; selected classifier actions are performed.

® Reward cycle: the LCS reward system generates a numerical payoff based on the
evaluation of the performed action (based on the system reward policy); payoff
is added to the utility of the classifier(s) proposing the referred action.

e Revising cycle: the best LCS classifiers are chosen; these classifiers are bred; the
offspring replaces classifiers with poorer performance. The period of the
revising cycle is larger than the period of the previous cycles.
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Fig.1: LCS architecture.
The interaction between the reward and revising cycle is the support of the LCS
lcarning process. Therefore, we refer to this couple of cycles as the LCS learning

cveles.

This brief description enables us to extract the most important features regarding LCS:
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I. Independence of the LCS classifier database from the environment the system
faces.
2. Domain knowledge must be embedded in the LCS reward policy.

This couple of features conditions the domain of application of LCSs. On one side, the
independence of the LCS internal model from the domain, enables LCS to be a
horizontal approach. in the sense that it can be applied in a number of distinct scientific
domains. such as Robotics (Colombetti, 1993), Economy (Mitlohner, 1996) or
Simulation (Smith, 1999). On the other side, the strict requirement regarding the reward
policy limits the vertical application of LCSs, meaning that LCSs cannot be applied to
domains or problems where it is hard to find a good reward policy.

We believe however that, like LCS simplified the insertion of domain knowledge taking
it from the design of internal models to the reward policy design, it is possible to take
this process farer and simplify also the task of designing the reward policy. This would
enable the deepening of the LCS “vertical” scope. The approach we took, which was
already presented in previously published papers (Sepilveda. 1999, 2000), was to use
evolution and Artificial Life (AL) environments to induce the emergence of a LCS
reward policy.

In this paper we review some aspects of our approach. generalizing it and make some
considerations regarding its extension to the Special Classifier System (XCS)
framework. The paper follows with a section where we present previous work focusing
the LCS reward system. Then, on section 3, we review the approach we propose
regarding the emergence of a reward policy, clarify some of the approach most relevant
aspects and present a general model of an evolutive agent. On section 4, we emphasize
the questions that still remain opened. On section 5, we analyse the extension of our
framework to XCSs agents. Finally, conclusions are drawn in section 0.

2 Related work

Issues regarding credit (or payoff) assignment were focused since the beginning of LCS
rescarch. When Holland proposed the LCS (Holland, 1992), he also described an
algorithm aimed to assign accurately payoff in environments characterized by
intermittent reward. This algorithm, named after the metaphor from which it was built -
Bucket Brigade (BB), relied on a mechanism of u(ilityl passing, which, cycle after
cycle, would theoretically produce the emergence of chains of classifiers setting the
stage to enable other classifiers to get system payoff.

Even in the latest developments of LCS research. the issue of credit assignment has
been taken care of. In the XCS framework, for instance, it was defined a mechanism
very similar to the BB. In a XCS one must define a discount factor, a value determining

" In Holland s classifier systems: strength.
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the fraction of classifier fitness to be added to the classifiers that have acted previously,
much in the spirit of the BB algorithm.

Besides credit assignment, there is also a less remembered research issue regarding the
LCS reward system — designing a reward policy, whose literature is very scarce. As far
as we know, the only research line that dealt with this issue, was the work performed by
Dorigo and Colombetti (1994). These researchers were the first to address the issue of
suitability of LCS reward policies, showing experimentally that the performance of a
LCS could vary accordingly the reward policy defined. In their paper, they stood that
the reward-the-resulr policy was not always the best solution to generate LCS payofT,
because it implied the design of a fitness function that is not always easy to devise.
Additionally, they emphasized that. in dynamic environments, a pre-defined fitness
function often did not pertormed well or did not meet the experimenters needs. To solve
this problem, they introduced the system trainer figure, a metaphor of an external entity
supervising the learning process. This solution however implied the existence of some
supra-environmental entity (human or synthetic) to provide classifiers payoff.

3 The Emergence of a Reward Policy: a Review

The main goal of LCS research has been to find solutions for increasing the LCS
learning efficiency, trying this way to broaden the application spectrum of these
systems. There exist however issues, although preventing the application of LCS to
more domains, did not receive attention from the LCS research community. One of the
most relevant issues. in this context, is the design of LCS reward policies regarding
environments involving a high degree of complexity. One typical example of a system
requiring the development of a complex reward policy, is the virtual soccer game
developed by Sanza (1999), where the multitude of sub-problems faced by a LCS based
player, in a soccer game, had to be correlated within a weighted fitness function.

We defend that it is required a new approach to develop LCS reward policies, in order
to solve the kind of problems that became patent in the previous example. The approach
we proposed consisted in using a simulated evolution process aiming to induce the
emergence of a reward policy in a population of LCS agents.

3.1 Integrating Evolution and LCS

Using evolution in conjunction with LCSs requires a careful analysis on the
characteristics of both approaches in order to find the best way to take advantage of the
synergy that may be established between them.

Regarding the establishment of a evolution process, it is required the existence of both a
mechanism to increase the evolution subject variation and a corresponding selection
operator, choosing the subjects that seem to lead to promising (evolutionary) paths. The
conjunction of this couple of operators assures that a given group of individuals (a
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population) will evolve. The direction towards which the population evolves is greatly
dependent on the type of filter that the selection operator implements. The selection
operator should, therefore, to take into account the performance exhibited by the
evolution subject on the environment it is facing.

Taking a selection mechanism based on natural selection (our approach) requires the
design of a biological model supporting the implementation of this specific operator,
since natural selection is a operator selecting individuals based on their reproductive
success.

With respect to LCSs, as we have seen, LCSs are essentially a methodology to generate
adaptive agent behaviour. This characteristic makes them to be an option to considerer
regarding the implementation of an agent control model.

The features of both evolution and LCSs enable us to define a general agent model
tailored to AL environments. This model (fig. 2), is then composed by:

e A LCS based control model, generating the host agent behaviour: and
e A biological model, providing support for the natural selection operator.
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Fig. 2: Model of an evolutive agent.
3.2 The Emergence of a Reward Policy

The goal of our approach is to take the evolutionary model of figure 2 and induce the
emergence of a reward policy in a population of LCS based evolutive agents. To
accomplish this goal the general evolutionary model we presented should be further
specified.

Regarding the biological model, there are no further considerations to make at this
point, because the model details depend on the particular environment where the
population of agents evolves.
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Regarding the control model however it is possible to deepen the agent model, since the
goal we are pursuing— emergence of a reward policy, imposes requirements that can be
generalized regardless of the particular environment where our approach is used.

If we want to evolve a LCS reward policy, the reward policy should be the only source
of agent diversity. If this condition is not met, there is the risk that a group of agents
evolves, forming a dominant group due to a characteristic in which we are not focused.
This implies that the operators who are responsible for the increase of LCS agent
variation should act on the reward policy only. Therefore, the agent control model, the
host of the LCS reward policy. should be designed taking this requirement in mind.

The second question affecting the agent control model is the choice of the most suitable
way to express a LCS reward policy. If we require genetic operators to act on a LCS
reward policy, as we mentioned, something must be said about the structure of the
reward policy (what we call the reward regime). Should the criteria establishing the
reward policy, be expressed by a fitness function? Should this function be linear? What
reward policy parameters should be chosen to be evolved? Is there other ways to
express a reward policy. other reward regimes, that might suit evolution?

We believed the issues underlying these questions deserved a careful study. The study
was carried out in woods-type (Wilson, 1994) environment that we called Saavana (fig.
3). In this environment, a population of synthetic LCS based antelopes was subjected to
evolution in order to improve the antelopes ability to increase internal energy (E).
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Fig. 3: Saavana’s snapshot.
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3.2.1 Case Study Description

The antelopes biological model relied solely on the value of individual internal energy.
The internal energy value could increase, if an antelope ate food cells, or decrease, if an
antelope could not manage escaping the lion that also inhabited the environment. The
antelopes died when their energy level reached a minimum value. Breeding occurred
when the level of the antelope internal energy reached an upper threshold.

The core of the antelope control model was a LCS (called coordinator LCS), deciding
the behaviour the antelope should follow: eating or escaping. The decision was based on
the couple of presence bits delivered by the antelope sensor modules — one sensing the
presence of food cells in the neighbouring cells, the other sensing the lion position. The
antelope architecture is depicted in fig. 4.
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Fig. 4: LCS based antelope architecture.

The coordinator LCS is the only adaptive structure of the whole architecture, i. e., the
only source of individual variation in the antelope population, corresponding therefore
to the guidelines stated above. Behaviours (eat and escape) and sensors (lion sensor and

food sensor) are similar in all antelopes.

Within the lifetime of an antelope the coordinator LCS performs its usual cycles
(performance, reward and revising), trying to find the strategy® that optimises the
system payoff (R). Notice that although the set of reward policies existing in the
population can change due to mutation when an antelope breeds, a particular reward

? Strategy is the set of classifiers existing in the LCS classifiers database.
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policy remains fixed within an individual’s lifetime assuring a coherent evaluation of
the agent decisions.

3.2.2 Results

Concerning the case study results, which can be seen in further detail in (Sepulveda
1999, 2000), the first thing worthwhile mentioning is that it was demonstrated that a
population of virtual antelopes could develop good coordinator LCS reward policies.
This statement is corroborated by the comparison of the antelopes performance
measurements taken from the traditional “hand-designed” fitness function reward
regime (eq. 1), to the measurements taken trom the couple of evolutive reward regimes
experimented.

R=C,*AE+C, (h

This is a very important result because it allows LCS designers to provide the
parameters that must be accounted for in the calculation of the system payoff, without
having to specify the relationships between them. Evolution takes care of it.

Besides this result. our primary goal, the study helped us clarify some aspects regarding
the choice of reward regimes. Two evolutive leamning regimes were designed and
evaluated.

In the first one — parameterised learning. the numerical parameters of the coordinator
LCS fitness function (C; and C-. see eq.1) were coded in an 8-bit genome. This genome
was mutated whenever the virtual antelopes bred, aiming, this way. to optimise the
parameters values.

The second evolutive reward regime tested — evolvable learning, was implemented
using an additional classifier system (reward LCS). where individual classifiers
represented specific reward criterion. The classifiers condition coded the values of the
parameters we thought it were important to relate to the payoff value. The reward
classifiers action proposed the payoff value to deliver to the coordinator LCS (fig. 3).
Both learning cycles of the reward LCS were disabled maintaining a stable reward
strategy throughout an antelope life. When an antelope breeds. the reward LCS strategy
is copied onto its offspring. After the classifiers copy, a fraction of the offspring reward
classifiers is modified by the action of the mutation operator.

00 1 : 10

—— — ——
IFE€[0.0.100.0].AE€[0.0.10.0] THENR=5.0

Fig. 5: Example of a reward LCS classifier.
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The interaction between the coordinator LCS and the reward LCS can be best

understood following an example:
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L. An antelope detects a food cell
in its surroundings. The presence bits
are computed and the corresponding
message is sent to the coordinator
LCS

2. The coordinator LCS selects
the classifier determining the antelope
behaviour. The eating behaviour is
performed and the food is collected,
ending the coordinator  LCS
performance cycle.

3. The coordinator LCS reward
cycle starts. E and AE are encoded in
reward LCS messages.

4. A reward classifier is selected.
The payoff value expressed in the
selected classifier action is assigned to
the coordinator classifier that
triggered the eat behaviour.




The results showed that the reward regime producing better results was the evolvable
learning regime. This regime, besides producing better coordination LCS strategies,
evolved quicker than the parameterised learning regime.

The determinant factor behind these results is the granularity provided by the reward
LCS. Granularity can be viewed as a property reflecting the degree of independence
between each reward criterion. In this sense, continuous fitness functions (like eq. 1) are
non-granular, since they force a relationship between payoff values corresponding to
situations that might not be correlated.

4 Questions to answer

The results provided by our prior work seem to have validated the use of an
evolutionary approach aimed to generate LCS reward policies. But our case study was
very simple, leaving yet many questions unanswered. On the next sub-sections we will
try to clarify some of the issues that were not sufficiently addressed in previous papers
and that underlie many of the approach relevant questions.

4.1 Reward Regimes

As we have emphasized earlier, the reward regime that seems to guarantee a better
learning etficiency is the evolvable learning reward regime. From the results gathered,
we assume that a reward regime with some degree of granularity is preferable to a
continuous (or global) one.

We think however that it is not necessary to define an additional LCS to support a
granular reward regime, like we did in the case of the evolvable learning regime. We
did it because, from our point of view, it was easier to introduce an additional LCS than
other kind of data structure. The LCS is not needed because none of the so-called
learning cycles are used. since it is not required to change the reward policy during an
individual lifetime.

Apparently. we just need a data structure able to support a table of independent reward
criterion. But, if we want to define a suitable evolutive reward regime, there are
evidences pointing to the inclusion of some LCS features in a well-designed granular
reward regime.

One is the ability to express clusters of rules. Although it is advantageous to have
several reward criteria not related with each another, there are cases in which different
events might be payoff-equivalent. A classifier expresses this situation easily by means
of the LCS alphabet universal symbols.
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Other is the LCS ability to cover inputs. If the reward policy is supposed to provide a
payoff when a range of events occurs, then there either must exist criterion covering the
whole event range. or it must exist a mechanism (like the LCS cover operator) able to
generate the reward criterion that may be missing.

Concluding the discussion concerning the reward regimes, we can say that a promising
reward regime should be granular, able to express fitness regularities and that it should
be provided a reward regime cover operator. Fitness functions do not seem to provide
efficient reward regimes. because they require the system designer to provide a clue
about the actual expression of the function (continuous or non-continuous, linear,
quadratic. etc). Other aspects related to reward regimes deserve more analysis. In
particular. onc of the most pertinent is the study of the relationships that seem to exist
between the agent biological model and the reward regime.

4.2 Evolution Parameters

The paths followed by the evolution process are intimately linked to the
parameterisation an individual biological aspects. We adopted the simpler evolutionary
model guaranteeing us the viability of our approach. The evolutionary model main
design options were: asexual reproduction, mutation and natural selection.

The choice between sexual or asexual reproduction determines in great extent the
genetic operators to be used. We feel that sexual reproduction can bring benefits
because this option enables the application of the crossover operator to parents reward
policies.

Another relevant aspect related also with reproduction is the way to initialise the
internal model of a new LCS agent. One hypothesis is to initialise it randomly; the
traditional way of initialising a LCS. Another hypothesis is to copy the parent internal
model to its offspring. consubstantiating this way a process of social transmission,
which can be viewed like a kind of cultural or social legacy. In our case study, it was
used the social transmission hypothesis. The impact caused in the experiment results, by
taking this option, was not assessed.

From the evolutive point of view, the most important attributes of an individual are the
ones conditioning natural selection. Many of these attributes are very dependent on the
application domain and therefore it is hard to provide general guidelines to their
parameterisation. But if we intend to induce the emergence of a reward policy, there is a
dimension of the LCS agent “life” deserving to be carefully analysed: time.

The implications of time on the LCS agent “life” are related to the poor performance
exhibited by LCS agents during the first simulation cycles after their generation. The
low performance level exhibited during the LCS agent “infancy”, corresponds to the
time span needed for a LCS to find a set of classifiers optimising the system payoff (the
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LCS learning inertia). The agent still has not learned (through the reward cycle) and
discovered (through the revising cycle) the rules, which optimise the system payoff.
Therefore, there is no point in allowing the agents to breed as soon as they are born
since the performance that they might exhibit is not related to the “quality” of their
leaning process. So, when we think on establishing the number of cycles that a LCS
agent must perform before it is able to breed (its sexual maturity), the LCS learning
inertia is a factor to be considered.

Regardless of the design decisions concerning evolution we have briefly described,
there is still much work to be done in order to tune the parameterisation of the genetic
operators. If the reward system is granular, how should mutation be applied? For
instance, in our case, where the reward regime was based in LCS, we have mutated a
fraction of the reward LCS classifiers when an antelope bred, promoting this way the
exploration of the reward policy search space. But other parameterisation criteria could
be conceived. Regarding crossover (we did not use it in our case study), there is an
additional factor to deal - maintaining the reward policy coherent, i.e., joining reward
criteria covering the same inputs leaves without response other type of situations. One
idea to overcome this situation is to provide a semantic for the reward regime and then
to swap equivalent reward policy “pieces”.

5 Extending the approach to XCS

One point that we wished to attend when we performed our case study was to assess the
application of our approach to other types of classifier systems and, in particular, to
XCS. The interest on XCS is due to the body of theoretic work developed for these
systems. which can help us solving many of the problems we have mentioned so far.

We think that the extension of our approach to XCS agents would not present any
trouble (we hope to do it in the near future). The XCS definition of utility. which is
different form the one defined in the scope of standard LCS. does not bother us. since it
does not affect the output and structure of the system reward policy. The structure of the
XCS reward system is similar to the standard LCS reward system. although the
modifications performed in the XCS reward system description (including explicitly the
requirement of the reward system to provide an end-of-problem flag). The emphasis on
the XCS fitness landscape regularities even seems to suit better our approuch.

One of the questions that might be answered using the XCS framework is the one
presented earlier regarding agent sexual maturity. Due to the similarity between Q-
learning and XCS, there is hope that in the near future it will be found the number of
cycles that a XCS will take to converge to a solution. This result would solve the
problem regarding the definition of a XCS agent sexual maturity and would certainly
provide a guideline, regarding the parameterisation of this variable in other types of
LCS based agents.
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6 Conclusion

In this paper we reviewed the evolutionary approach we proposed in previous papers
regarding the emergence of a LCS reward policy. We formalized some aspects of our
approach, proposing a general model for an LCS based agent. Additionally, we
identified areas that are worthwhile pursuing in terms of research: one is the area
concerning the search for reward regimes supporting the evolution a LCS reward policy:
other is concerned with the parameterisation of the evolution process itself. In both
areas the main problems were analysed and, either specific solutions or general research
guidelines were proposed.

Finally, we discussed the extension of this approach to XCS agents and defended that
the extension not only can be performed straightforwardly, but also that it can provide
answers to questions that remain open, like the definition of the sexual maturity of an
evolutive agent.

Although the infancy of the approach, we think, based on the results gathered so far,
that the use of evolution to tune a LCS reward policy is a path worthwhile to explore.
We hope that this paper becomes a map for those who want to follow it.
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