
An Evolutionary Approach for Generating a Learning
Classifïer System Reward Policy: Review and Prospects

Tiago Seprilveda and Mâr'io Rui Gomes

IST - Instituto Superior Técnico
INESC - Instituto de Engenharia de Sistemas e Computadorcs

R. Alves Redol, no9, 6o Andar. 1000-029 LISBOA
{ tiago.serrulveda.mre } @ inesc.pt

Abstract

In this paper we review the evolutionary approach we proposed in pleviously published
papers, regarding the emergence of a l-earning Classifier System (LCS) reward polic;'.
The idea behind our approach is to induce the emergence of a LCS reward policy.

though the evolution of a population of LCS based agents. The present review intencls
to shed light on some aspects that were not sufficiently emphasized in previous papers
and, on other hand, to prospect future work regarding this approach. First, we describe a
simple, but generic architecture of an evolutive LCS based agent. The couple oi
modules constituting the architecture arr a (LCS based) control model, generating the
agent behaviour, and a biological model regulating the biological aspects of the agent
life. Second, we perform an analysis of the factors influencing the outcome of rervard
policy evolution, like the reward rcgimes to adopt, ol the genetic operatot's that one
should use. Finally, we evaluate the rcquirements to extend our approach to Special
Classifier Systems (XCS) based evolutive agents.

Keywords: Classifier Systems, Evolution. Reward Policy and Leaming.

Introduction

Learning Classifier Systems (LCSs) are a methodology based on a genetic paradigm,
that is able to find solutions for problerns involving a large search space. LCSs are a
type of parallel production system where rules - classifiers, are evolved, using a genetic

algorithm, in order to maximize the expected system payoJf.

The unit of a LCS is the classifier; a classifier is a codification of an IF-TFIEN rule. The
classitier is usually encoded in a binaly alphabet, endched with a universal symbol (# -

don'r care) in order to enable the exprcssion of clusters of rules in a single classifier.
For instance, the string 0l:l is an example of a classifier that could express the
fbl lowing behavi our rule:

IF lion-right and grass-leJt THEN left
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The process of classifiers optimisation relies on the categoization of the system
classitlers according their per{brmance. The categodzation, and therefore performance
measurement, is based on a variable assigned to each classifier, called utility. We call
the set of criteria establishing the LCS performance metric, the LCS reward policy.

From the above requircments, the LCS architectural cycles (fig. l) appear naturally.
They can be summadzed in the following points:

Perlbnnance c'.vcle: world events are translated in LCS messages and placed in
the system message setl classifiers are selected accordingly the current messâge
set; selected classifier actions are performed.
Reward c'vcle: the LCS reward system generates a numerical payoff based on the
evaluation of the performed action (based on the system reward policy); payoff
is added to the utility of the classifier(s) proposing the referred action.
Revising, q)cle: the best LCS classifiers are chosen; these classifiers are bred; the
offspring replaces classifiers with pooter performance. The period of the
revising cycle is larger than the period of the previous cycles.

The interuction between the
leamin-9 pr'ocess. Thetetbre.
c'vcles.

Fig.l: LCS architecture.

rewald and rcvising cycle
we ret'er to this couple of

is the suppoft of the LCS
cycles as the LCS learuing

This blief description enables us to extract the most important features regarding LCS:

ngw
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l .  Independence of the LCS classitier database t'rom the envitonment the system
faces.

2. Domain knowledge must be embedded in the LCS rewat'd policy.

This couple of fèatures conditions the domain of application of LCSs. On one side, the

independence of the LCS intetnal model f i 'om the domain, enables LCS to be a
horizontal approach. in the sense that it can be applied in a number of distinct scientif ic

domain.s. such as Robotics (Colombetti, 1993), Economy (Mitlohner. 1996) or

Sirnulation (Smith. 1999). On the other sicle, the strict requirement regarding the reward
policy l imits the vertical application of LCSs, meaning that LCSs cannot be applied to

domains ol problems where it is lrard to flnd a good t'eward policy.

Wc lrclierc hou'evel that, l ike LCS simplif ied the insertion of dornain knowledge taking
it l 'r 'ont the clesi-un of internal models to the rervard policy design, it is possible to take

rhis process farer and simplify also the task of desi-ening the reward policy. This would

enahle the deepening of the LCS "vertical" scope. The apploach we took, which was

alleady presentcd in pleviously published papers (Sepûlveda, 1999. 2000), was to use

cvolution and AnificiLrl Li1'e (AL) environments to induce the emergence of a LCS
lervard policy.

In this papef we revierv some aspects ol our approach. generalizin-e it i tnd mtrke some

cqnsiderations regarding its extension to the Special Classifier Systeln (XCS)

tl 'anrework. The paper lbllows u,ith a section wlrere we present previous work focusing

the LCS rewat'd system. Then, on section 3. we revierv the approitch we propose

legarding the emelgence of a reward policy, clarity some of the approach most relevani

irspects and present a general model of an evolttt ive agent. On section 4. we emphasize
the questions that sti l l  lemain opened. On section 5. we analyse the extension of our

fiamer,volk to XCSs agents. Finally, conclusions arc drarvn in section 6.

Related work

Issues regarding credit (or payoff) assignment were fbcusecl since the beginning of LCS

rescarch. When Holland proposed the LCS (Holland. 1992). he also described an

algorithm aimed to assign accurately payofï in environments charactenzed by

intermittent reu'ard. This algorithm. named after the metaphor from which it was built -

Bucket Brigade (BB), relied on a mechanism of uti l i ty' passing, which, cycle after

cycle, would theoretically produce the emergence of chains of classifiers setting the

stage to enable othel classifiers to get system payofï.

Even in the latest developments of LCS research. the issue of credit assignment has

been taken care of. In the XCS framework. for instance, it was defined a mechanism
vely similar to the BB. In a XCS one must define a discount f'actor, a value determining

' In Holland's classiTier systems: strength.
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the fraction of classifier fitness to be added to the classifiers that have acted previously,
much in the spirit of the BB algorithm.

Besides credit assignment, there is also a less remembercd research issue regarding the
LCS reward system - designing a reward policy, whose literature is very scarce. As fàr
as we know, the only research line that dealt with this issue, was the work perlbrmed by
Dorigo and Colombetti (1994). These researchers were the first to address the issue of
suitability of LCS teward policies, showing experimentally that the performance of a
LCS could vary accordingly the reward policy defined. In their paper, they srood rhat
lhe rev,ard-the-result policy was not alrvays the best solution to generate LCS payoff',
because it implied the design of a fitness function that is not always easy to devise.
Additionally, they emphasized that. in dynamic environments, a pre-detïned fitness
function often did not pertbmred well or did not meet the experimenters needs. To solve
this problem, they introduced the system trainer fi-eure, a metaphor of an extelnal entity
supervising the learning process. This solution however implied the existence of some
supra-environmental entity (human or synthetic) to provtde classifiers payofï.

3 The Emergence of a Reward Policy: a Review

The main -soal of LCS rcsearch has been to find solutions tbr increasin_e the LCS
learning efticiency, trving this way to broaden the application spectrum of these
systems. There exist howevel issues, although preventing the application of LCS to
more domains, did not receive attention fl'om the LCS resealch community. One of the
most relevant issues. in this context, is the desien of LCS rervard policies regarding
envilonments involving a high degree of complexity. one typicat example of a system
requirin-s the development oi a complex reward policy. is the virtual soccer game
developed by Sanza (1999). rvhere the multitude of sub-problems fàced by a LCS based
player, in a soccer garne, had to be correlated within a weighted fitness f 'unction.

We det'end that it is required l new approach to develop LCS reward policies. in order
to solve the kind of problems that became patent in the prcvious example. The approach
rve ptoposed consisted in using a simulated evolution process aiming to inducc the
emersence of a rervard policy in a population of LCS agents.

3.1 lntegrating Evolution and LCS

Using evolution in conjunction rvith LCSs requires a careful analysis on the
characteristics ot'both apploaches in order to l lnd the best way to take advantage ol'the
synergy that may be established bet'"veen thenr.

Re-earcling the establishment of a evolution process, it is requirecl the existence of lroth a
mechanism to increase the evolution sub.lect variation and a corresponding selection
operator, choosing the subjects that seem to lead to promising (evolutionary) paths. The
coniunction of this couple of operatols assures that a given group of individuals (a
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population) wil l evolve. The direction towards which the population evolves is grcatly
dependent on the type of filter that the selection operator implements. The selection
operator should, thercfote, to take into account the performance exhibited by the
evolution sr-rbject on the environment it is facin.g.

Taking a selection mechanism based on natural selecliort (our approach) requires the
design of a biological model supporting the implementation of this speciiic opel?tor,
since natural selection is a operator selecting individuals based on their reproductive
SLICCESS.

With respect to LCSs, as we have seen, LCSs arc essentially a methodology to generate
adaptive agent behaviour. This characteristic makes them to be an option to considerer
regarding the implementation of an agent control model.

The features of both evolution and LCSs enable us to define a general agent model
tailored to AL environments. This model (fig. 2), is then composed by:

A LCS based control model, generating the host agent behaviour; and

A biological model, providing support for the natural selection operator.

Fig. 2: Model of an evolutive agent.

3.2 The Emergence of a Reward Policy

The goal of our approach is to take the evolutionary model of figure 2 and induce the
emergence of a reward policy in a population of LCS based evolutive agents. To
accomplish this goal the general evolutionary model we presented should be further'
specified.

Regarding the biological model, there are no further considerations to make at this
point, because the model details depend on the perticular environment where the
population of agents evolves.
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Regarding the control model however it is possible to deepen the agent model, since the
goal we are pursuing- emergence of a reward policy. imposes requirements that can be
generalized regardless of the particular environment where our approach is used.

If we wanl to evolve a LCS reward policy, the reward policy should be the only source
of agent diversity. If this condition is not met, there is the risk that a group of agents
evolves, forming a dominant gloup due to a charactedstic in which we are not focused.
This implies that the operators who are rcsponsible for the increase of LCS agent
variation should act on the reward policy only. Therefore, the agent control model, the
host of the LCS reward policy. should be designed taking this requirement in mind.

The second question aflècting the a-9ent control model is the choice of the most sr,ritable
way to expless a LCS rtward policy. If we recluire genetic operators to act on a LCS
reu'ard policy, as we mentioned, something must be said about the structure of the
rewald policy (what we call the revç,arcl regime). Should the criteria establishing the
t'eward policy. be expressed by a fitness f'unction? Should this function be linear? What
rervard policy parameters should be chosen to be evolved'l Is there other ways to
express a reward policy. otlrer reward regimes. that might suit evolution'?

We believed the issues underlyin-e tlrese questions deserved a careful study. The study
rvas caried out in r.r.,oorÀ-type (Wilson, 19947 envilonment that we called Saat,ana (fig.
3). ln this environment, a population of synthetic LCS based antelopes was subjected to
evolutit ln in order to inrprove the antelopes abil ity to increase internal energy (E).

filÉ Edr Y,Eh Iùl' lelr

g l?lv lÛtE

Fig.  3:  S( / ( / r ' ( r , r ( |  s  snapshot .
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I Clase Study Description

The antelopes biological model relied solely on the value of individual internal energy.
The internal energy value could increase. if an antelope ate tbod cells, or dectease, if an
antelope could not manage escaping the l ion that also inhabited the environment. The
antelopes died when their energy level reached a minimum value. Breeding occurred
when the level o1'the antelope internal energy reached an upper thteshold.

The core o1' the antelope control nrodel was a LCS (called coortlinutor LCS), deciding
the behaviour the antelope should fbllorv: eating or escaping. The decision was based on
the couple of presence brts delivered by the antelope sensor modules - clne sensing the
pr€sence of lbod cells in the neighbouring cells, the other sensing the l ion position. The
antelope urchitecture is depicted in fig. 4.

Conlro l  Model

wor ld

0 0 0  \
1_l9li:1.01_J<'
@.U

ll eat I

l f  
" ' .p . }

- \
R I  \

coordinator  (  Rewatd 
)

\  svstem . /
LUù \=_-/

AE
Eiological  Modsl

Agent

l, bteed

lie

Fig. 4: LCS based antelope alchitectut'e.

The cooldinatol LCS is the only adaptive stlucture of the whole architecture, i. e., the
only source of individual variation in the antelope population, con€sponding theretbre

to the _euidelines stated above. Behaviours (eat and escope) and sensors (lion sensor and

.ftntl sensor) are similar in all antelopes.

Within the lif'etime of an antelope the coordinatot LCS performs its usual cycles
(pertbrmance, reward and revising), trying to find the strateg,y' that optimises the
system payotï (R). Notice that although the set of reward policies existing in the
population can change due to mutation rvhen an antelope bteeds. a particular reward

'Stlatesv is the set ofclassifiers existing in the LCS classit'iers database.

147



policy remains fixed within an individual's lifetime assuring a coherent evaluation of
the agent decisions.

3.2.2 Results

Concenting the case study results, which can be seen in further detail in (Seprilveda
1999, 2OO0), the first thin-q worthwhile mentioning is that it was demonstrated that a
population of virtual antelopes could develop good coordinator LCS reward policies.
This statement is conoborated by the comparison of the antelopes perfbrmance
measur€ments taken flom the traditional "hand-designed" fitness function leward
regime(eq.  l ) , to themeasurementstakent ' romthecoupleof  evolut iverewardregimes
expedmented.

R = C r ' t ' A E + C ' :

This is a verv inrportanl" result because it allows LCS designers to provide the
parameters that must be accounted firr in the calculation of the system payofÏ, without
having to specity the relationships betrveen them. Evolution takes carc of it.

Besides this result. our primary -eoal. the study helped us clarify some aspects re-earding
the choice of reu,ard rrgimes. Tu,o evolutive leaming re_eimes were designed and
evaluated.

ln tlre first one - purunrcterised lrernrittg. the numerical parameters of the coordinator
LCS fltness function (Cr and f3. see eq.l.; rvere coded in an 8-bit genome. This genome
was nrutated whenevel the virtLral antelopes bred, aiming, this way. to optimise the
piu'ameters values.

The second evolutive rervar'd regime tested - at,olvuble leuntirtg, was implementcd
using an additional classifier systern (rev'urtl LCS). u,here individual classitlers
replesented specil ic reward critelion. The classifiers condition coded thc values of the
parameters we thought it u'ere impr'rrtunt to relate to the payotÏ valuc. Thc reu'ard
classitiers action proposed the payoff value to deliver to the coordinator LCS (fig. -5).
Both learning cycles of the rervard LCS were disabled maintaining a stuble telvard
strate-cy throughout an antelt-rpe lit'e. When an antelope brceds. the leward LCS strategy
is copied onto its offspring. After the classifiers copy, a fl 'action of thc otl.spring rervard
classitiers is modil ied by the action of the mutation operator.

00 1l  :  l0
- - -

rF[ .  [0 .0.1(x) .0] . l t ie  [o .o. ro.o I  rHe NR=.; .0

Fig. 5: Example of a reward LCS classifier.

( l )
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The interaction betrveen the coordinator LCS and the reward LCS can be best

understood followin-e an example:

L An antelope detects a fbod cell
in its surroundings. The presence bits
al€ computed and the conesponding
message is sent to the coordinator
LCS

2. The coordinator LCS selects
the classifier determining the antelope
behaviour. The eating behavioul is
performed and the food is collected,
ending the coordinator LCS
performance cycle.

3. The coordinator LCS reward

cycle starts. E and AE are encoded in
reward LCS messages.

4. A reward classifier is selected.
The payoff value expressed in the
selected classitier action is assigned to
the coordinator classifier that
triggered the eat behaviour.

Agent
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The results showed that the reward regime producing better results was the evolvable
learning regime. This regime, besides producing better coordination LCS strategies,
evolved quicker than the parameterised learning regime.

The determinant factor behind these results is T.he granularit,t provided by the reward
LCS. Granularity can be viewed as a property reflecting the degree of independence
between each reward cdtedon. In this sense, continuous fitness functions (like eq. l) are
non-gmnular, since they force a relationship between payoff values coresponding to
situations that might not be correlated.

4 Questions to answer

The results provided by our pdor work seem to have validated the use of an
evolutionary approach aimed to generate LCS lewald policies. But our case study was
very simple, leaving yet many questions unanswered. On the next sub-sections we will
try to clarify some of the issues that werr not sutficiently addressed in previous papers
and that underlie many of the approach relevant questions.

4.1 Reward Regimes

As we have emphasized earlier, the rcward regime that seems to guarantee a better
leurning el'ficiency is the evolvable leaming rcward regime. From the results gathered,
we assrtme that a reward regime with some degree of granularity is preferable to a
continuous (or global) one.

We think however that it is not necessary to define an additional LCS to support a
sranular leward regime. like we did in the case of the evolvable learning regime. We
did it because, flom our point of view, it was easier to introduce an aclditional LCS than
other kind of data structure. The LCS is not needed because none of the so-called
lelmin-g cycles are used. since it is not requircd to chan-ee the reward policy during an
indiv idual  l i fè t ime.

Apparently, u,e.iust need a data structure able to support a table of independent peward
criterion. But, if we want to define a suitable evolutive reward regime, there are
evidences pointing to the inclusion of some LCS t'eatures in a well-designed granular
leward regime.

One is the abil ity to express cltrsters of rules. AlthoLrgh it is advantageous to have
several rervard criteria not related with each another. there are cases in which different
events might be payoft '-equivalent. A classifïel expresses this situation easily by means
of'the LCS alphabet universal symbols.
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Othet is the LCS atri l i ty to cover inputs. If the rervard policy is supposed to provide a
payoff rvhen a range of events occurs, then there either must exist criterion covering the
r.r,hole event ran,qe. or it must exist a mechanism (l ike the LCS cover operator) able to
generate the reward criterion that may be missing.

Concluding the discussion concerning the reward regimes, we cûn say that a promising
rewald regime should be granular, able to express fitness reguladties and that it should
['le ptovided a rewald reginre cover opel'ator. Fitness functions do not seem to provide
etÏcient reward le-gimes. because they requirc the system designer to ptovide a clue
ubout the actual expression of the function (continuous or non-continuous, l inear,
cluadratic. etc). Other aspects related to reward rcgimes desene morc analysis. In
pat't icular. onc of the most peil inent is the study of the rclationships tlrat seem to exist
betrveen tlre agent biological moclel and the rewalcl leginre.

1.2 Evolution Parameters

The paths lollowed by the evolr.rt ion process art intimately l inked to the
parametelisation an individual biological aspects. We adopted the simpler evolutionary
model gueu'unteeing us thc viabil ity of our approach. The evolutionary model main
design options were: asexual rcploduction. mutation lnd natural selectiort.

The choice betu'een sexual or asexual rcproduction determines in -9reat extent the
genetic operiltors to be used. We tèel that sexual reproduction can hring benefits
hecause this option enables the application of the crossovel' operator to pal€nts rcward
pol ic ies.

Another relevant aspect related also with reproduction is the u'ay to init ialise the
internal model of a new LCS agent. One hypothesis is to init iulise it randomly; the
traditional rvay of init ialising a LCS. Another hypothesis is to copy the parent internal
model to its offspring, consubstantiating this way a process of social ttansmission,
which can be vierved like a kind of cultural or social legacy. In our case study, it was
used the social transmission hypothesis. The irnpact cuused in the experiment results, by
taking this option, was not assessed.

From the evolutive point of vierv. the most imporlant attributes of an individual arc the
ones conditioning natural selection. Many of these attributes are very dependent on the
application domain and therefore it is hard to plovide general guidelines to their
parameterisation. But if we intend to induce the emergence of a reward policy, there is a
dimension of the LCS a,sent "life" deserving to be carefully analysed: time.

The implications of time on the LCS agent "life" ale related to the poor perfbrmance

exhibited by LCS agents during the first simulation cycles after their generation. The
low perlbrmance level exhibited during the LCS agent "infancy". corresponds to the

time span needed for a LCS to find a set of classifiers optimising the system payoff (the
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LCS leanùng inertia). The agent still has not leamed (through the reward cycle) and
discovered (through the revising cycle) the rules, which optimise the system payoff.
Therefore, therc is no point in allowing the agents to breed as soon as they are born
since the performance that they might exhibit is not related to the "quality" of their
leaning process. So, when we think on establishing the number of cycles that a LCS
&gent must perfbrm before it is able to breed (its se.wal maturity), the LCS learnin_e
inertia is a factor to be considered.

Regardless of the design decisions concerning evolution we have briefly described,
there is still much work to be done in order to tune the parameterisation of the genetic
operators. If the reward system is _9r'anular. how should mutation be applied? For
instance, in our case. where the rcwald rc-einre rvas based in LCS, we have mutated a
traction of the reward LCS classifiers 'uvhen an antelope bred, promoting this way the
exploration of the reward policy search space. But other parameterisation criteria could
be conceived. Regarding clossovel(w'e did not use it in our case study), therc is an
additional t 'actor to deal - maintaining the rcwud policy coherent, i.e.,joining rcward
criteria covefin-9 the same inputs leaves without lesponse other type of situations. One
idea to overcome this situation is to provide a semantic for the reward regime and then
to swap equivalent reward policy "pieces".

5 Extending the approach to XCS

One point that we wished to attend when we pertbrmed our case study was to assess the
application of our approach to othel types of classifier systems and. in particular, to
XCS. The interest on XCS is due to the body of tlreoretic work developed lbr these
systems. which can help us solvin_e many of the problems we have mentioned so tàr.

we think that the extension ol' our approach to XCS agents would not present any
trttuble (we hope to do it in the nerr future). The XCS definit ion ol uti l i ty. rvhich is
diftbrent tbrm the one defined in the scopc of standardLCS. does not botherus. since ir
does not aff'ect the output and structule of the system rcrvard policy. The structure of the
XCS reward system is similar to the standard LCS rervarci system. ahhouglr the
modifications pertbrmed in the XCS rcrvard system description (including explicit ly the
requir"ement oi the reward system to provide an end-of-prclblem flag). The emplrasis on
the XCS fitncss landscape re_eularit ies even seems to suit better out' approaclr.

One of the questions that might be unsu,ered using the XCS fiamework is the one
plesented earlier regarding agenl" sexual maturity. Due to the similality betr,veen Q-
leaming and XCS, there is hope that in the near future it wilt be tbund the number of
cycles that a XCS will take to converge to a solution. This result would solve the
problem regarding the definit ion of a XCS agent sexual maturity and u,ould celtainly
provide a -quideline, r 'egarding the patameterisation of this variable in other types of
LCS based agents.
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6 Conclusion

ln this paper we ttviewed the evolutionary approach we ptoposed in plevious papels

regarding the emetgence of a LCS reward policy. We formalized some aspects of our

approach, proposing a general model for an LCS based agent. Additionally, we

identified arcas that arc worthwhile pursuing in terms of teseatch: one is the area

concerning the search for reward rcgimes supporting the evolution a LCS rewatd policy:

other is concerned with the parameterisation of the evolution process itself'. In both

areas the main problems were analysed and, either specific solutions or general research

guidelines were proposed.

Finally, we discussed the extension of this approach to XCS agents and defended that

the extension not only can be pertbrmed straightforwardly, but also that it can provide

answers to questions that remain open, like the detinition of the sexual matudty of an

evolutive agent.

Although the infancy of the approach, we think, based on the results gathered so tàr,

that the use of evolution to tune a LCS reward policy is a path wofihwhile to explot'e.

We hope that this paper becomes a map for those who want to follow it-
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