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Abstract
We propose a new data analytical tool for directed networks by using category
theory. We develop a category theoretical treatment of directed networks in order to
obtain functional networks for real networks. By applying our method to concrete
data on real information processing biological networks, we find a distinguishing
global structure of functional networks. A possibility of a new hypothesis on network
motifs is also indicated based on our theory and data analvsis.
Keywords : Directed Networks, Category Theory, Presheaves, Information Pro-
cessing, Network Motifs.

1 Introduction

A network represented as a directed graph consists of a set of nodes and a set
of arcs between each pair of nodes. A node is just a point, both structure-less and
function-less. However, nodes in real networks often have structures or functions.
For exarnple, a node in a gene transcription regulation network consists of a gene and
a protein coded by that gene (Arcs are regulation relations). There is information
processing from DNA to protein in each node, which can be seen as a function of
each node. Such aspect is usually neglected in the study of complex networks since
the statistical property of the entire network is the main focus in this field [4, I7l.

It would be useful for further understanding of real networks if we can obtain
a formal representation including a function of nodes. In this paper we develop a
general way to associate a function with each node in a network. In particular,
we focus on information processing as a function of nodes. We simply represent
information processing in a node by a directed graph. We use category theory to
construct our theory [13].

In the previous work on applications of category theory to theoretical biology,
category theory is used to describe general framework to describe general organi-
zation of biological systems [7, 8, 18, 19,21). In contrast our aim in this paper is
to show that category theory can provide a new tool in order to analyze concrete
biological networks.
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This paper is organized as follows. In section 2 we develop a category theoretical
treatment of directed networks and obtain functional networks for real networks.
In section 3 we apply our theory to real network data. In section 4 we suggest a
possibility of a new hypothesis on network motifs based on our theory and data
analysis. In section 5 we give conclusions.

2 Construction of F\rnctional Networks for Directed Net-
v/orks

In this section we develop a category theoretical treatment of directed networks.
We describe how to associate a function with each node in a directed network so
that we obtain functional networks for real networks.

2.L Networks as Presheaves

We consider networks that can be represented as directed graphs. A directed
graph is a quartet G : (A, O, ôs, ô1) where .4 is a set of arcs, O is a set of nodes and
AiQ:0, 1) are functions from A to O taking a source of each arc (' i :0) or a target
of each arc (' i  :1). A directed graph G : (A,O,0s,ô1) can be seen as a presheaf in
the following way. Let Cz be a finite category defined by the following diagram:

no
o; t

We can make G a functor from C2"p to the category of sets Set by setting G(1) :

A,G(0) : o and G(^o) : ôt(i : 0, 1). Thus G is a presheaf on the category C2.
A homomorphism D from a directed graph G : (4, O, ôo, ôt) to a directed graph

G' : (A',O',dç, â{) is a pair of two maps Da : A -- ,4.' and Dç : O --- O' satisfoing
ôlo Da * Do o ôo(i : 0, 1). That is, D preserves sources and targets. If we think of
G and G' as presheaves then D is a natural transformation from G to G'. Thus we
can identify the category of directed graphs Grph with the category of presheaves

on C2 denoted by Selc'"o. Indeed they are isomorphic categories.
In the following we make use of category theoretical structures in order to study

directed graphs. Hence we shall use the presheafnotation to denote directed graphs.

2.2 Representation of Ftrnction of Nodes

We focus on information processing as a function of nodes in a network. We do
not consider what information is processed but treat patterns of information flow.
We consider a unit for patterns of information flow consists of the following three
aspects: receiving, transformation and sending of information. We represent this by
a directed graph consisting of two distinct nodes and an arc between them:
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Thus any directed graph would represent a pattern of information flow. Now we
would like to associate a pattern of information flow to each node in a network. We
can achieve this by considering a functor called distributor in category theory.

Let A, B be small categories. A distributor (or module) from A to B is just a
functor  D:A,- - -SetB"o [5] .  Thenot ionof  d is t r ibutor isconsideredasageneral iza-
tion of binary relation. They form a bicategory. However, we consider only a special
case with A : B : Cz in this paper.

Inthe case A:  B:  C2 wecal l  adis t r ibutor  M :C2---+ Setc:"p , in format ' ion

process'ing pattern. In this case M consists of the following data: two directed graphs
M(O),M(l) and two directed graph homomorphisms M(mo),M(^t) : M(0) --+

M(l). M(0) is a representation of a function of each node, which we call a pattern
of information flow at the beginning of this subsection. M(1) is for an arc in a
network which represents how functions of two nodes are related when there is an
arc between two nodes. M(*o) and M(my) specify a source part and a target part
in M(I) respectively by mapping M(0) into M(I).

Let us consider gene transcription regulation networks as an example. If a pro-
tein coded by a gene X regulates a gene Y then there is an arc from X to Y. There
is complicated chemical information processing from DNA to protein including tran-
scription, translation and synthesis in a node. However, here we focus on an overall
pattern of information flow. We represent information flow from DNA to protein by
a directed graph consisting of two distinct nodes and an arc between them. Thus
we put

M ( O ) : o - - - + . .

The source node in M(0) is an abstraction for DNA whose function is considered
as receiving information and the target node in M(0) is an abstraction for protein
whose function is considered as sending information. If there is an arc from X to Y
then we could imagine the sending of information in X contacts to the receiving of
information in Y. We represent this situation just by identifying them as a node.
Thus we define

MlI) :. ---+ . --+ ..

M (-o) is defined by sending the unique arc in M(0) to the left arc in M (I). M (^r)
is defined by sending the unique arc in M(0) to the right arc in M(1).

The above argument can be applied to not only gene transcription regulation
networks but also the other information processing biological networks such as neu-
ronal networks, signal transduction networks and so on.

One may consider more complicated directed graphs for M(0) and M(1). How-
ever, in the following we mainly consider the information processing pattern ,4rl
defined above since its intuitive meaning is obvious and it is mathematically easy
to tractable. We denote this information processing pattern by Mo.
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2.3 F\rnctional Networks for Real Networks

First let us consider a general situation. Let C be a small category and D be
a distributor C * Setc"o. D induces a Hom-tensor adjunction on Setc"o in the
following way. Define a functor Ëp : Setc"o * Setc"o by sending G to RD(G) :

Hom(D(-), G). For an object c in C RoG)k) : Hom(D(c), G), which is the set
of all natural transformations from D(c) to G. Given a morphism u : C '-- c in C,
Ra(G)(u) is a map from Hom(D("),G) to Hom(D(C),G) defined by composition
from r ight (-)o D(u):

DV)D!) D@) -+ G.

r?1l has a left adjoint trp defined as follows. Let G be a presheaf on C. The
category of elements for G denoted by jl G is defined by the following data: Objects
are pairs (c,r) where c is an object in C and r € G(c). A morphism from (c',r')
to (c,r) is a morphism u: c' -- c in C with G(u)(r) : r'. Let nç be a functor

{"G * C defined by rç(c,r) : c. Then we define Ln(G) as the following colimit:

LoG)

In other words, tr5' is a left Kan extension of D along Yoneda embedding y : C --

Setc"o.
For a presheaf G on C and an object d in C we have

LD(G)(d) :  ( :G(c)  x  D(ù@) t  - ,

where - is an equivalence relation generated by (a'u,E) - (a, u.a), a-u: G(u)(a)
and u' g : D(u)(d)(s) for o e G(c), v e D(C)(d) and a morphism u : c ---+ cin C-

We write o I y for an equivalence class containing (a,y).

We have a natural isomorphism Hom(fp(F),G) = Hom(f', R"(G)) for any
presheaves F,G on C. Since Lp is a left adjoint to a Hom functor fi2, we ma1r
write Lp(F) : F e D. Indeed we have a property of usual tensor products for

modules, associativity for "coefficients", namely (a . u) e y: o I (u'ù. For the
proof of the adjunction Lp -1 .Rp see [9, 12].

Now we go back to our finite categoU Cz. Given an information processing

pattern M '. Cz + Setczop and a directed graph G (recall that a directed graph is

a presheaf on C2), RuG) is also a directed graph. How can we interpret RM(G)?
rBM(G)(0) : Hom(M(O),G) is the set of nodes for Rva(G). Each node is a homo-

morphism from M(0) to G. Hence each image of M(0) in G is collapsed into a
node in Ru(G). Similarly each image of M$) in l?1a(G) is collapsed into an arc in

RuG). In short, we can say that -B1a collapses M in G.

: corim (1"":s c 3 set""") .
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G--x-+ y-+:  = L(G)=o--) . - - ) . - - ) .

f (G )= r? . J i i  = . - ) . - ) . - ) .

\. -) ?r-) '

G= r --> v - L(G\=. -?. -->.
, '

z '/- ./

L{G)= r -àr -) rr= r .) .  --).
i elus j ./.. --t\,.. -) I .-

\... /

(b)(a)

Fig. 1: Two examples for the calculation of Zyo (subscript Ms is omitted in the
figure).

On the other hand, we can say that 1,1a embeds M into G. Indeed we have the
following representation of try(G) if G has no isolated node. Assume that for any
z € G(0)  there is  o € G(1)  such that  a. r l to :  r  or  a.Tf t r :  r .  Then we have

LM(G)( I )  =  G(t )  x  M(r) ( i ) l  -

for i  :0,1, where - is generated by (a,rb) - (o',r l t ' )  ë =y e M(O)(t) ) jo, jr  €
{0 ,  1 }  such  tha t  a . rn jo  :  o '  . * r r , 1 !  :  m jo .U ,1b '  :  m j r . y  f o r  ( o ,  r b ) , ( o ' , r l t )  c
G(1) x M(I)(i). We can read this equation for L1a(G) as follows: first make a copy
of MQ) for each arc in G and second glue them according to how arcs are connected
in G. Some examples for the calculation of Ly"(G) is given in Figure 1.

Given any directed network G we obtain a directed graph L11a(G) constructed
by embedding M into G. Since we consider that M represents a function, we would
like to call L1a(G) a functional network for G.

In the next section we obtain functional networks for real information processing
biological networks by applying Lplo to them. We will find a distinguishing global
structure of functional networks for real networks.

3 Data Analysis

In Figure 2 we apply Lyoto five real information processing biological networks
provided at [1]. Explanations for these networks are found in [16]. A number
associated with each Lto"(:G) is the largest number of self-loops on a single node. It
is typically on the pivot node for the largest fan.

In order to characterize the feature of functional networks for real networks
quantitatively, we calculate two indices. The first index is the ratio of the number
of nodes in Lyo(G) (denoted by n') to the number of node in G (denoted by n).
The second index is the ratio of the maximum degree of a node in try"(G) (denoted
by .li,*) to n. The degree of a node is calculated by just summing in-degree and
out-degree for the node. If there is a self-loop then it is counted only once. We can
prove that 0 1n'f n <.2 and 0 < d!^*ln < 7.

We plot the pair of indices (n' f n,d,!^.,fn ) for five real networks in Figure 3 (black
squares). For comparison, we also plot the pair of values for random networks (small
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Fig. 2: Functional networks Lu"(G) for real information processing biological net-
works G (subsript Mo is omitted in the figure). A number associated with each
Lu"(G) is the largest number of self-loops on a single node. (a) Gene transcription
regulation network of E. coli,. (b) Gene transcription regulation network of S. cere-
u,is'iae. (c) Developmental gene transcription regulation network of drosophila. (d)

Developmental gene transcription regulation network of sea urchin. (e) Neuronal

synaptic network of C. elegans (only synaptic connections with more than or equal

to 5 synapses are included). All networkdataused are provided at [1].
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Fig. 3: Plot for (n' f n, dl^*fn) where n is the number of nodes in real (and random)
networks, n/ is the number of nodes in functional networks and d'-* is the maximum
degree of a node in functional networks. Real networks (black squares) and random
networks (small dots) are shown. Symbols for real networks correspond to those in
Figure 2. See text for detail.

dots). Random networks are prepared as follows. For each real networks, we fix n
and vary the number of arcs a from n to 2n. For each pair (æ, a) we generate 100
random networks that have n nodes and a arcs with no isolated node. Lines are
averages of random networks for each real network.

One can see a trade-off between the two indices for random networks. This can
be roughly understood as follows. If o is close to n then copies of Mr(1) are hard
to be glued. Hence random networks with n nodes and o arcs have relatively high
values of n' and low values af dl^u, in their functional networks. On the other hand,
if a is large (close to 2n) then copies of Ms(7) tend to be glued into a few nodes
with many self-loops. Hence we obtain functional networks with low values of n'
and high values of dl"*.

Obviously real networks are deviated from the trade-off curve for random net-
works. Their typical tendency is that their functional networks have nearly the same
number of nodes as that for real networks and have a high maximum degree of a
node. Combining with visual inspections for Figure 2, we suggest a distinguishing
global structure of functional networks for real networks (Figure 4). Functional net-
works for real networks typically have many input nodes and many output nodes
together with a central node with the small number of self-loops. We would like to
call such structure bottleneclc structure.

In the next section we discuss implications of the bottleneck structure in func-
tional networks for real network structures.
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mÉury output

Fig. 4: Distinguish global feature of functional networks for real information pro-
cessing biological networks.

4 Toward a New Hypothesis on Network Motifs

In this section we first obtain the condition that directed networks are stable under
embedding of information processing pattern Ms. Second we suggest a possibility
of new hypothesis on network motifs by combining the stability condition and the
result of data analysis in the previous section.

Given an information processing pattern M, we say a directed graph G is stable
for M if r7ç : G -+ RMLM(G) is an isomorphism where q is a unit of adjunction Ly1 )
.R,n. This means that all functional constraint by Lp1(G) is already incorporated
into G.

We can obtain the stability condition for M6 as an explicit condition for the
structure of directed graphs. We have Tc : G 1 RuoLvo(G) if and only if (i) G is a
binary graph (that is, there is at most one arc from one node to another node) and
(ii) if a --* b *- c ---. d in G then a ----, d in G where we write a ---rb when there is
an arc from node a to node à. In particular, we call the second condition (ii) bi,fan
condi,ti,on. An intuitive explanation for a proof of the "if part " is given in Figure
5 (a ) .

More generally, one can see that a multifan structure in a real network corre-
sponds to a bottleneck structure (without self-loops) in its functional network under
the stability condition for Ms (Figure 5(b)).

We can prove that the bifan condition is generic in the following sense. Let C be
a small category and M,l{ : C --u Setcoo be two distributors. We define a tensor
product between M and I/ (denoted by M & l/) bV the following composition of
functors [5]:

c4se tc "o3s . t " "o .

Thus for any object c in C we have (M A N)(c) : M(c) I ^/. If we consider the
case C : Cz then we can obtain more complicated information processing pattern
M 8 N from simpler ones (M and l/) We have the following theorem:
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Fig. 5: (a) An intuitive sketch of derivation of the stability condition for ffi. See
text for detail. (b) The correspondence between multi-fan structure in real networks
and bottleneck structure in their functional networks under the stability condition.

Theorem I For any information process'ing pattern N, cons,id,er a tensor product
Mo e lrt. If a directed graph G i.s stable for Mg & N then the bi,fan cond,ition holds

for G.

Outline of a proof. Assume rlc : G = Hom(Mo I If(-), G A (MyS N)) and a ---+

b r- c -, d in G. We have p € Hom(M6(1), G I M) corresponding to a possible arc
a -- d in G. We define ery € Hom( I\,1o0) 6l //, (G 6l M0) I N) by ç*(i)(" E y) :

eU)@) 8s for  (o ,s)  e  . t ro( t ) ( r )  x  lv ( j ) (z) .  S ince G 8(Mogt l )  =  (csM0)81/
and G ry Hom(Me a 1/(-),G g (lro s l/)) by assumption, cp1,, corresponds to an
arc a -'+ d in G, which now exists.

Thus the bifan condition is a necessary condition so that a directed graph is
stable for an information processing pattern of the form Mo O ,nr.

Now we discuss implications of our theory and data analysis for real network
structures. Network motifs are patterns found in given networks that are signifi-
cantly more frequently than those in randomized networks [2,3, 14, 15]. Bifan is a
typical network motif in real networks. It is ubiquitously found in various real infor-
mation processing biological networks and is most over-represented [10, 11]. In the
previous work, the abundance of a motif in a real network is explained by its func-
tion considered as a dynamical system [2,3]. Here both structure and function are
considered locally. Such an explanation seems to succeed in the case of feed-forward
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loop motif [2,3]. However, function of bifan is still controversial [10, 11].

Our theory and data analysis suggests a new possibility. First the fact that bi-

fan is over-represented in real networks suggests that real networks have a tendency

toward a stabilization in our sense. Furthermore, we see that the correspondence

between multi-fan structure in real networks and bottleneck structure in their func-

tional networks under the stability condition. It suggests that a possibility that the

abundance of bifan in real networks is explained in relation to the global feature of
functional networks.

\Me should note that the meaning of our stability condition is not obvious. In
particular, its relation to dynamical stability is still unknown. However, our theory

and data analysis suggest a totally new direction (global perspective) different from

the previous one (local perspective).

5 Conclusions

In this pâper we proposed a new approach to the study of complex networks. By

developing a category theoretical treatment of directed networks, we constructed

a systematic method to obtain functional networks for real networks. 
'We 

applied

our theory to a few real information processing biological networks. We found a

distinguishing global structure of functional networks for real networks compared to

randomized networks. We suggested a possibility of a new hypothesis on network

motifs based on our theory and data analysis.
Many tasks are left as future work. A few of them are listed below:

(i) More enhanced data analysis.

(ii) Calculation of stability condition for more general information processing pat-

terns.

(iii) Relation to dynamical stability.

(iv) Experimental study for our approach to network motifs.

For a theoretical issue, we would like to put a few words on (ii). For infor-

mation processing pattern L[s, TIao :: Rl4oLyo is an idempotent monad since we

have RlaoLyoRMo =,Rr140. Hence the category of ftao-algebras is equivalent to the

category of free 7,11o-algebras, which is equivalent to a full subcategory of Grph

consist ingof  d i rectedgraphsGsat is fy ing r lc :G=TM"(G) [6] .  Thissuggeststhat

we should obtain a condition for more general information processing patterns M

such that the corresponding monads Tp1 become idempotent. One might classify

information processing patterns M satisfying this undiscovered condition based on

the stability condition.
Applications of category theory to theoretical biology originated from the work

of Robert Rosen, who is also a pioneer in the study of anticipatory systems [20]. In
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one of his early papers [19], he introduced a conversion which sends input-output
systems to diagrams that he called abstract block diagrams. This conversion is the
fundamental basis for his work on Metabolism-Repair systems. The essence of the
idea of the conversion is inversion of nodes and arcs, that is, each arc is converted to
a node. One can see that this conversion is embedded in the functor -R1an since each
arc in a directed graph G is sent to a node in Â7y1. (G) when .R1ao is applied to G.
Although the details of Rosen's conversion and the functor Àyo âre different, the
spirit is quite similar. This connection with Rosen's work suggests a potentiality of
our approach for applications to anticipatory systems.

Acknowledgements
This work was supported by JST PRESTO program.

References

[ 1] http : //www.weizmann. ac.il/mcb/UriAlon/

[2] u. Alon, Introd,uct'ion to systems Biology: Design Prznciples of Biotooi,cal cir-
cuits. CPIC Press, Boca Raton, 2006.

[3] U. Alon, Network motifs: theory and experimental approaches. iy'oÉzre Reu.
Genet. 8, 450-461, 2007.

[4] R. Albert and A.-L. Barabasi, Statistical mechanics of complex networks. Æeu.
Mod. Phys. 74, 47-97, 2002.

[5] J. Benabou, Distributors at work. preprint, 2000.

[6] F. Borceux, Handbook of Categorical Algebra: Volume 2. Cambridge Univ.
Press, Cambridge, 1994.

[7] A. C. Ehresmann, J.-P. Vanbremeersch, Hierarchical evolutive systems: A
mathematical model for complex systems. Bull. Math. Biol. 4g,13-50, 1982.

T. Haruna and Y.-P. Gunji, Duality between decomposition and gluing: A
theoretical biology via adjoint functors. BioSystems 90, 716-727, 2007.

T. Haruna, Algebrai,c Theory of Bi,ological organization Doctoral Dissertation,
Kobe Universitv. 2008.

[10] P. J. Ingram, et ol., Network motifs: structure does not determine function.
BMC Genomics 7:708, 2006.

[11] A. Lipshtat, el ol., Functions of bifans in context of multiple regulatory motifs
in signaling networks. Bi,ophys. J.94,2566-2579, 2008.

lsl

Ie]

156



[16]

[14

[12] S. Maclane, I. Moerdijk, Sheaues'in Geometry and Logi,c: A Fi,rst Introduct'ion
to Topos Theory. Springer-Verlag, New York, 1992.

[13] S. Maclane, Categories for the Worki,ng Mathemati,c'ian, 2nd" edi,ti,on. Springer-
Verlag, New York, 1998.

[14] R. Milo, ef o/., Network Motifs: Simple Building Blocks of Complex Networks.
Sc'ience 298, 824-827, 2002.

[15] R. Milo, el ol., Superfamilies of Evolved and Designed Networks. Sc'ience 303,
t53B-1542,2004.

Supporting online material for [15].

M. E. J. Newman, The structure and function of complex networks. SIAM
Reu'iew 45, L67-256, 2003.

R. Rosen, A relational theory of biological systems. Bull. Math. Biophys. 20,
245-260, L958.

[19] R. Rosen, The representation of biological systems from the standpoint of the
theory of categories. BuII. Math. Bi.ophgs.20,317-341, 1958.

[20] R. Rosen, Anti,ci,patory Systems. Pergamon Press, 1985.

[21] O. Wolkenhauer, J-H S. Hofmeyr, An abstract cell model that describes the
self-organization of cell function in living systems. J. Theor. Bi,ol.246, 46I-476,
2007.

[18]

r57


	Casus_v23_pp146-160_Haruna



