
Music Rhythm Recognition Through Feature Extraction and
Neural Networks

Giovanna Morgavi, Mauro Morando, Daniela Barattax

lnstitute for Electronic Circuits, National Research Council, via De Marini 6, 16149
Genova Italy

xPhD at Institute for Electronic Circuits, National Research Council, via De Marini 6,
16149 Genova Italy

Fax: 39-010-647 5200; e-mail: morgavi@ice.ge.cnr.it; http//ge.cnr.it

Abstract

In this paper a procedure to solve the problem of recognition and classification of

sampled musical rythms is presented. The lack of precise rules for doing this analysis
makes difficult and often ambiguous the automatic execution of a cognitive process

naturally performed by human brain. This procedure can be extended to the
classification of any signals showing similar characteristic (i.e. EEG or ECG). Due to
the complexity of the time dependence, standard procedures used for chaos

characterisation (i.e. correlation dimension, Lyapunov exponents, etc) can fail.

Moreover a direct usage of artificial neural network can introduce too many
optimization variables. The proposed procedure can be organized in two phases: the
extraction of some new type of invariant from the sampled time series and the usage of

this extracted features as input for a classifying standard neural network. This system
was able to distinguish between binary and ternary signals with a precision of 99Vo.The
single rhythm was classified within an error of 5Vo. This system seems to be able to deal
with the behaviour that characterises a musical rhythmic sequence, and to classify
patterns independently of the musical instrument and tempo.
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L lntroduction

The chaotic signal recognition and classification is a relevant scientific problem in a
wide range of practical applications: from the failure detection in mechanical equipment
(Malher, 1994) to illness diagnosis in medicine and biology. The analysis and
classification of chaotic signal involves extracting significant features from sampled
time series that lend themselves to easier interpretation. Real chaotic signals are usually
difficult to be directly processed. ln the classification field, the complexity of this type
of signal cannot be sufficiently represented by the computation of some paxameters like
dimensionality, Lyapunov exponents and entropy. The large number of zeros collapse
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the usual procedures to compute these parameters. On the other hand, the large number
of noisy data doesn't allow the direct usage of artificial neural network. Dimensionality
reduction as a pre-processing step for classification of signals before using a neural
network could be more effective than trying to classify unprocessed signals because
smaller networks can be used and it leads to easier classification.

2.Data

In this paper a procedure to solve the problem (Rabiner et al., 1975) of musical rhythm
recognition and classification is presented.

TIN,IE AXIS

Figure I Time sampled signal of soul, waltz and samba rhythms played with different
instruments
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This procedure can be extended to the classification of any signals showing similar
characteristic (i.e. E.E.G. or E.C.G.). lnput signals are sequences of discrete values
obtained by sampling at frequency of 44100 Hz musical rhythm chosen among six
different types: tango, soul, samba (duple rhythms), waltz, joropo and march (triple
rhythms) (Martini et a1.,1995). These rhythms were generated by a MIDI sysrem,
playing different instruments (two kind of drum. one piano, one pure tone (sinusoidal
generator)). The music was played with four different tempos: 108, 120,138 and 160
beats per minute and with 3 different levels of rhythm complexity. Each sequence was
played for 60 seconds. In figure I and in figure 2, as an example, the plot of some
rhythms with minimum complexity are shown. The values of sampled signals were
normalised within the range [-1,1] and each plot shows the behaviour of the first 300000
samples.

Figure 2 Time sampled signal of joropo,tango and march rhyhms played with different
instruments
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Figure I and Figure 2 show that the signals are not periodical. The lack of precise rules
for doing the analysis of such a signal makes difficult and often ambiguous the
automatic execution of a cognitive process naturally performed by human brain. The
emergence of the essential role of the temporal dimension in the dynamics of the
sensory cortex for invariant extraction and dynamic reconstruction of a complex input,
suggest an alternative to the standard classification systems.

Figure 3: Phase portraits for rhythm t120t1m (tango, tempo120, Drum number 1,
minimum complexity) changing the r value

The alternative consists in considering the input as a dynamic system (at least chaotic)
from which the cognitive system extract interesting invariants to construct an inner
dynamic representation of the input. Since in music sampled signals the time
dependence is very complex, standard procedures used for chaotic signal
characterisation (i.e. correlation dimension, Lyapunov exponent, entropy, etc) can be

+

+

+

X

+

+

t = 1 0

r = 1 0 0

1 1 8



insufficient. Moreover the large number of zeros can induce false high dimensions in
usual algorithms. The proposed procedure can be subdivided in two consecutive phases:
the first of which is the extraction of invariant from the sampled time series and the
second one is their usage for classification through a standard neural network.

3. The feature extraction

Figure 4 Phase portrait for soul, waltz and samba rhythms.
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A real dynamic system may be considered as govemed by a large number of freedom
degrees. It can be described as: i = F(x) ,were i is a vector in fr' such that each
component represents a dynamic system characteristic variable and F is a vector
function. If a component x,(/) ofx can be measured, it is possible to extract
information on the model of the physical phenomenon if a system j,=G(y) can be
written, were y is a vector in Sr such that flt) is coincident with the measured x,(f)
(m, is usually not known). A good reconstruction process can be mathematically
described as an embedding.

Tango

Figure 5 Phase portrait for joropo, tango and march rhythms.
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The embedding is a smooth mapping that is a diffeomorphism from the manifold to a
sub manifold of S* space, where /r is the embedding dimension. In the literature it is
known that multidimensional phase-portraits could be constructed from measurements
of a single scalar time series (Takens, 1980). Practically, the values of lr) are k
different values of x, sampled at different time steps before r.
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Figure 6 Grid on the phase protrait diagram

Time delays 1 such that: /, (/) = xr (/ * (i -l)* î), (i =l,k) can be used. The choice
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Figure 7 New time series generated for a tango rhythm played with druml
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of a 'good't is, in principle, arbitrary as long as it is not related to the samples, but, in
practice, if it is too small the coordinates become singular, so that rr(t) is coincident
with xr(t + (k - l) * r) . If î is too big, chaos makes x, (/) and xr(t + (k -l)* r)
casually disconnected. In practice t is often chosen by trial and error, starting with a low
value and increasing it, searching optimal results. In literature both zero of
autocorrelation function and minimum of mutual information (ott et al., 1994) are
suggested. Both these suggestion were not usable due to the characteristics ofthis type
of signal (i.e. number of zero values). From the other hand, our goal is to find a good r
to underline differences between rhythms. The best r will not be the best respect the
single signal, but a good one to classify the differences between them. The
classification based on differences is a typical human behaviour: no one is able to
recognise white noise, but everybody can identify even a small change. kr Figure 3
phase portraits for a tango played by drum with different time delay are shown: they
show that if t is too small or too large the plot unrolls on a diagonal. The empiric
research of a good t required many trial: finally we chosen t=56.

Figure 8 New time series generated for awaltz rhythm played with druml

Figure 4 and in Figure 5 phase portraits for rhythms of Figure I and Figure 2 with t=56
are shown. In the rhythm the concept of time is foundamental: the state space has been
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divided by 9 squares as shown in Figure6. A new time series containing the information
of the time step occupancy in each square have been generated: for each square, and
each sampled signal, 9 new time series containing the occupancy time in a square and
the number of visiting in the others have been created. The most significant reduced
time series (the one around the axis origin) has been chosen as input to the artificial
neural network.
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Figure 9 Central square time series for soul, waltz and samba rhythms played with
different instruments
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4. The neural network

The classification of different rhythms has been carried on by an artificial neural
network implemented with the Back Propagation algorithm modified to reduce the
convergence time. Then a Multi-Layer Perceptron was trained by epoch: the weight
values were updated after the presentation of the whole training set.

Figure 10 Central squ,ue time series for joropo,tango and march rhythms played with
different instruments
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The Vogl (Vogl et al., 1988) acceleration algorithm has been introduced; this procedure
update also the learning rate 4 and the momentum cr based on the network performances
on the whole training set. Let define C,* the cost of the actual epoch and Coa the
previous cost:
. if Cn", l Cou then the weight update is accepted md 4** :KtTlaa; ûF ûo
. if Cota 3 Cr",3 Kz Caa then the weight update is accepted arrd Tl,",u :KjQ66 ; a= 0
. if Cn",> KzCaa then the weight update is not accepted and 4,"n :Ks1aa I ua 0

where Kl, KzëD and K: (<1) are constant
The problem of the definition of the architecture of the MLP is hardly discussed in
literature. It is well known that a feedforward network with two layers is sufficient to
store any number of patterns if a sufficient number of hidden neuron is used (Hertz et al.
1991) .The number of neurons in the hidden layer is a concern in the application of
neural networks to signal classification. A rule of thumb (Baum et al., 1989), known
as the Baum-Haussler rule. is used to determine the number of hidden neurons to be
used:

rr - NrroirErol"ronr'"
l Y h i d d *  j  

N r , + N . , *

wltere N1ri67"n is the number of hidden neurons, Nooinis the number of training examples,
Ero!",on"" is the error tolerance, Npr is the number of data points per training example,
arrd Nouprl is the number of output neurons. This rule generally ensures that neural
networks generalize, rather than memorize.

5. Results

Since the resulting classification system should be able to recognize a musical rhyhm
independently from the starting point, we extracted several input patterns from each
input signal by shifting a window along the time axis.

Table I Classification percentage errors for tango, samba, march and joropo rhyhms.

dimension Number
of
iteration

ct, n 7o errorS On

input hidden Training set Test set

20 10 7879 0.8 0.09 0 1 . 6
20 l 8 14317 0.9 0.5 0 2.1

In such a way we build 1500 training and 1500 test time series for each sampled signal.
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First we analysed the classification of tango, samba, march and joropo with 120 steps
per minutes. Many staning points for wait values have been tried: best results are shown
in table 1.

Table 2 Classification percentage error in the training set with the whole data base for
single rhythm types

With the whole data set in input the classifying system was able to distinguish between
duple (tango, soul and samba) and triple (Waltz, joropo and march) rhythms with a
precision of 99Vo. As an example in table 2 the training percentage error of classification
for the single signal (played tempol2O steps per minute) is shown. This MLP was
composed by 20 inputs, 800 hidden layers: the test percentage error was 8.97o. With the
whole data set, single rhythm was classified within an error of SVo, the percentage
generalization eror was l0.IVo.

6. Conclusion

In this paper, a scheme for time series classification with a neural network has been
proposed: it consists of two phases: feature extraction from input patterns, and
construction of the neural network classifier. A new procedure to extract features has
been proved to be effective in characterizing input time series. A neural network
classifier has been constructed that takes into account input features and achieves
accurate results. The Baum-Haussler rule has been used to determine the number of
neurons in the hidden layer. The proposed procedure seems to be able to deal with the
behaviour that characterizes a difficult signal such as musical rhythmic sequence, and to
classify patterns independently from the musical instrument and tempo within an
acceptable error.
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