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Abstract
We report and discuss the results of double-slit-like experiments in the infrared range,
which evidence an anomalous behaviour of photon systems under particular (energy and
space) constraints.
These outcomes apparently disagree both with standard quantum mechanics
(Copenhagen interpretation) and with classical and quantum electrodynamics.
Possible interpretations can be given in terms of either the existence of de Broglie-
Bohm pilot waves associated to photons, and/or the breakdown of local Lorentz
invariance (LLf. We put forward an intriguing hypothesis about the possible
connection between these seemingly unrelated points of view by assuming that the pilot
wave of a photon is, in the framework of LLI breakdown, a local deformation of the flat
minkowskian spacetime.
Keywords: photon, Pilot Wave, LLI breakdown, Minkowski, deformed spacetime.

1. Introduction

The purpose of this paper is to present and discuss the outcomes obtained from optical
experiments of the double-slit type which were designed in order to possibly shed some
new light on two fundamental issues of Physics: wave-particle duality and the ranges of
validity of local Lorentz Invariance. The former is a long-debated topic of Quantum
Mechanics, but far from being resolved. The wave associated to a quantum object is
commonly regarded as a probability wave, according to what is usually referred to as
the Copenhagen interpretation, and hence it conveys no physical properties.
This interpretation is thoroughly antithetic to that advocated by Einstein, De Broglie and
Bohm [], which regards the quantum wave as real pilot wave, intimately bound to the
quantum entity and moving along with it, but unable to carry either energy or
momentum (hollow or ghost wave). Actually, all the experiments which evidence the
wave--corpuscle duality require, in order to be correctly interpreted, the theoretical
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hypothesis of the objective reality of the quantum wave, but they do not provide any
direct observation of the hollow wave. However, a way to detect such quantum u/aves
might be through their affecting the probabilities of events to which they superimpose in
space-time (for instance, in interference phenomena). This is essentially due (according
to de Broglie and Andrade y Silva [2]) to the interaction of quantum objects with all the
pilot waves present in a given space region, through their quantum potential [l].
The second fundamental issue discussed in this paper and addressed by our experiments
has to do with the teaching of Einstein's relativity theories which state that physical
phenomena occur in spacetime whose structure is globally curved (Riemannian) and
locally flat (Minkowskian). The local flatness of spacetime means that the laws of
physics can be locally written in the language of Special Relativity (SR) and hence
physical phenomena are locally invariant under Lorentz transformations. The
controversial point at issue (from both the theoretical and the experimental side) is
whether the validity of local Lorentz invariance (LLI) is preserved at any length or
energy scale. The experiments aimed at testing LLI can be roughly classified in three
groups [3]: i) Michelson-Morley type experiments, which test isotropy of the round-trip
speed of light; ii) experiments which test isotropy of the one-way speed of light, based
on atomic spectroscopy and atomic timekeeping; iii) Hughes-Drever type experiments,
testing isotropy of nuclear energy levels. All such experiments set upper bounds on the
degree of violation of LLI. On the theoretical side, a lot of generalisations of Special
Relativity and/or LLI breaking mechanisms exist in literature. For instance, in order to
take account of the LLI breaking effects, an extension of the Standard Model has been
proposed by Kostelecky [4], who puts very stringent limits by analysing the existing
data. A possible signature for a breakdown of LLI in electromagnetic interactions was
put forward by two of the present authors (F.C. and R.M.), in the framework of a
generalisation of SR based on a "Local Deformation" of Space-Time (DST), assumed
to be endowed with a metric whose coefficients depend on a parameter E with the
dimension of energy which is considered to be the energy exchanged during the non
Lorentz invariant process' [5,6]. In order to determine the features of this parameter, the
analytical forms of the metric coefficients and other phenomenological details of this
theory, this formalism was used to analyse the experimental set-up and the results of
two experiments carried out in Cologne [7] and Florence [8] where LLI was broken in
the sense that superluminal propagation of electromagnetic waves was obtained. This

' It is necessary to clarify the meaning of the words "a parameter with the dimension of energt which is
considered to be the energt exchanged during the non Lorentz invariant process". A physical process
which is not invariant under Lorentz symmetry (in the local sense) takes places in or, more precisely,
involves a locally non flat Minkowskian spacetime. In order to detect the effects due to a non flat
spacetime (either curved or deformed) it is necessary to perform two measurements and then subtract
their results. This is how Eddington operated when he measured the deflection ofthe light ofa distant star
around the Sun by subtracting two measured angles and this is how one operates with geodesic deviation
to determine the intrinsic curvature of a manifold. In our case, the parameter E parameterizes the local
deformation of spacetime and, in this sense, has to be understood as the difference of two energies
measured under two different conditions, as it happened for the angles in Eddington experiment.
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analysis by the DST formalism produced a threshold value of energt' and space for the
breakdown of LLI for the electromagnetic interaction. In particular LLI is broken when
the energy exchanged during the process is less than 4.5 peV and the maximum
distance, over which its non Lorentzian effects can be still detected, is about 9 cm.
The Cologne and Florence experiments, just mentioned, have to do with LLI breakdown
from the point of view of superluminal propagation, which suggests the existence of a
preferred inertial reference frame. However, a more comprehensive sight on LLI
breakdown can be obtained from the point of view of the locally deformed spacetime
(no more flat and rigid) which is a reasonable and quite evident consequence of the
violation of this symmetry.
The design of the experiments, presented in this paper, finds its whys and wherefores in
this last statement. First of all, we wanted to corroborate the hypothesis that LLI
breakdown means indeed the existence of a locally deformed spacetime whose
deformation stores some energy and is able to affect (pilot) the propagation of photons.
The second part of the hypothesis establishes a connection between LLI breakdown and
the Einstein-de Broglie-Bohm pilot wave. We hypothesise that the pilot wave is nothing
but a deformation of spacetime geometry related to the quantum object (photon). Now,
let's see what are the indications at our disposal for the design of the experiment,
highlight some critical points and then describe the experimental set-up and the results
obtained.

2. Experimental set-up Design and Results

Since we want to measure effects due to LLI breakdown we have to design the
experimental set-up according to the energy and space threshold mentioned above.
Moreover, since we are looking atLLl breakdown from the point of view of the effects
brought about by the locally deformed spacetime on the propagation of photons, we
have to search for these effects in a difference of two measurements according to what
has been explained in the note I above. Besides, as it has been said, we want to shed
new light on the de Broglie pilot wave and establish a connection between it and
deformed spacetime. The presence of the de Broglie wave implies that the experiment
will have to be designed with a set-up of double slit type. The information needed to
accomplish these requirements is at our disposal and can be extracted from our
phenomenological theory. However, there is a critical point which has to be faced in
carrying out the experiments and is connected to the absence of any kind of indication
on the time evolution of LLI breakdown. In other words, the effects that we want to
search for by these experiments can have a very peculiar time evolution which is
completely unknown and has to be experimentally taken into account and investigated.

2 ln all but very few experiments, LLI is valid and the laws of physics are compliant with the language of
special relativity. Hence, it goes without saying that there must exist an energy threshold either very low
or very high (or maybe both) that acts as an upper bound or a lower bound respectively for those energy
ranges where LLI is broken. In our phenomenological framework we search for a sufficiently low energy
threshold below which LLI is violated.
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In the last decade we carried out three experiments involving photon systems in the near
infrared range. Before moving on to the description we refer to Fig.l where the lay-out
ofthe set-up is reported. The distances between sources and detectors and in particular
the distances L and s were fixed equal to those of the Florence experiment [8] where
LLI breakdown showed up in the sense of superluminal propagation of electromagnetic
waves in the microwave range between two horn antennas. A strong hypothesis was
made here as to the independence of LLI breakdown from the range of frequency
(microwave to infrared).

Figure l: Lay-out of the experimental apparatus

2.1. Experimentalset-up

The apparatus employed in all experiments (schematically depicted in Fig. l) consisted
of a Plexiglas box with wooden base and lid. The box (thoroughly screened from those
frequencies susceptible of affecting the measurements) contained two identical infrared
(IR) LEDs, as (incoherent) sources of light, and three identical detectors (A, B, C). The
two sources Sl, 52 were placed in front of a screen with three circular apertures Fl,Fz,
F3 on it. The apertures Fl and F3 were lined up with the two LEDs A and C
respectively, so that each IR beam propagated perpendicularly through each of them.
The geometry of this equipment and the absorbing material of the internal walls were
designed so that no photon could pass through aperture F2 on the screen. The
wavelength of the two photon sources was I: 8.5x10-s cm. The apertures were circular,
with a diameter of 0.5 cm, much larger than l".We therefore worked in the absence of
single-slit (Fresnel) diffraction. However, the Fraunhofer diffraction was still present,
and its effects were taken into account in the background measurements.
The detector C was fixed in front of the source 52; the detectors A and B were placed
on a common vertical panel. Let us highlight the role played by the three detectors. The
detector C destroyed the eigenstates of the photons emitted by 52. The detector B
ensured that no photon passed through the aperture F2. Finally, the detector A measured

I source Sl- L
dete ctor A

F1t'
dete ctor B

4

source 52,
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/ F ^
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the photon signal from the source Sl. In summary, the detectors B and C played a
controlling role and ensured that no spurious and instrumental effects could be mistaken
for the anomalous effect, which had to be revealed on the detector A. The design of the
box and the measurement procedure were conceived so that the detector A was not
influenced by the source 52 according to the known and commonly accepted laws of
physics governing electromagnetic phenomena: classical and/or quantum
electrodynamics. In other words, with regards to the detector A, all went as if the source
32 would not be there at all or would be kept turned off all the time. In essence, the
experiments just consisted in the measurement of the signal of the detector A (aligned
with the source Sl) in two different states of source lighting. Precisely, a single
measurement on the detector A consisted of two steps: (1) Sampling of the signal on A
with source Sl switched on and source 52 off; (2) sampling of the signal on A with both
sources S I and 52 switched on. Analogous measurements were taken on the detectors B
and C. A possible non-zero difference AA: A(S1 on 52 off) - A(Sl on 32 on) in the
signal measured by A when source 52 was off or on (and the signal in B was strictly
null) has to be considered as evidence for the searched anomalous effect. Following all
previous discussions, let us explicitly notice once again that the geometry of the box
was strongly critical in order to reveal the anomalous photon behaviour.

2.2. The first two experiments

The main difference between the first two experiments was in the nature of the detectors
A, B, C, which were photodiodes in the former case [9] and phototransistors in the latter
[0,11]. In the first experiment, the plane containing the detectors A, B was movable
(the distance was varied by steps of 1.5 cm on the whole range of 10 cm). This allowed
one to study how the phenomenon changes with distance from the sources. In the
second experiment, the plane was fixed at a distance of I cm. The outcomes of the first
experiment were positive. Moreover, the phenomenon obeyed the threshold behaviour
predicted by the analysis of the Cologne and Florence experiments. In particular, ÂA
ranged from (2.2 J 0.4) pV to (2.3 + 0.5) pV, values well below the threshold energy
Eg.e.: 4,5 1tY, and the anomalous effect was observed within a distance of at most 4
cm from the sources. The results of the second experiment confirmed those of the first
one. The value of the difference measured on the detector A was (0.008+0.003)pV,
which is consistent, within the error, with the difference measured in the first
experiment, provided that the unlike efficiencies of the phototransistors with respect to
those of the photodiodes are taken into account [l0,11]. Furthermore, not having any
indication on the LLI breakdown time evolution it was necessary to adapt the sampling
time procedures of the signal on the detectors to the search for the anomalous effects. In
order to catch these effects we used two different time procedures to sample the signals
on the detectors in the two experiments. We indeed realised that the sampling time
procedure was apparently crucial in this sense and related to the type of detector.
In table I we report the results of the second experiment which will be useful in a
following discussion.
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TOTAL MEAN Y rpn DIFFERENCES
BET'TEEN TOTAL MEANS

Sources Sr Sr Sr Sr S1 S2

State ON ON ON OFF OFF ON ^'1GN

ABSOLATE
VALAE

ti rpw
Detector

A
8.634 8.626 (oN oN) > (oN oFF) 0.00810.003

Detector
B

0.020 0.275 (oN oN) < (oFF ON) 0.255r0.003

Detector
c 16.226 16.4'16 (oN oN) < (oFF ON) 0.25010.003

Table 1: Results of the second

2.3. The third experiment

In order to test the apparent bond between detectors and sampling time procedures, the
experiment was performed by means of the box with photodiodes, but using the
sampling-time procedure adopted with phototransistors. The results of this third
experiment were consistent with those of the two previous ones. On account of the
sampling procedure adopted - it turns out that there is not such a tight bond between
detector and time procedure (although, as already stressed, the latter plays a very
important role in giving evidence to the effect). A first global picture of these three
experiments teaches us that beyond an energy threshold and a spatial threshold, a very
peculiar time procedure in sampling the signals is needed in order to track and detect
LLI breakdown. The third experiment was repeated several times over a whole period of
four months, in order to collect a fairly large amount of samples and hence have a
significant statistical reproducibility of the results. Thanks to this large quantity of data,
it was possible to study the distribution of the differences of signals on the detector A.
We considered two types of differences: the differences containing the anomalous
signal ÂA: A (Sl on 52 off)-A (Sl on 52 on) and the blank differences ÂA' : A (Sl
on 52 on)-A (Sl on 52 on). In Fig.2 we show that the second type of differences are all
compatible with zero (inside the interval [-l; l] pV). In Fig.3 and Fig.4, conversely, we
show the differences of the first type compatible with zero and those non compatible
with zero respectively. These data are apparently at variance with electrodynamics
which expects that all of the differences of the two types should be compatible with
zero. This should be the case because, by the actual design ofthe experimental box, the
detector A should not be affected by the state of lighting of the source 52. ̂ A' is indeed
compatible with the prediction of electrodynamics. The situation is quite different for
the differences ÂA. Actually, only some values (731180) are inside the interval [-l; 1]
pV, of compatibility with zero, while most of them (107/180) lie outside of it. As it is
clear from Fig.4, the differences A(Sl on, 52 off) - A(Sl on, 52 on) are positive and
shifted upwards (needless to say, the stability of power supplies was constantly
checked) which means that, despite the greater number of photons in the box when both
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sources are on, the detector A sees less photons than those seen when only Sl is on.
Let's add that it is impossible to account for this systematic effect by a destructive
interference between photons from the two sources, because the LEDs are incoherent
sources of light. We performed statistical analysis [3] of the data and found out that
there is no compatibility between the ÂA' set and the AA set non compatible with zero
as shown in Fig.5. In particular the mean values of the two gaussian distributions are
3.81o apart.

Figure 2: Differences AA' of the signal measured by the detector A with both sources
on. All of them are inside the interval [-1; l] pV.

Figure 3: Differences ÂA, compatible with zero, of the signal measured by the detector
A for the two lighting states of the sources (Sl on, 52 off) and (Sl on, 52 on). These
differences lie inside the interval [-l; l] pV.
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Figure 4: Differences ÂA, non compatible with zero,
detector A for the two lighting states of the sources (Sl
These differences lie outside the interval [-l; l] pV.
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Figure 5: Gaussian curves for the differences ÂA' compatible with zero (blue, solid
line) and AA non compatible with zero (red, dashed line). It is paa, : 0.1159 FV, paa :

2.4110 FV, oaa' : 0.6024 FV, oae : 0.6006 FV, Â1raa'.ae : 3.81 or.

Before moving on to the interpretations and conclusions, we would like give some
information about the temperature controls that were carried out in order to be able to
exclude possible artefacts due to heat. In all of the three experiments the temperature
was monitored outside the box (temperature of the laboratory) and inside the box. The
former was carried on for all the sessions of measurement, while the latter was carried
out only during the preliminary tests of the equipment, since we did not want to alter the
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geometry of the interior of the box by the presence of the thermometer. It turned out that
over eight hours, the time needed to complete a session of measurements, the variation
of the temperature inside the box was in the range of 0.1 - 0.3 oC. This evidence means
that this variation has to be spread over an interval of time of 8 hours and in this sense,
the possible variation of temperature over a period of six seconds, which is the interval
of time when the LEDs are turned on, is so small that the drift with temperature both of
the output offset voltage and of the amplifier gain can be neglected. In fact, they would
produce a change of the measured values which is three orders and one order of
magnitude lower than the values obtained in the first and third experiments
(photodiode) and the second one (phototransistor) respectively. The sampling procedure
was in fact designed in order to compare, by difference, values that had been sampled
consecutively in order to minimise this possible source of artefact.

3. Interpretations and conclusions

3.1. Violation of Electrodynamics and LLI breakdown

It has been said that the design of the experimental set-up was carried out in order to
prevent the photons of the source 52 from affecting the detector A. In other words
according to the electrodynamics, one would expect the detector A not to be influenced
by the lighting state of 52 as, of course, it was experimentally ascertained by keeping Sl
turned off and by comparing the distributions of the dark signal on A when 52 was off
with that when it was on. However, the results shown in Fig. 4 and Fig. 5 present a
different situation. The tuming on of 52, when Sl was already on, made the signal on A
systematically change, decrease in particular, despite the higher number of photons in
the box due to the lighting of two incoherent sources.
This behaviour is manifestly a violation of what the electrodynamics would predict.
This is the first of the two conditions that we need to state that LLI is broken. The
second condition wants the reference frame, where this experiment was performed, to
be a good approximation of a local reference frame. The small dimensions of the box
and the planar geometry of the experimental apparatus authorise us to state that this
condition is fulfilled. As to the definition of LLI', these two conditions imply a local
violation of the Lorentz symmetry. Since the predictions of the phenomenological
theory, on which the experiment was designed, were obtained by applying a parametric
deformed Minkowski metric tensor (deformed spacetime) to the outcomes of
superluminal propagation experiments where LLI is broken, we interpret the effects,
presented in Fig.4 and Fig.5 as brought about by a locally non Lorentz invariant
deformed spacetime. In particular we can imagine that the energy of the photons emitted
by 52 locally deforms spacetime and that this deformation expands through aperfure F2

' The local Lorentz invariance is part ofthe Einstein equivalence principle and can be phrased as follows:
the outcomes of any local non gravitational experiment is independent of the velocity of the free falling
reference frame in which it is performed.
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and reaches the photons emitted by Sl and steers (pilots) their propagationa before they
are detected by A. In short we can say that this interpretation looks at the detected
anomalous effects from the perspective of LLI breakdown and more precisely of a
locally deformed spacetime. Let's now change the point of view and put forward a
further possible interpretation in terms of Bohmian mechanics and pilot wave.

3.2. Bohmian mechanics and pilot wave

First of all let's see what Quantum Mechanics (Copenhagen interpretation) can say
about the experimental set-up and the results obtained. The central part of Quantum
Mechanics is the wave function, along with its probabilistic interpretation and its
instantaneous collapse in one of the eigenstates as the quantum system is measured. The
photons emitted by 32 are detected and hence measured by the detector C. In this sense
the wave function, that describes the quantum system of these photons and that, before
the measurement, represents the probability to find them in any place of the universes
(in the sense of Feynman path integrals), collapses in C and reduces to zero the
probability to find them in any other point of the box. This quantum mechanical
prediction is against the results of the experiments that indicate that the turning on of the
source 52 influences both the reading of the detector C, of course, and that of the
detector A although, by design, there should not be any correlation befween 52 and A.
The quantum mechanical description is incomplete, at least in this case, since the results
display before us a more complex behaviour of the photons that is unaccountable in
terms of wave function and probability.
Let's see whether Bohmian mechanics can give a better account of the results in terms
of the realistic interpretation of the wave function as a pilot wave. According to
Bohmian mechanics, the hollow pilot wave of a quantum entity pervades all the
universe in a non local sense, accompanies and steers the motion of the corpuscle
associated with it and of other corpuscles of the same kind. If we refer this picture to the
experiments we can say that the pilot waves of the photons emitted by 52 expand to
regions ofspace optically forbidden to the associated photons, pass through the aperture
F2 and interact with the photons emitted by S I . Consequently, the change ÂA in the A
signal - in the absence of any change in the signal of the detectors B and C - finds a
natural explanation, in Bohmian quantum mechanics, in terms of the interaction of the
Sl photons (and their pilot waves) with the pilot waves (of the 52 photons) passed
through F2. The role played by the aperture F2 is fundamental, since, although pilot
waves can penetrate in optically forbidden regions, nonetheless the mass distribution
and density are expected to affect their propagation. Hence, they can only pass through
space regions with a lower mass density. If this interpretation is correct, the double-slit
box experiments do provide for the first time, among the others, direct evidence for the
Einstein, de Broglie, Bohm waves.

- Just like the curved spacetime around the Sun curye the trajectory ofthe photons from a distant star.
) Or. at least. ofthe entire box
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3.3. Failure of Bohr's Principle of Complementarity

A careful analysis seemingly shows that the outcomes of the box experiments, in
particular those of the second one, invalidate the Bohr principle of complementarity
(BCP) too. Let us explain why. In essence, BCP when applied to light, states that it is
impossible to put in evidence both the wave (interference fringes) and the particle
behaviour (which way information) of a photon in the same experiment. We will show
that this is not the case in the box experiments. As it was extensively described in [ 1]
the box was designed according to the laws of geometrical optics in order to exploit the
corpuscular nature of the photons (refer to I l] for details). However if we refer to table
l, where the results of the second experiment are reported, it is possible to envisage a
further interpretation in terms of waves and interference fringes. Let's refer to Table I
and compare for each detector how the signal changes between the two lighting
conditions. The signal on C remained constant (within the device working fluctuations).
Things are different for the detectors A and B. Let's refer, first, to the detector B. As the
lighting condition changes from one source tumed on (Slo[S2on) to two sources on
(Slon_S2on), the value ofthe signal on B decreases ofone order ofmagnitude.

Referring to Fig.6, one can say that when (Sloff S2on) the detector B sees a certain
density ofphotons and when both sources are on (Slon_S2on) this density decreases.

Figure 6: Sketch of the wave behaviour of photons in the second experiment.
When one source is on (left) the detectors A and B detect a certain density of photons
corresponding to the signal from Sl and the dark respectively.
When both sources are on (right), A sees a higher density of photons (bright fringe)
while B sees a lower density (dark fringe).

In other words, we could say that, everything goes as if, when both sources are on, it
formed a dark fringe where the detector B is. The same kind of considerations can be
done for the detector A. When the lighting condition changes from (Slon_S2off) to
(Slon_S2on) the signal on A increases a little bit, although this cannot be imputed to
the passage of photons from F2 since the detector B is always underneath the maximum
dark voltage established experimentally.
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Refening again to Fig.6, one can say that when (Slon_S2off) the detector A sees a
certain density of photons and when both sources are on (Slon_S2on) this density
increases.
In other words, we could say that, everything goes as if, when both sources are on, it
formed a bright fringe where the detector A is.

This anomalous behaviour of the detectors A and B can still be explained on the
basis of Bohmian quantum mechanics, by interpreting it as manifestations of an
anomalous interference phenomenon involving pilot waves. In this view, the anomalous
signals at the detectors A and B can be regarded as part of an interference pattern.
Consequently, the results obtained in these experiments seemingly invalidate Bohr's
principle of complementarity. Let us mention that compatible results were obtained by
Afshar [4] in a double-slit experiment with photons, where both the interference
pattem and the which-way information are known.

3.4. Pilot wave and spacetime deformation

In the previous sections we discussed the results of the experiments and showed that
two main conclusions can be drawn: the breakdown of LLI interpreted in terms of local
spacetime deformation that steers the propagation of photons and the presence of the
pilot wave along with its piloting effect of photons. The similarity of the descriptions of
the effects either in terms of deformed spacetime or pilot waves led us to put forward
the intriguing hypothesis of a possible connection between these two pictures, namely
between the quantum wave (in the interpretation by de Broglie and Bohm, as a pilot
wave) and the breakdown of local Lorentz invariance, described by the formalism of
Deformed Special Relativity [5,6] (i.e., in terms of a modified Minkowski metric). In
particular we state that what we call pilot wave is nothing but a deformation of the local
space-time geometry, intimately bound to the quantum entity considered (photon)
which, in this sense, becomes a more complex object than that described by the
quantum electrodynamics and even by Bohmian mechanics. In particular, with regards
to the photon we can say that most of its energy is concentrated in a tiny extent
(complying with electrodynamics, relativity and Minkowski space-time) and the rest of
the energy is used to deform space-time surrounding it (violating electrodynamics, not
complying with relativity and hence possessing real non-local and superluminal
features). This second part of the energy is stored in the local deformation of space-time
just as the Riemann curvature of space-time in General Relativity possesses its own
energy momentum pseudo-tensor. Therefore, in this view, the difference of signal
measured by the detector A in all of the three experiments can be interpreted as the
energy absorbed by the space-time deformation itself, which cannot be detected by the
central detector B. In other words, the experimental apparatus and procedure, used in
these experiments, "weighed" the energy corresponding to the space-time deformation
by the measured difference on the first detector. However we have to say that, after all,
it is known that LLI breakdown and quantum processes are not too far from eachother
especially if the latter are considered from the point of view of Bohmian mechanics
[9]. We said that LLI breakdown implies superluminality which, in tum, is strongly
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interrelated to non-locality and, as is well known, quantum theoryo is non-local as
proved by the famous Einstein-Podolski-Rosen (EPR) effect (experimentally checked
by Aspect [6] and then by Alley [17]). However, we reckon that the results of our
experiments and the interpretations that we put forward, add three further important
elements to the discussion on the foundations of quantum mechanics that, to the best of
our knowledge, have not been considered yet. All ofthem are based on the very general
perspective on LLI breakdown in term of local space-time deformation. The first
element is the hypothesis that the pilot wave (the real counterpart of the probabilistic
wave function) is only a synoptic concept that hides a more complex reality for the
quantum object photon and its possible manifestations, corpuscle or wave. The results
of the experiments show that photons possess the well known Lorentz invariant part and
a further non Lorentz invariant one which brings about the effects usually described by
pilot waves such as interference fringes and non local effects. However, while pilot
waves have the problem to be hollow waves which has always been a critical point in
having Bohmian mechanics accepted, the deformed space-time stores in its deformation
the energy which affects the propagation of photons and which is contained in the
difference of sigrrals detected by A. In this sense according to our interpretation, the box
(double-slit) experiments not only provide direct evidence for the Einstein-de Broglie-
Bohm waves by their effect on photon propagation, but also yield a measurement of the
energy associated to them and indicate the space-time deformation as the physical entity
hidden behind their synopsis. If this hypothesis is correct, pilot waves are no more
hollow waves and there is no more "spooky" action at a distance and even the concept
of action at a distance, which implies infinite causal speed, will have to be carefully re-
examined. The second two elements that our experiments and interpretations add to the
foundations ofquantum mechanics have an experimental character and, hence, contain
precious indications to guide in performing further experiments and to interpret the
existing results (maybe negative) of past experiments. It has been said that Bohmian
mechanics implies non-locality and, hence, the breakdown of LLI. The second element
has to do with the requirements to fulhl in order to detect the effects due to LLI
breakdown: the existence of an energy threshold and a space threshold for the locally
non Lorentz invariant effects to show up. The third element is more subtle and has to do
with time and in particular, with the time evolution of LLI breakdown and hence of the
effects brought about by the space-time deformation or pilot wave. Since space-time is
deformed the geometry of space is no more homogeneous and isotropic and the
geometry of time is no more homogeneous. As to the time evolution of the effects due
to LLI breakdown, this means that the experimenter will have to adapt the time
evolution of his measuring equipment, which is a LLI compliant time, and hence
homogeneous, to a completely a priori unknown evolution which will have to be studied
and followed experimentally.

6 The Copenhagen interpretation of the wave function hides the non-locality in the positivistic point of
view that something is real only when it is measured. Conversely, Bohmian mechanics makes non-
locality explicit since it looks at the wave function as a real physical entity, although it cannot explain its
apparent lack ofany energy transport.
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3.5. Perspectives

The change of the number of photons detected by A can be read as well in terms of the
modification of the photon-photon cross section due to the deformed space-time
associated to each photon. With this last picture of modified cross section, we report
that compatible results with ours were obtained in crossed photon-beam experiments
both in the microwave range l20,2ll and with a coz laser [9,13]. Crossed laser beams
are certainly a much simpler experimental set-up, however, it goes without saying that,
despite the apparent simple and very common appearance of the equipment, the features
of LLI breakdown are so peculiar, as we have extensively pointed out, that require
subtle care in tuning all the experimental features in order to make out the anomalous
effect due to deformed space-time. However the intersecting of laser beam is a very
suitable set-up to deepen the study of different features: spatial extension by varying
horizontally and vertically the crossing region of the beams; timing of the deformation
by applying different chopper frequencies and sampling time procedures; investigating
the effects of deformed space-time on the frequency of photons; attempts to work as
close as possible to the single photon; drawing interesting similarities between the non-
linear and non-local effects studied by non linear optics in nonlinear media (liquid
crystals) and non linear non local effects of space-time; visualize by ccD the
deformation of the laser beam spot which is the unmistakable evidence of deformed
spacetime through which photons propagate as already tried and reported in [9].
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