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Abstract
In applied mechanics several papers concentrate on the comparison of delayed

and non-delayed approaches of controlled machines. We may study both continuous
and discrete time systems, by using both numeric and analytic methods. These
analytic methods are from the qualitative theory of differential equations like Lya-
punov's indirect method, or the use of monodromy operator of discrete mappings
and the basic bifurcation theory. The principal points of interest in the following
work are how continuous time system differs from its representation as some discrete
time system in stability and robustness and how the discretisation of a continuous
time subsystem acts on the stability properties of the coupled system.
Keywords : discretisation, delayed differential equations, simulation

L Introduction

The stability of controlled mechanical systems is a key aspect. In numerous prob-

lems of mechanical engineering a machine is controlled by a digital device to perform
some task [7,8,9,10,11,I2,L3\. Such system has essentially two different parts. The
one is the machine in the sense of mechanical engineering. It is usually described as
a continuous time system by using one of the traditional methods of applied mechan-
ics. The other subsystem is the discrete controller. Generally we have a complex
nonlinear system of a continuous time and a discrete time subsystem. Instability
may arise from either the continuous or the discrete time parts.

In the problem of balancing the source of instability is mechanics, an unstable
state of a mechanical system should be stabilised by using some sort of control. Such
case u/as investigated in our previous paper [1]. Then the equation of motion was
derived for a simple controlled inverted pendulum with length I and mass rn (see
Fig.1). The pendulum was attached to a cart with a hinge and its stability was
achieved by applying force .F to the cart
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By using Lagrangian formalism the equations of motion are
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Fig. 1: Simplified model of an inverted pendulum on a cart

where the two generalised coordinates are the position r of the cart and
angular position t9 of the pendulum measured from the upwards vertical. On
right hand side of (2) the control function Q is

Q ê F (t - r)) : 
"rrit 

(t - r) + csû (t - r) .

In (3) the control function

Q : F ( t - " ) (4)

is based on delayed values of variables. By some techniques, it is possible to compute
an anticipatory control function

Q e :  F  ( t ) (5)

based on the present values of variables (see for example, Dubois [14]). In this paper,
we do not give the techniques to obtain Qa,and we just consider the two cases: Q
and Qa.

There a,re two different ways of thinking in investigating the dynamics of the con-
trolled system (as it is described in our previous paper [1]). In analytical mechanics
the simplest possible system of equations is used. \Mhile the mechanical system has

the
the

(3)
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a single degree-of-freedom we may express ir from (2) and substitute into (1) and
then the equtions of motion are

-  3s indcosr9 ' "  6ss ind  6cos t9
^ A - - - - - - - - - - - - ^ Q z t  

- o -  
h ' ( + -  - \

4 - 3 c o s z û " '  ( 4 - 3 c o s 2 T 9 )  t  ( 4 - 3 c o s 2 û ) m l '

F (t - r) : ci) (t - 
") 

+ cnÛ Q - r)'

When from (7) F is substituted into (6), a single equation

.; 3 sin t9 cos d ;, 69 sin rl
û : -------:--'---==ù' * -"  4 - 3 c o s 2 t 9 - '  ( 4 - 3 c o s 2 t 9 ) l

ei#+;- (""i 1t - r) +co?t(' - 1))'

(6)

(7)

is obtained for the only variable tÎ.
The other possibility is to keep the two generalised coordinates and force F as

unknown functions from (3) and then we have a system of three equation

3trg2 sin 19 cos tl - 69 sin rl 6F cos rl

(8)

(e)

, 9 :

; -

F ( t - r )  :

(-4 + 3 cos2 rl) I

39 sin tl cos d - 2ltt2 sinû

(-4 + 3 cos2 t9) rnl

4F

+

(-4 + 3 cos2 t9) (-4 + 3 cos2 û) m

c t j t ( t - r ) + c s û ( t - , ) .

A detailed derivation of the dynamical systems (6), (7) and (9) can be found
in [1] and it is followed by a linear stability investigation of the upright position.
Then the behaviour of the systems with delayed (4) and anticipatory (5) control was
compared by numerical analysis, which requires discretisation. Such discrete system
are widely studied in the literature of computing anticipatory systems [3,6]. Now
instead of numerical simulation we construct a discrete mapping and its stability
will be studied analytically.

2 Construction of Systems with Anticipatory and Feedback
Controls

2.L Reduced Order System with a Hidden Anticipatory Control

As we have already seen two ways are possible to get the equtions of motion, but in
mechanics the sets of equations (6), (7) and (9) are equivalent with equation (10).
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While (10) is a functional differential equation, in mechanical engineering we often
neglect delay effect to get an appoximate equation

ocosrl (cr'i (t) + 
"ûd 

(t))
(10)

(4 - 3 cos2 r9) rnl '

which is suitable for further analytical studies. As we have seen in the previous
part this step means to use an anticipatory control function Qa from (5) instead of
feedback Q of (Q. Now the question is, how the stability properties of the original
and the rrsimplifiedrr d5'namical systems relate to each other.

In case of the anticipatory control function (5) * incursive feed-in-time system

[14] is obtained

F (t) : 
"r'it 1t1+ cod (t) .

Let us introduce new variables:

Ut :19, Az :  i ) ,

then from (10)

ù : a z

( 1 1 )

6 cos gr1 krAz + 
"oy) (12)

4 - 3 c o s 2 y 1  " "  @ - 3 cos2 y1)l (4 - 3 cos2 y) ml

is obtained. To find the solutions of (12) a discrete time t € fts, h,. . . ,ti,. . .] system
will be introduced with constant time steps

ù:  to  +  i& t ,  where  i  :  I ,2 , .  .  . ,

and simplifying notations

u x ( i )  :  g p ( t n )  ( k  :  1 , 2 ,  i  :  1 , 2 , . . . )

are used. Now for the numerical integration of (12)

- -3 sin f cos d '" 6o sin r9
^q _ _^!. _L ____-___:=__ _"  4 - 3 c o s 2 d  "  '  ( 4 - 3 c o s 2 d ) l

s1(r + 1) : sr (i) + Lty2(i)

v2Q+r) : az(i)+(+Ï*trâ1Ù tu,Q))' (13)

,  
uqtt t tgt  (u) 

, .  ,  -  , ,  
6: 'co:Y'  

,@^, ,a2( i)(4 - 3 cos2 s7 (i.)) I (4 - 3 cos2 y1(i,)) ml"'
îqcosn (i) 

,, 
a

(4 -  3 cosz y1( i))  mt"L 
( i )  

)  
At

is obtained. Remark that expression (13) is a recursion, but it describes the behavior
of a system with anticipatory control (11).
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2.2 Multiple Variables with Feedback Control

Now we study the delayed system and use all the physical variables Û,r, F. Similarly

to the previous case we introduce new variables:

U t  :  1 9 ,  y z :  i ) , A J :  ï ,  A + :  ù ,  U s :  F .

From (9) a set of equations

y, (t)

3y3(t) l  s inyr cosgi ( t )  -  6gsingr ( t)

(-4 + 3 cos2 y1 (t)) I

6 cos yr (r) ss (t)
(-4 + 3 cos2 y1 (t)) ml

an (t)

3g sinllrr (t) cosat (t) - 2a3(t) t sin:yr (t)

( - 4 +  3 c o s 2 s 1 ( t ) )
aas (t)

(-4 + 3 cos2 y1 (t))  ̂

Us :  crYz(t  -  r)  + csYl(t  -  r)

is obtained. Let us introduce discrete time system as before. Using similar

simplifying notations

y p ( i , )  :  y p ( t 1 )  ( k  :  1 , 2 , . . . , 5 ,  ' i : 7 , 2 , . .  . ) .

and by assuming that r : At the numerical integration of (14) leads to a discrete

dynamical system

U z :

(14)

+

its :

ù+ :

a r ( i  +  7 )

y2 ( i +7 )

a r ( i  +  1 )

a4Q +  I )

arU)  +  L ty2( i )

, ., , ( zy| (i) l sin y (i,) cosyl (t) - 6s sin sl (z)
U z \ z ) - r  

\
6 cos yr (i) ss (i) \ ^,

( - 4 + S c o s 2 a / l i D m t ) ^ '

az1) + Ltya( i)

, . ,  ( 3 g s i n y 1 ( z ) c o s y l  ( z )  - 2 a g @ l s i n y l  ( z )
A q \ t ) - r  

\
(15)

4y5U)
( -4  +  3cos2 y ( i , ) )m

csz(i)  *  csh(i , )
) " ,

y5Q+r )  :
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Now to compare the effect of controls (4) and (5) we should study systems (15)
and (13). For this reason a linear operator will be constructed, which maps the i-th
state vector into the i * 1-st. This map is called the monodromy operator.

3 The use of Monodromy Operator in the Linear Stability
Analysis

The linear stability of a mapping can generally be investigated by studying the
eigenvalues À1 of its monodromy operator (see for example [4, 5]).

flip bifurcation

Fig. 2: Stability boundary and bifurcations in the plane of complex eigenvalues

In the complex plane of eigenvalues (see Fig. 2) the stable region is in the unit
disc and loss of stability happens when one of the eigenvalues leaves the unit disc.
The regions of three possible types of instabilities the flip, saddlenode and Hopf
bifurcations are also shown in Fig. 2.

For anticipatory case from the linearisation of the right-hand-side of (13)

u( i  +  1 )

az ( i+7)

h0)  + Lty2( i )

az(i)+ (.WP

ffu,u)-ffiur;Y) at
monodromy operator reads
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f r
A:  I

L o4# -af f  1

Its characteristic equation is

Lt

-6# l
^ 2  + 2

(-ml + 3cl  Af)  . 6 (Lt)2 gm - 6 (Lt)2 co - mI + 6 q (At) - 0

The solutions are

Àr ,z :7 -3éLL t *@

CO
q.J -

m,L

The stability condition is

lÀ l  <1

for all solutions of (16).
In the case of feedback control the linearized system from (15) is

s1(z + 1) : a{i) + Lty2(i,)

y2(i + r) : a\fa,@ + yz|) - a\4ari,)
ys(i + t) : az(i) + Ltya(i)

y4(i + r) : -sffar(t) + a+U) + agys(t)

vs1 + 7) : coa{i) * c1Y2(i')

and the monodromy operator is

1 af 0 0 0

6+ 1 o o -6#
0 0  r \ t  0

4+ o o t  4#
cn cy 0 0 0

(16)

where

é r :
g_
t '

B_
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Its characteristic equation is

d e t ( B - À I ) : g

where I denotes identity operator as usual.
Introducing 6: -1 f À the form of (17) is

(r7)

det

-€ Lt

6+ -e
00

4+0
co c1

000

o o -6e",1

-eL t  0

0-e4#
0  0  - s -1

: Q

(At)' (-"o-r sm) e2

thus

e5 + ea- U 
At (-cr + Atgm)e3

t -  
-o - 0

ml

6 : 0, that is, À : 1 is solution of multiplicity two.
This result is implied by the physical fact that the motion of the inverted pen-

dulum has a rigid body mode with indeterminate stability properties. Here the
stability boundary âppears for this reason.

To find the other roots

(18)

-u (at)'(-q + g"n) - n--a-:u

should be solved for À. The stability condition is again lÀl < 1 for the solutions of
(18) .

The stability domains of cases with anticipatory and feedback controls can be
compared, if numerical data are used. By fixing At : 0.005 and a : 1 we have
from (18)

( -1+  À)3+( - t  +  À)2-6  (0 .00s  -é ' ) ( - r  +  À)+0.0001b0a0-0 .000150:0  (19)

The solutions of (19) are plotted in Fig. 3 as functions of cà,0 : 4 and chl : *.
The same numerical data are used in the case of the anticipatory control. They are
substituted into (16) and Àa (i:7,2) are plotted in Fig. 4.

By comparing Figs. 3 and 4 we find that the results for eigenvalue À1 are visibly
similar, in both cases they are larger then 1 at the origin and near to the axis âr : 0.'We 

can also observe that in anticipatorv case À' decreases "faster" for â' > 0 . The
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Fig. 3: Eigenvalues )t: Àr(6,é1),i:1,2,3 by the feedback control case

main difference is in the form of the surfaces calculated for the other eigenvalues,

because in the feedback case we see a stability limit for ôr > 0.
To find exact stability boundaries for (16) and (19), we should substitute

) :  Ê t \ /1 -  p r ,  0<  p  < r

into (16) and (19), and solve them to â1,fr. Then the stability charts presented in

Fig. 5 are obtained.
Here the main difference is that for the anticipatory system there is no upper

boundary for the stable region in both directions, while in case of feedback system

stable region is bounded. In this sense stability properties are weaker in the feedback

case.
These results show that in case of a mechanical system, which is controlled by

some digital device the finite time step causes a decrease in the stable region of the

control parameter plane. \il/hen delay is omitted a hidden anticipatory effect may
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Fig. 4: The eigenvalues by the anticipatory case: \: \{6,é), i:1,2

16 20 26 S0
c 1

anticipatory

10 15 20

feedback

Fig. 5: Stability charts in plane (4,6)

result in better stability properties and larger stability region.

4 Conclusion

The result of our study show that we should be careful in modeling of digitally con-
trolled mechanical systems. When the concepts of the classical analytical dynamics
are used and we reduce the number of independent variables an equations to the
minimum (the number of the mechanical degrees of freedom) a hidden anticipatory
effect may appear. In this paper it can be interpreted as an anticipatory control.

At last we should add two remarks. First, remember that the recursive system
has a double critical eigenvalue. It shows that the system is on stability boundary,
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but the physical system is a free system in coordinate r and this fact is the source
of such kind of instabilty. Second, when (13) and (11) are compared we see how

incursion is hidden.
The results of the study show that in modeling we should keep control force

apart to see the real nature of control. It is quite different from the method used in

anall'tical mechanics, where control is often treated as a mechanical constraint.
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ERRATUM

There are typing errors in Béda's paper [1]. The correct version of equation (21) of

[1] is

tTl

lrrll

3tt92sinr9cær9-6ssind I  I  OcæO(crd(t - r )+corr( t - r ) )
( - 4 + 3 æ s 2 d ) l  l - l  ( - 4 + 3 c æ 2 Û ) n l

egsi4ogosJ-zjrl isino | 
- 

| _a("r' i(r-")+"oo(r-"))(-4+3cos2d) I L 
----T:1+1æ71o.

and equation (22) of [l] reads

3h92 sin 19 cos d-6o sin rl 
'l 

f 6F æs r9
(-4+3cos2d)l | - | (-4+3cos28)nl

3osinrgcæf-2tr9ts inr9 |  
-  

|  4F=---GZTSAPTI- 
I L (-4+scoszd)m

All the other equations and consequently the numerical analysis presented in [1] are

correct.
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