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Abstract

In this paper a leaming system of user action is proposed. It is constructed by

combining an ultrasonic phase measuring method with an artificial pulse neural network

by analogy of a physiological model of auditory processing.
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l lntrcduction

Among various computer input devices, keyboard and mouse have been used for the

standard input devices of computer systems. Their performances have been examined

and improved as years go on, but several inconvenient characteristics are still remaining.

For example, a computer user is required to operate them on a level plane and to sit still

in front of the computer, therefore, mouse is sometimes substituted by trackball,

pointing-stick, touch-screen, touch-pad, stylus pen, and so on. The purpose of this study

is to release computer users from such constraints and to allow them to work in arbitrary

styles with free posture. Our system will be also applied to an auxiliary or additional

input device of ordinary VDT tasks, the device for users with physical disabilities, and

so on.

Ultrasonic waves are used for various methods in position measurement, object

identification, object localization, imaging and so on (for example, (marioli 1992),

(Figueroa 1991), (Sutherland 1968), (Nonaka 1991, 1993), (Arai 1983), (Wagdy 1987),

(Læwis 1998)). These are conceptually classified into two types. One is based on the

pressure level of ultrasound, and the other on the time of propagation of ultrasonic wave.
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Moreover, the latter is classified into continuous wave type and pulse type. In the case

of continuous wave type, the distance is measured by the phase shift between two v/aves

(Nonaka, 1995).

By the way, living organisms recognize sound direction using the difference between

two sound signals from a pair of auditory rec€ptors (ears). It is knovm physiologically

that the sound-source localization is achieved by inter-aural time difference (ITD) and

inter-aural level difference (ILD). For example, in the case of primates, the former is

effective at lower frequencies, while the latter is effective at higher frequencies. And in

the case of owl, horizontal localization is achieved by the former, while vertical

localization is achieved by the latter (Knudsen 1987).

Left ear

Right ear

Fig. 1: A model of sound-source localization by inter-aural time difference

This physiological knowledge is applied to sound localization systems, artificial models

of the acoustic localization, and so on (Huang 1988), (Kuroyanagi 1994, 1996). In the

field of virtual reality, it is utilized to construction of virtual acoustic displays. By

translating these descriptions of the audible sound source localization into those of

ultrasonic measurement, the techniques of detecting ITD and ILD correspond to those

of phase difference and pressure level, respectively.

Yoneyama (1992) proposed an object recognition system by combining imaging by

pressure level of ultrasound with neural networks, and in 1997, realized a 3-D object

recognition facility with 64 ultrasonic sensors based on a 3-D imaging system

(Watanabe 1992). On the other hand, we have proposed a 3-D object identification
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system with 3 ultrasonic sensors, combining an ultrasonic phase measuring method with

a pulse neural network (Nonaka, 2000).

We have constructed a pulse neural network by hardware implementation, which is
based on a simple modeling of the inter-aural phase difference detection, in order to
apply direaly the information of phase difference to the neural network. Consequently,
the number of sensors is reduced by restricting the purpose to only the object
identification and omitting the imaging. In the lower part of the network - the first
layer and the second layer -, the processing is parallel and asynchronous, therefore, the
execution time in the lower part of the network does not increase with the number of
sensors and units. But in the second, third, and output layers, the back-propagation
method is used with a deterministic feed-forward network. Thus, static objects alone
can be identified by the system.

2 Pulse Neural Network

The essential idea of the pulse artificial neural network is the use of architecture and
learning paradigms from the biological knowledge. It allows us extracting of not only
the spatial structure but also the temporal structure from a set of data without a priori
knowledge of the object.

Eckhorn, et al. (1990) proposed the pulse coupled neural nerwork (PCNN). The pcNN

is a physiologically motivated artificial neural network for visual sensory system that is
composed of artificial spiking neurons. It models after the characteristics of the pulse

height, duration, repetition rate, and modulatory interneural linking observed in
biological dendrites in visual cortex of monkeys and cats. It is utilized in scene
segmentation, object detection, image smoothing, feature extraction, and so on
(Eckhorn 1999), (Broussard 1999). Interested readers may find various applications of
PCNN in the same volume - "Special Issue on PCNN" in IEEE Trans. on Neural
networks 10(3), 1999 -. Kuroyanagi and Iwata (1994, 1996) proposed an auditory
pulse neural network model to extract the Inter-aural time and level difference for sound
Iocalization. They constructed models of medial superior olivary nucleus and lateral
superior olivary nucleus, which stand for ITD and ILD, respectively. Pulse neural
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models are implemented by analog circuits, digital systems, and so on (Frank 1999),

(Jahnke 1999), (Ota 1999).

An example of models of pulse neural network is shown in Fig. 2, and the principle of

pulse neural network is shown in Fig. 3.
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Fig. 2: Example of model neuron.

l, -.t

lr-)G'r\ 
il.lr.

Fig. 3: The principle of pulse neural network.

In this paper we propose an extended system with 8 ultrasonic sensors. Moreover, pulse

neural network is applied to not only the lower part but also the higher part of the

network, and parameters of each cell are improved by spike-based learning instead of

ordinary error back-propagation, in order to identify moving objects and action of

computer users.
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3 Constnrction of the System

Eight sensors are arranged equally around a circle with a radius of 18mm, and a
transmitter is positioned on the center of the circle. These are embedded in an
ultrasound-absorbing sheet. The anangement is shown in Fig.4.

Transmitter

. '..€

I 60mm

Fig. 4: The arrangement of sensors and a transmitter.

The continuous ultrasonic wave (40KHz) generated by the transmitter reflects on a
moving object and reaches the sensors as shown in Fig. 5. The sinusoidal signal of
40Krrz from the sensor is converted to pulse-trains a,(t) by a voltage comparator and

function generator in the first layer.

Ultrasonic wave

Fig. 5: Transmission and reflection of ultrasonic wave.
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The network architecture (first layer and second layer) is shown in Figs. 6-7. Second

layer consists of eight groups, and each group consists of 256 units. The pulse trains

generated in the first layer are transmitted to the second layer of neural network.

Fig. 6: Connection between 1"'layer(a) and 2nd layer(p) .

Ftg. 7: Connection between L"'layer and 2no layer (detailed).

The mathematical description is summarized as follows. Though our system simulates

the pulse neural network in discrete-time, we stay for a while at the level of the

underling concept with analog description for convenience. When a pulse ar(t) reaches

the j-th unit in Èth group of the second layer from l-th unit in the first layer at 1,, a local

potential Pu@ is generated and decays exponentially with time constant \l

Fulr1=e-ktt)t\?{(t-l,), where ?l represents the Heavyside step function. ln the
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/  i+ l(dr)  \

second layer, local potentials are integrate dby 8,,(l = f [ 2 .n\n(r)\. wn is the'  
\ t : !  I

synaptical strength. f (' ) is the activation function: f @) - e'(-to)/t2, where to

denotes the time when .r exceeds the static threshold 0 , which is chosen empirically.

z, is the identical time constant of second layer.

These signals from the first layer pass through delay lines. The summation of local

potentials increases as the time dispersion decreases, therefore, each unit in the second

layer becomes active only when it receives each signal with the specific phase

difference.

Fig. 8: Connection between 2"d layer(B\ and 3'd layer(y) .

In our system, the netrvork is simulated in discrete-time. A continuous time period

(40KHz) is divided by a counter (LO.Z4MHZ), therefore, the data in the first layer is

expressed by an integer from 0to255. Each unit in the second layer is connecled with

two presynaptic units in the first layer, then the time interval between two inputs crr

and a,*, can be used instead of the local potential 8,,(t), i.e., a spike is generated by

Bu in the second layer when la,u 
-o,- dul becomes smaller than \, where { is the

time threshold, and d,, is the time delay of the unit B,, .
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v nQ\ -, (''$" *,r.,(4)) .

The network architecture of second and third layers is shown in Figs. 8-9. Third layer

consists of four groups, and each group consists of 65536 units. When a pulse fl.(t)

reaches the È-th unit in Èth group of the third layer from i-th unit in the second layer at

f,, a local potential in(t) is generated and decays exponentially with time constant

rzi i n() = 
"-(r-ri\ttz 

. 1n the third layer, local potentials are integrated by

S( 
' 

) is the activation function: g(x) - 
"-\t-to)tq, 

where

to denotes the time when x exceeds the threshold 0 . r, is the identical time constant

of the third layer.

Similarly to the first layer, these signals from the second layer pass through delay lines.

The summation of local potentials increases as the time dispersion decreases, therefore,

each unit in the third layer becomes active only when it receives each signal with the

specific phase difference. Moreover, the network is also simulated in discrete-time.

Each unit in the third layer is connected with two units in the second layer, therefore,

the local potential y nQ\ can be replaced by the time interval of two presynaptic inputs

B, and B,*n.

Fig. 9: Connection between 2"d layer and 3'd layer (detailed).

i  = 0 , r , 2 , 3
i = i * t
I = o, r. ... ,6s53s
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where {tt ,

F , :
0 :
F, l

W-' i

Fig. 10 illustrates the network architecture of third layer and fourth layer. Some of
65536 units are selected from each group of the third layer, and signals from four units
are summed up through leaky integrators. Conceptually, in the second layer and the
third layer, phase difference is measured by pulse neural network, on the other hand, the
frequency of pulses are measured in the fourth layer. The mathematical description is as
follows.

ô,(r) = 
à. uàru,,1t 

- t!D)

7,  =1 t l f ) ;1 .  f  .n I={ t16 , ( t ) -0 }

f, - {i I j presynaptic to i}

the firing time of neuron x.

the set of all firing times of neuron x.
if threshold d is reached by ô,(r), neuron.r emits a spike.
the set of neuronsf presynaptic to r.

the synaptical strength.

Each unit ô, corresponds to a user's action, conceptually, there are 8, 2048 and

524288 units in the first, second and third layer, respectively. But in our simulation

system, 8, 8n and ) card(F,) units in each layer are computed for n actions.' 2 .

Fig. 10: Connection between 3'd layer (y) and 4'h layer (ô) .
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4 Experiment

Finger numerals were used in the experiment (Table 1). The 3 sets: u0-9u, u0-5u and "6-

9" are tested. The right hand was positioned in front of the transmitter at the distance of

about 20[cm]. The input data was separated into t$/o sets for each numeral: 100 trials

for training and 100 trials for testing. During the experiment, The state of each layer and

each unit is monitored through the monitoring window (Figure 11).

lbble 1: Finger numerals: 0 - 9
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Fig. 11: The monitoring window of pulse neural network
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The experimental results are shown in table 2 and 3. Table 1 shows the number of
correct identifications for 100 trials for 3 sets. Table 2 shows the duration for
identifications.

Table2: Number of correct identifications for 100 trials.

Table2: Duration for identifications (sec)(average of conect identifications).

5 Conclusion

We proposed a computer user action learning system with pulse neural network and
ultrasonic phase difference measurement. It is composed of eight ultrasonic sensors and
four-layered pulse neural network. The network is simulated in discrete time. In an
experiment, finger language - a set of manual numerals - is tested in an environment
of virtual VDT tasks. The experimental results show that the proposed method is
profitable for menu-driven graphical user interface (up to 5 menus). Further research is
in progress on applying the system to more complex tasks, for example, text editing,

and evaluation of the performance in real computer operations. Moreover, some

extensions are under way: 1) refractory period to each unit; 2) Hebbian learning to the
synaptical strength; and 3) lateral inhibition to the network structure.

Numerals 0 I 2 4 5 6 7 8 9

Setl "0 - 9" 67 72 68 48 46 67 46 45 29 33
Set2 "0 - 5" 97 95 97 94 92 96

Set3 "6 - 9" 52 48 47 40

Numerals 0 1 2 J 4 5 6 7 8 9

Setl "0 - 9" .89 .88 .45 .66 .77 .M .90 .97 .89 .91

Set2 "0 - 5" .45 .54 .37 .43 .43 .37
Set3 "6 - 9" .77 .87 .87 .91
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