
The Inapplicability of the Concept
of Subjective Probability

Khatid Aboura
University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007

Fax: 61 2 9514 2633 - Email: khalid.aboura@uts.edu.au - http: www.uts.edu.au

Abstract
Controversy over the Bayesian approach has diminished and one can't but admire
the elegance of the definition of subjective probability. But it is still a hard sell in
practice. This is a fact gathered through engineering experience. When the effect of
the prior washes off quickly, the issue is irrelevant and one enjoys the probabilistic
updating algorithm. When there is little data, one seriously questions the validity
of the Bayesian approach. Very little has been achieved in developing means to
support the existence of a prior, assess it and calibrate the person providing the
opinion. We review th,e theory and show a case in bridge maintenance where the
likelihood of the expert can be assessed. We state the reason for its inapplicabilitv,
take a step back to the days of Kolmogorov and reflect on Bayesian theory.
Keywords : Statistical Foundations, Probability, Expert Opinion.

1 Introduction

In most engineering situations, a reasonable certainty can be achieved in the con-
struction of a solution. For example, a bridge structure is built to sustain a predeter-
mined load. But even in the most sophisticated engineering solutions, uncertainty
prevails. We live with some comforting illusion of control, but we do accept the in-
evitability of uncertainty in almost every aspect of our lives. In 1654, letters written
by Blaise Pascal [1623-1662] and Pierre de Fermat [1601-1665] discussed a gambling
problem posed by a French nobleman. The problem provided the two French math-
ematicians with a reason to investigate and consequently lay down principles that
formed the genesis of the theory of probability. In 1812, Pierre de Laplace [1749-
1827] introduced a formalism in his book, Théori,e Analyti,que des Probabil'ités, and
applied probabilistic ideas to scientific problems. Today, the theory of probabil-
ity is applied in countless engineering problems. Perfection is hard to achieve and
environments are hard to predict. Often, a solution is given in probabilistic terms.

The problem has not been solved completely. The difficulty remains in the exact
definition of probability. In 1933, the Russian mathematician Andrey Nikolaevich
Kolmogorov introduced an axiomatic approach, turning the probability concept into
a modern mathematical thcory. lVhile no one questions the application of the theory
as a mathematical tool, the meaning attributed to probability remains an issue. In
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the past centuries, schools of thoughts emerged. The most notable ones are the
Frequentists and the Bayesi,ans. In 1763, a ùheorem by Reverend Thomas Bayes

\1702-776I], a British mathematician, was published that gave birth in the 20th

century to the 'subjective' or 'personal' interpretation of probability, with the work
of de Finetti (1937) and Savage (1954). The subjective probability approach keeps
the axiomatic laws of the theory of probability but enlarges the scope of application.
It is part of the larger class of Bayesian methods and it is often referred to as the
Bayesian approach.

Subjective probability is a hard sell in practice. We come to this conclusion
through experience in engineering. In some cases, the effect of the initial subjec-
tive input washes of quickly as more data are gathered and the issue is irrelevant.
However when there is little or no data, one seriously questions the validity of the
Bayesian approach. Not much has been achieved in support of the existence of a
prior probability. We review the concept of Erpert Opini,on Elicitati,on used to build
a prior probability distribution. We show a case in bridge maintenance optimization
where the Iikelihood model for the expert can actually be developed and state the
reason for the inapplicability of the approach. This makes us take a step back to
the days of Kolmogorov and reflect on Bayesian theory.

2 Probability

There are many approaches used in modeling uncertainty. Probability theory is
regarded as a sound theoretical approach. There are other models. Fttzzy Logic
theory and the Dempster-Shafer theory are the most notable other directions. Let E
be a random event or uncertain event. Probability theory assigns a number between
0 and 1 to that event and denotes it P(E). E can be any possible or imagined
event, such as 'rain tomorrow', 'Shakespeare wrote the plays' or the 'image belongs
to class C'. -E represents the truth of a proposition and P(E) the probability of
that proposition being true. There are three laws upon which probability theory
is built; (1) Convexity: 0 { P(E) < 1, (2) if .81 and E2 ate mutually exclusive,
that is they both cannot occur together, then P(81 or Eù -- P(Et) + P(.82) and
(3) Multiplication: P($ and Ez) : P(E1\E2)P(Ez), where P(EtlEr) is known
as the cond'it'ional probabi.li,ty of event El given (assuming) evett E2 has occurred.
Based on these simple laws, a whole body of explanatory science, inference and
prediction is built. While probability theory is laid down with mathematical rigor

and requires definitions upon which the three laws are based, in essence, it is these
three simple laws that are at the heart of any probabilistic modeling. Two other laws
derived from these are; (i) Bayes' Theorem, due to Thomas Bayes and rediscovered
by Laplace in 1774 and (ii) T,he Law of Total Probabi,Ii,ty also derived by Laplace.
The axiomatization of Kolmogorov is accepted by most and is the foundation of
the mathematics of probability, by which the probabilities of complicated events of
interest are calculated from probabilities of simpler events.
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2.7 Subjective Probability

The theory of probability is based on axioms and is not the subject of controversy as a
mathematical theory. In 1933, the Russian mathematician Andrey Nikolaevich Kol-
mogorov introduced the axiomatic approach, Grundbegriffe der Wahrscheinldchkeit-
srechnung (Kolmogorov, 1933), turning the probability concept into a mathematical
theory. Kolmogorov organized a theory Emile Borel [1871-1956] had created many
years earlier by combining countable additivity with classical probability. In Kol-
mogorovs work, they were traces of the work of many others such as that of Borel,
the work of Maurice Frechet [1878-1973], and that of FYancesco Cantelli [1875-1966],
Alexander Chuprov 17874-79261, Paul Levy 11386-1971], Wladyslaw Steinhaus [1887-
1972], Stanislaw Ulam [1909-1984] and von Mises [1883-1953] (Shafer and Vovk,
2006). The problem starts when one questions the meaning attributed to probabil-
ity. If a problem is dissected into its most basic events and these events can't be
divided further or conditioned, then one is faced with having to provide a probabil-
ity for the basic events. The question arises as to what is meant by the assigned
numbers. The issue is important and has been controversial over the history of
probability theory. Several schools of thoughts dominated at different times. The
importance of the issue lies in that different interpretations lead to different method-
ologies and very different answers at times.

The meaning of probability took many forms over the course of centuries. From
James Bernoulli's [1654-1705] notion of probability, to Laplace's [1749-1827] def-
inition of probability, to \iènn [1834-1923] and Von Mises 11883-1953] frequentist
interpretation, to de Finetti [1906-1985] and Savage [7917-1971] subjective proba-
bility, the meaning of probability has been constantly questioned. In the example
of a flip of a coin, the probability 0.5 of a face could be arrived at through three
possible reasonings. The first one uses the symmetry of the coin. Assuming a perfect
symmetry, the argument can be made in favor of the value 0.5. In a second reason-
ing, probability is taken to be the limit of the frequency of the outcome if the coin
is flipped infinitely in similar conditions. This provide the basis for the frequentist
view of probability. While this definition of probability prevailed for a long time, it
has to share the stage these days with another view, the subjective probability. The
frequency concept is liked by many in different scientific fields for its rigorous defi-
nition but it does not apply to all situations. It is hardly ever possible to replicate
the same conditions for an experiment. Even in the coin toss example) one cannot
assume that the conditions are the same each time the coin is tossed. Diaconis et
al. (2007) have shown that a coin toss can be predicted if all information about the
toss is available. Also, the frequentist argument does not apply for one off events
such as 'Mr. X is guilty of the crime' or 'shakespeare wrote the play'. The idea of a
personal probability, or subject'iue probability saw the day with the work of Frank
Ramsey [1903-1930] and Bruno de Finetti early in the 20th century in Europe, and
that of Leonard Jimmie Savage in the United States in mid 20th century.
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2.7.1 The Betting Scheme of de Finetti

de Finetti (1937) devised a betting scheme to determine a unique number he qualifies

to be the probability of an event of interest. The process is to make the assessor of

the probability go through a series of evaluations where he or she is asked to provide

a price z on a bet where the gain is z if .E occurs and 1- z if E does not occur,

0 1 z < 1. The person keeps choosing z until becoming indifferent between two
possibilities (Berger, 1980). Making a number of assumptions, this intuitive concept

is put into a rigorous mathematical framework by de Finetti (Singpurwalla, 2006).

2.1.2 Relative Likelihood - The Savage Axioms

The Relati,ue Likelihood axiomatic approach assumes that a person has the ability

to compare the likelihood of any two events. Using a series of axioms on rational

behavior, it shorws that there exist a unique number, in any given situation, that

can be considered the probability of the event in question. With the use of an

auxiliary experiment that has symmetrical features, the probability of any event

can be asse.ssed. It suffices to compare outcomes of the auxiliary experiment with

the event considered. By repeated comparisons, a number will be arrived at which

will be unique and represent the probability of the event (Degroot, 1970).

2.1.3 Prior Probability

Probability models are used to solve problems that have a relevant amount of un-

certainty in them. Bayes' Theorem is a simple probability rule that contributed

to the resolution of countless problems in estimation, inference, and prediction. It

is a powerful tool, but it requires the specification of prior probabilities. In many
problems, one starts with P(E), called a prior probability and computes P(E|D),

where D is the set of data. D often comes in pieces over time, (Du Dz,. . .) such

as radar measurements in Target Tfacki,ng. Each time new information Di arrives)
P(ElD j, Di-t, .. . , Dt) is obtained from P(.ElD j-rt . . ., D1) using Bayes' theorem.

This mechanism provides for a powerful recursive probabilistic updating that proved

successful in many problems. For example, in target tracking, it is the basis of many

efiective algorithms for tracking targets in all sorts of conditions (Musicki et al.,

1994). However, one must start with P(E).This is where the controversy occurs.

In a field like target tracking or image analysis, data are abundant and the effect of

P(E) is small and does not affect the solution much after a while. But when there

is little data, the subjective input weights in significantly on the final answer. Some

dictate the use o1 Subjecti,ue prior probability. Howevet, while de Finetti, Savage

and others did their best to rationalize a subjective P(E), not all statisticians are

willing to accept it. The debate is long and is beyond the scope of this article,

although we will be making a point along the objection.
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3 A Bridge Maintenance Problem

Bridge maintenance optimization has been applied over the past decades due to
the large costs associated with the management of networks of ageing structures.
Structural deterioration assessment and condition prediction of bridges is a subject
of interest that has far reaching consequences, both in terms of public safety and
budgeting for asset mânagers. The Roads and Traffic Authority of the state of New
South Wales, Australia, manages more than 5000 bridges. These bridges were built
over the last 125 years. They were made out of various materials and technology
and built to different loading standards. The structures are exposed to different
environments. They are also subjected to various loading patterns and frequencies
(Manamperi et al., 2009). All these factors have different ageing effects on the
structures. The state is faced with the dual aspects of public sa,fety and maintenance
cost in the management of the structures. In a recent study conducted for the
Roads and Traffic Authority of the state of New South Wales, a modern approach in
modeling structural deterioration in bridges is applied to the maintenance problem.
Traditionally, bridge maintenance optimization models optimize based on discounted
Iong-term costs using a Markovian decision model. Aboura et al. (2009) [2] apply
the gamma process in modeling deterioration. The gamma process is a stochastic
process with independent non-negative increments having a gamma distribution. It
was first applied by the Australian scientist Patrick Alfred Pierce Moran [1917-1988]
in the 1950's to model water flow into a dam. Abdel-Hameed (1975) was the first to
propose the gamma process as a deterioration model. The advantage of the gamma
process was recognized and applied in several studies. van Noortwijk (2009) provides
a comprehensive overview of the use of the gamma process in the maintenance of
structures.

To model deterioration using the gamma process, the power law is incorporated
into the stochastic process. The gamma process is defined as follows: Let ,u(t) be
a non-decreasing, right continuous, real-valued function for I ) 0, with u(0) : 0.
The gamma process with shape function a(t) > 0 and scale parameter z ) 0 is a
continuous-time stochastic process {Z(t),, > 0} with the following properties; (i)
Z(0) :0 wi th probabi l i ty  7,  ( r i )  Z(r )  -  Z( t )  -  G(u(r )  -  u( t ) ,2) ,  and ( i i i )  Z( t )  has
independent increments, where G(zlu,u) : u" z"-te-"" fl(u) is the gamma probabil-
itydensityfunctiondefined for z € (0,*). Letting u(t): ,,2#f o2 andu: prf o2,the
mean and variance of the deterioration Z(t) are E(Z(t)): ptu andV(Z(t)): o2tq.
Given a set of observations of the deterioration process Z (t), {26}i, for times {to}?:r,
the maximization of the likelihood function provides estimates of the three param-
eters p, o and q. For a Z(t) deterioration, a condition C(t): 100 - Z(t) is defined.
At time 0, C(0) : 100(%) implies a full, 'as new', condition of the bridge element
to which the gamma process is applied. The deterioration modeling focuses on ele-
ments as the statistical analysis is applied to elements of bridges grouped together
(Aboura et al., 2009 [3]). The importance of the structural deterioration estimation
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is apparent in the execution of the final. exercise, the maintenance optimization. It is
illustrated in Figure 1, where two different condition paths lead to two very different

t ; u  t ; ' o

Fig. 1: Time to reach a 20% deterioration target level

times, f{ and fj, to reach the 20Ta deterioration target. There is approximately a 2
years difference between the two times. This can lead to a significant difference in
cost if f* is applied as maintenance time to a large number of elements on different
bridges. Estimating properly the condition curve is essential to the problem. The
lower on the condition curve are some of the data, the better the estimation (Aboura

et al., 2009 [3]). For some bridge elements, low condition data are not available due
to maintenance. One way to remedy would be to try to guess the times at which
the deterioration reaches some levels. The use of engineering knowledge as an ed-
ucated guess is commonly referred to as Erpert Opi,ni,on. Significant research was
conducted in eliciting expert opinion. We review the concept and offer a solution
for the maintenance problem.

4 Expert Opinion Elicitation

The use of expert opinion in the assessment of a prior distribution received much at-
tention in the literature. It allows for the formal incorporation of expert information
into a statistical analysis and attempts to provides an answer to the controversial
issue of the validity of a prior distribution. Early work to formalize ad-hoc pro-

cedures for the use of expert opinion include Dalkey and Helmer (1963). Morris
(1974) recognized the importance of treating the expert opinion as data, stating the
general principle on which subsequent work was based. The topic was further en-
Iarged by the Bayesian statistical community to the problem of reconciliating prior
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information from different sources, a topic that dates back to Winkler (1968). Many
Bayesian statisticians contributed to the literature on the problem. A lot of the work
in Expert Opinion Elicitation remained at the theoretical level, with few notable ex-
ceptions, for example Cooke (1991). Cooke's'classical'method for combining expert
probability distributions remains the only method in use in which real data are the
basis for evaluating the experts. The name classical model derives from an analogy
between calibration measurement and classical statistical hypothesis testing. It is
not a Bayesian approach, but it is a method that has been tested in the field.

Garthwaite et al. (2005) present a comprehensive review of the statistical work
in the area. The first sentence of their abstract states, in a short but concise man-
ner, that 'elicitation is a key task for subjectivist Bayesians'. It is indeed, as it
represents the technology that can validate the theory. However, by the authors'
own admission, the statisticians failed to provide an answer to the problem. The
paper surveys a wide range of issues, a considerable body of work, but reaches the
conclusion that 'too often, ad hoc methods must be used when an expert's opinion
is to be quantified'. This is not surprisinC. Ad hoc methods are used because they
are simple and they allow an understanding of the mathematics used to model the
expert opinion. In effect, the practitioners that use an ad hoc method are building
their own simple likelihood model the best they can, when in fact such expert opin-
ion model should have been derived by the statisticians. No statistician really took
time to collect data on expert answers, enough to build a model. All models, at least
in the parametric case, were off the shelf models used for mathematical convenience,
with possibly absolutely no connection to a model that captures best the expert's
behavior. For example, a simplistic model would be that € - N(a0 +b,o2), for
some o, b, o, where { is the expert opinion on 0, a parameter of interest in a decision
making problem. While this model is simple, it captures 'bias' and 'inflation' as
well as 'variation'. Unfortunately, often, this is the conceptual level of modeling
used so far by most Bayesian statisticians in dealing with the expert likelihood. A
theoretical model is postulated, supported only by a slight guessing logic in its for-
mulation, and the mechanics are activated. It is done, as if somehow, subjectivity
blurs everything, and that common sense will save the day in practice. Well, that
is not the case. Often, these models never make it to practice. That is how the
day is really saved. More complex models or higher hierarchical levels have been
considered. But in principle, it remains that a theoretical model is used on grounds
not supported by any statistic about actual expert behavior. The problem is not
resolved by adopting a nonparametric approach either (Garthwaite et al., 2005).

4.I An Expert Opinion Elicitation Solution

In considering the gamma process as a stochastic deterioration model, a typical
condition curve is shown in Figure 1. Data on the lower part of the curve is often
not available. A way to remedy to the problem is to introduce expert knowledge into
the analysis. We consider a maintenance problem where the deterioration model is
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the gamma process with parameters 0 : (e, trr,o), as defined in section 3. Given a
deterioration level z, we want to determine a probability distribution for the time
the deterioration process crosses that level. Given q, p, and o) we can obtain the
exact t ime the process mean equates that level. It is t!: (zlp\tta. since pla : z.
A good expert opinion would result in a probability distribution around the value
t!. Using this observation in some modeling of the expert, we want to derive the
probability distribution P(01 t", D), given the expert input t" and the data D, a set
of observations of the deterioration process Z(t), {"0}T:, for times {to}T:r. This is
done through the application of Bayes theorem,

P(01 t " ,  D )  x  P ( t . ,  D l  0 )P (0 )  x  P ( t . lD ,0 )P (D l  0 )P (0 )  (1 )

The likelihood function L(A) : P(DIî) relates to the data and is easily derived
from the gamma process (Nicolai et a1.,2007). P(0) embodies any information the
statistician rnay have about d : (e, l1,o). In most situations, the statistician may
not know anything about some bridge element deterioration, as was the case in our
study, and consequently a non informative prior may be used. Remains the deter-
mination oI L"(0) : P(t.lD,d), the likelihood model at issue. We assume that t" is
independent of the new data Dn.. C D. The expert opinion is not independent of
data in general, and is in fact very much influenced by it. However, we setup the
elicitation process such that l" is provided before the new data Dn"* are observed,
hence the independence. The data is collected sequentially over the years. This
leaves us with the construction of the likelihood function L.(0) : P(t"10, ?l), where
?l is all knowledge the expert has at the elicitation time. At this point, follow-
ing what has been done so far by subjective Bayesian statisticians, one stipulates,
hypothesizes, a model for P(t.10,'11), for example the Normal distribution model
t" - N(atq, +b,r2). Given 0, te, is defined uniquely for a level z, and the expert
opinion model is deemed a reasonable one. The triple (a,b,E) characterizes the
expert; inflation, bias, variability. This is as far as many Bayesians have gone. This
is where our criticism lies. What justifies the use of such model and has anyone
studied data relevant to the construction of this model.

In the scenario of section 3, we have precisely a situation where we can remedy to
the weakness displayed so far by the so called ,Supra Bayes'ian approach. Instead of
speculating on some theoretical model, we can actually build it. There are over 100
major bridge elements in the study of Aboura et al. (2009) [2]. Bridge inspectors are
often assigned to the same bridges over the course of many years. These inspectors
can provide a pool of experts. The experts can simply provide a guess at a condition
before going on site to inspect and assess that condition. This process would ensure
enough data are collected to build a statistical model P(t.lt"), where t, is the time
at which deterioration z is reached. This model would be expert dependent, as
expected, and would be build on actual, real expert information. The likelihood
model L.(0) : P(t.10) is deducted using the laws of probability

P (t"10) : 
lr, 

e {t.lt ", 0) P (t 
"10)dt "

L4l
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P(t"1t",0) : P(tàt"), the model of the chosen expert, is build through historical
data. P(t"10) is the probability density function of the time for the deterioration to
reach level z, given the parameters d: (q,lt,o). P(t. lt") in fact equals P(t.1t",0) in
the case where the data used to build the model comes from the same bridge or from
several bridges with the same d deterioration characteristics for the bridge element
in question. If data from bridges with different element deterioration behavior are
used to build the expert model, as it may be the case when there is lack of data, then
this aggregation implies an approximation of P(t"1t",0) by P(t"lt,). But it is still a
reasonable approximation that allows the use of an expert data derived model. Or
we may simply make the assumption that the expert's answer error is independent
of d, which is most likely an incorrect assumption. All these issues can precisely
be answered during the process of building P(t"lt,) using actual real expert data
and observed target times. The use of information about the expert's answer is the
major departure brought about by this solution. The expert model here is not to
be theorized, but rather to be built using historical data about the expert. This is
a significant conceptual difference from existing solutions.

4.7.7 The Engineering Reality

The reality is that the client refused categorically to consider any subjective input to
the solution. The objection was motivated by many reasons, one being that the work
was commissioned by a governmental agency that prohibited the idea of having to
defend some day a past subjective decision. Another reason is the inspectors being
inconsistent in reporting evaluations. The inspectors àre needed for the evaluation
of the conditions of the bridges as automation is difficult. But these inspectors are
prone to error. To use their opinion in guessing a future condition is amplifying
the risk of a serious error. We do not speculate as to what other reasons may have
contributed to the rejection of the use of a subjective solution.

5 TheoreticalConsiderations

The rationalization of the use of subjective probability can be made through one
of two arguments; (i) de Finetti's betting scheme and (ii) the Relative Likelihood
argument. It is the opinion of this author that neither one provides a justifica-
tion for the use of subjective probability. The betting scheme of de Finetti seems
reasonable at first. It is intuitive and along the lines of thinking in gambling sit-
uations. The probability of an event P(E) : 7 - z is an equilibrium point the
person arrives at after repeatedly choosing a price z. The person keeps choosing
z until becoming indifferent between two possibilities. This approach assumes that
the thought of money can help a person bring out a personal feeling for an event.
This is a strong assumption. Many people may not be able to extract a feeling of
likelihood through the consideration of a gain or loss of money. Assuming a person
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is sensitive to monetary gains and losses, with a linear monetary value (ignoring the
circular argument between probability and utility), de Finetti's scheme requires an
(imaginary) iterative process, that may take as long as it needs, until it settles on

an equilibrium value. No one can guarantee the existence of such an equilibrium
point. It is simply postulated. The approach assumes that each time a subjective
probability is declared, the garnbling scheme has been applied, regardless of how
long it took for it to converge. This is a dangerous door. Most people, if allowed to

use subjective probabilities, are not going to conduct a long iterative process. They

will simply start declaring the first value that comes to their mind.
The Relative Likelihood argument does not fare any better. The development of

it is mathematical, rigorous and well thought out. And yet, when it comes to making

a jump to the existence and definition of probability, it makes a huge assumption.

First, events are organized according to their likelihood. Thanks to the axioms of

the theory, they can be ranked by a rational person. By relative likelihood one can

compare all events. Finally, a perfect uniform probability distribution is assumed

to exist, and its events are compared to the events of interest. It is this last jump,

from a real .vorld situation to a completely abstract situation that we object to.
Absolutely nothing guarantees that this can be done. The whole approach is an
argument that feeds onto itself. It is basically a 'mathematization' of a ranking

method that is justified through axiomatization. Then it is saying here is a scale,

say between 0 and 1, and where do you think your probability for that event fits here.

There is absolutely nothing that says that this can be done. Relative Likelihood

simply pushes away the problem, and rephrases it in a mathematical context so that

it appears solved. It is a nice axiomatic theory that makes rationality assumptions,
then quickly jumps to the declaration of a solution, existence and uniqueness of

some number called probabilitv. It does not say where that number comes from.

One could almost replace it with "Thitrk hard and give me a number".
Tversky and Kahneman (1986) have shown that people do not conform to the

rules of probability. People are not rational and do not have the calculus of prob-

ability ingrained in them. All the psychological issues mentioned in Garthwaite
et al. (2005) come into play. Without discussing this side of the issue formally, just

consider something we are all familiar with; reverse psychology. One could postulate

that analytical ability is inversely proportional to the amount of reverse psychology a
person displays, if that amount could be measured. The acting in reverse in reaction

to an offer is an instinct, residing most likely within the survival tools. This natural

caution, along with many other psychological factors we display in our behavior and
thinking, would affect any probability assessment. Think of the well known empir-
ical fact that 'the first impression lasts forever'. It hardly ever changes fot some,
regardless of how much data they are exposed to. For these reasons, one should

simply not trust a personal probability. At least not with the current a,ssessment

technology.
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6 Conclusion

There are many situations that warrant the use of subjective probabilities. Take
a gambling situation with people sitting across a table. The situation is so unique
and its economic consequences so pressing that only a subjective assessment can
be considered. One may not reject outright the concept of subjective probability.
However, we are also reporting on a real case of significant economic and safety
consequences where subjective probability was strongly objected to. We point to the
weakness of attempts by Bayesians at developing expert opinion elicitation methods.
We look into the rationalizations of subjective probability and highlight what we
think are flaws of the theory. There is no convincing definition of probability. While
we admire the likes of de Finetti and Savage, we make the point that probability
must be defined properly.
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