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Abstract
A class of stochastic antagonistic positional games for Markov decision processes
with average and expected total discounted costs optimization criteria are formu-
lated and studied. Saddle point conditions in the considered class of games that
extend saddle point conditions for deterministic parity games are derived. Further-
more algorithms for determining the optimal stationary strategies of the players are
proposed and grounded.
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Introduction and Problem Formulation

Markov decision processes have a prominent role within the theory of dynamic games
and anticipatory systems. In this paper we study a class of antagonistic positional
gâmes for finite state space Markov decision processes with average and expected
total cost optimization criteria. We formulate saddle point conditions for this class
of games that extend saddle point conditions for deterministic parity games from

.7, 4, 5, 7, 9]. Thus, the considered class of games and the presented results generalize
deterministic antagonistic positional games and saddle point conditions for such
games. Moreover we show that for the considered class of games saddle points
always exists and the optimal stationary strategies of the players can be found using
an efÊcient finite iterative procedure.
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The formulated basic game models are using the framework of a Markov decision
process (X,A,p,c) with a finite set of states X, a finite set of actions A, â
transition probability function p: X x X x A -' [0,1] that satisfies the condition

D PZ*: t, Yr e. X, Ya € A
vex

and a transition cost function c: X x X ---, R which gives the costs c*,o of states'
transitions for the dynamical system when it makes a transition from a state z € X
to another state y € X.

'We 
assume that the Markov decision process is controlled by two players as

follows: The set of states X is divided into two disjoint subsets Xr and Xz, X --

XrUXz (XrîX2:0), where X1 represents the positions set of the first player
and X2 represents the position set of the second player. Each player fi.xes actions in
his positions, i.e. if the dynamic system at the given moment of time is in the state
r which belongs to the position set of first player then the action a € A is fixed by
the first player; otherwise the action is fixed by the second player. The player fixes
actions in their position sets using stationary strategies. The stationary strategies
of the players are defined as two maps:

s1 i r ---+ ae At(r) for î € Xl

s2: r ---+ ae A2(r) for r € Xzl

where ,41(r) is the set of actions of the first player in the state r e X1 and A2(r)
is the set of actions of the second player in the state r e Xz . Without loss of
generality we may consider lA(r)l : lAol : lAl, Yr e Xi, ' i : 1,2. In order to
simplify the notation we denote the set of possible actions in a state r e X for an
arbitrary player by A(r).

If players fix their stationary strategies s1 and s2, respectively, then we obtain
a situation s: (sr,s2). This situation corresponds to a simple Markov process
determined by the probability distributions p";,f) in the states r € X6 fori: !,2.
We denote by P" : (pi,) the matrix of probability transitions of this Markov
proces6. If the starting state fis is given, then for the Markov process with the
matrix of probability transitions P" and the matrix of transition costs C : (cr,r) we
can determine the average cost per transition aro(sr,sr) that corresponds to the
si tuat ion s:  (s1,s2).

So, on the set of situations ,91 x 52 we can define the payoff function

Fro(sr, s2) : u.tro(s1, s2).

In such a vray we obtain an antagonistic positional game which is determined by the
corresponding finite sets of strategies ,9r, ̂ 92 of the players and the payoff function
Fro(tr,s2) defined on ,S: 51 x 52.
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This game is determined uniquely by the set of states X, the positions sets X1, X2,
the set of actions A, the cost function c : X x X --* ,t, the probability function
p i X x X x A -+ [0,1] and the starting position rs. Therefore we denote it
by (X, A, Xt, X2, c, p, ro) and call this game stochast'ic antagonàst'i,c positional
game witth auerage payoff function. We show that for the players in the considered
game there exist the optimal stationary strategies, i.e. we show that there exist the
strategies s1* € ^91, s2* e 52 that satisfy the condition

F,("r*, sz*): 
* i"*,êF,(st,s2): #.grgrgF'(sr, 

s2), Yr e X. ( 1 )

In the case p!,n:0 V 1, Vr,y € X, Va e A the stochastic positional game
is transformed into the parity game studied in [1, 4, 5,9]. In [2, 3] the stochastic
positional game of rn players where some sufficient conditions for the existence of
Nash equilibria are derived have been formulated. However, for a stochastic posi-
tional game withm players in the general case Nash equilibria may not exist. The
main result we present in this paper shows that there always exists a saddle point
for stochastic antagonistic positional games with average payoff functions.

In this paper \ûe consider additionally the stochastic antagon'isti,c posi,ti,onal game
with a d'iscounted payoff function. We define this special game in a similar way as
the game above. 

'We 
consider a Markov decision processes (X, A,c, p) that may be

controlled by two players with the corresponding position sets X1 and X2, where the
players fix actions in their position sets using stationary strategies. Here, we assume
that for the Markov decision process the discount factor À, 0 < À < 1 is given, where
the cost of system's transition from a state r € X to a state y at the moment of
time t is discounted with the rate )t, i.e. the cost of system's transition from the
state r at the moment of time t to the state y at the moment of time t * 1 is equal
to Àtc,,r. For fixed stationary strategies s1, s2 of the players we obtain a situation
s : (sr, s2) thât determines a simple Markov process with the transition probability
matric P" : (pi,) and the matrix of transition costs C : (cr,a). Therefore if the
starting state rs is known then we can determine the expected total discounted cost
alo(sr, s2) that corresponds to the situation s : (sr, s2). So, on the set of situations
,S1 x ^92 we can define the payoff function

Fro("r ,  sr)  :  olo(sr,  sz).

We denote the stochastic antagonistic positional game with a discounted payoff
function by (X, A, Xr, X2, c, p,À, ro). We show that for the players in this
game there exist the optimal stationary strategies, i.e. there exist the strategies
s1* € ,S1, s2* € 52 that satisfy the condition

F,o("r*, sz*) : p.î|"*tF,F"6(s1, s2) : 
#lF,5,ng;F"o(sr, 

sz).

Some approaches of determining the saddle points in the considered games are de-
scribed.
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2 Determining the Saddle Points for Stochastic
Antagonistic Positional Games with an Average
Payoff Function

In this section we show for an arbitrary stochastic antagonistic positional game
(X, A, Xt, Xz, c,p, r) with an averâge payoff function F'(st,s2) that there
exists saddle points, i.e we show that there exists the stationary strategies st*, s2*
for which condition (1) holds. This fact is proved using the properties of the bias
equations for so called Markov multi-chains [6].

For an arbitrary state z € X and a fixed action a e A(r) we denote by

Fr,a: L Pl,o",,n,
Yex(a)

i.". 1",,o is the immediate cost in the state r € X for a given action ae A(r).

Theeorem 1. Let (X, A, Xr,Xz,c, p,v) be an arbitrary stochastic positional
game with àn âverage payolï function fb("t, s2). Then the system of equations

E,*u),:,?.ft i 
{r-"* \pi,sen}, vr € xr;

E, * ut,: ,$ôl {r,t* \Pi*'s}, vr e X2;

(2)

has a solution under the set of solutions of the system of equations

( ( 1 .

) ": 
'Ëft' t D-ni'ow'l'' vr € xr:

l(
[ " 

: Æêrt F'02*"]' 
vr Ç x2'

i.e. the system of equations (3) has such a solution <,.rj,
exists a solution €I, t e X of the system of equations

I u, * ,i : #ffi){r,, * \ni*r,}, Yr Ç xt;
) 

-"'

I
[ . "*  

r ï :  
"?] t t { r ,**  \p i ,u 'a l ,  Yr€x2.

The optimal stationary strategies of the players

(3)

fi € X for which there

(4)

s 1 * : t  - - +  a e A ( r )  f o r  r € X ;

s2* ' . t r  - -+  aeA( r )  fo r  re  Xz
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in the stochastic positional game can be found by fixing arbitrary maps s1-(z) e
A(n) fot r e Xl and s2*(r) e A(r) for r € & such that

sr.(c) e (*s:,** ,{"1*02,,,;})n (**,Ëff, {r,"* F*p\,,'î}), (5)
VueX '

sr*(r)  € ,z,,";j)n ( **.u4,{r,,^ *
V r e X z

For the strategies sl *, s2* the corresponding values of the payoff function trL(s1 *, sr* )
coincides with the values a.,f for I e X aû (1) holds.

Proof. Let r € X be an arbitrary state and consider the stationary strategies
3r € Sr, 32 € 52 for which

Il(s'.5o) : min max -Fl-(s'. s").
sr€.12 sr€Sr

We show that

F,(a,sr) : 
#.1rqi4 

I|(s1, s2),

i.e we show that (1) holds and 31 : sr*, s2: s2".
According to the properties of the bias equations from [6] for the situation

5: (3r,32) the system of linear equations

€, * w, :  l t r r ,o* D ni*es, Vn e Xt,  a:  s l(r) ;

€, * w, : Hr,o + D_ pi,ses, Yr Ç Xz, a:52(r);

k" : D pl.ua,,
a€x

ûJ" : I Pl.ua,
aeX

has the solution ei, ui @ e X) which for a fixed strategy 3z Ç. Sz satisfies the

\ei,",îj) (6)(**,e'e, {,p,

(7)
Vr  €  X1,  o :  Sr ( r ) ;

Vr  €  X2,  a :52( r )
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condition
e| + wi )_ tr,,o + \,_Ai,ne[,a€x

ei + ,ti -- pr,o + \_ni,oei,gex

a;> D pï.,ui,
u€x

ui: D Pi.uui,
u€X

and.F | (31 ,32) :a i ,  V  re  X .
Taking into account that .F|(s1, S2) : min"res" Fr(s1, s2) then for a fixed strategy

3r € 5r the solution etr, ai @ e X) satisfies the condition

e| + ui: Pr,a + D ai,oei, Yr E Xv a: sl(r);

ei+ w| 3 tr',o+ D_p\,u€i, Vr €. X2, a e A(c);

So, the following

I
I

has a solution, which satisûes the condition (7). This meâns that si : sr, sT :3r

and

max mi4 Fr(st,sz) : min_ ma4 Fr(sr, s2), Vr Ç. X,
s1€S1 s2€,92  s2€.92  81€.91

i.e. the theorem holds.
Thus, the optimal stationary strategies sf, si of the players for an average antag-

onistic positional game can be found using the solutions of the system of equations
(2)-(4) and conditions (5),(6). Below we describe an iterative algorithm for deter-
mining the optimal strategies sf, sj.

,i: prp"",uri,

ui s \n|,ow|,

system

E r i u r )  l t r , o +  D  p i , s e s ,  Y r e  X t ,  a e A ( n ) ;

e r+urSF, ,o*  
uD*uï , ru r ,  

Yre  X2,  ae  A( r ) ;

,, ) D_Pl,nr,,

u,3 D_pl,su,,

V r € X 1 , a e A ( r ) ;

Vr  €  X2,  a :32( r ) ;

V r € X 1 ,  a e A ( x ) ;

V r € X 2 ,  a : 3 2 ( r )

Vr  €  X1,  a :  s r ( r ) ;

V r € X 2 ,  a e A ( r ) .

V r € X 1 , a e A ( r ) ;

Y r € X 2 ,  a e A ( r )
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3 An Algorithm for Determining the Optimal Stationary
Strategies for Stochastic Positional Games with an
Average Payoff F\rnction

Preliminary step (Step 0); Fix the arbitrary stationary strategies

s ! : r - * yeX( r )  f o r  r €X1 .

sl: r -, y e X(r) for r €. X2.

that determine the situation so : (s!, s!).

General step (Step k, k > 1/; Determine the matrix P"o-' that corresponds to the
situation 

": 
(rf-t,s!-r) and find û.,"0-' and 6"u-' which satisfy the conditions

VreX t

V reXz

Then find a situation 
"* 

: ("f, sf) such that

"f 1r) e u.s"Ëffr {[o:,,,;l-'1,

slqr) e u,s p1ët{\0"',,;, 
'},

and set sfr - sft-l if

" f - t (  
'  ' -  , o - " r : f - ' ] .  V r  e  X  ..r) e arg max)\ 

1p,,sa", J, 
v:r c zrli

s f - t ( '  -  (  -  , : . , r ; ï - ' ) ,  Y rÇxz .x:) e arg max,t 
à 

F,,a-, ),

After that check if rÀ - 
"rc-12 

If sk : sÈ-1 then go to next step h * 1; otherwise
choose a situation r* : (sf, sf) such that

sf (r) e u.s"Ë.ff1 {u,,* D ni,re"ri-'ot} vr e x1;

s$1r) ears"Ëffi) {r,"*Dn",,rrf-'at} vr e xz

and set ,/c - ,,t-1 i1

sf-r(r) € arg 1ng,r. {p,,"+ T 
- 'r-rr-r)

aeAln) \ - f"''ne;t "'i Vr e X;

l l l



,^ - t ( r )€  arg-mâx,  { r , , " * ;  
-o  " "T- ' ( " ) I  vn € xz.

uqn\ù/  \  oal" t ' ' ' 'o  
J 

' *

After that check if sk - sk-r? If sk : sk-l then STOP and set s* : s&-1; otherwise
go to next step ,k + 1.

Remark. If p,,n € {0.1},Vr, y € X then the algorithm is transformed for deter-
mining the optimal stationary strategies of the players in the deterministic parity
games.

The convergence of the algorithm described above can be determined in a similar way
as the convergence of the iterative algorithm for determining the optimal solution of
the Markov decision problem with an average cost optimization criteria (see [6, B]).

4 Determining the Saddle Points for Stochastic
Antagonistic Games with a Discounted Payoff Function

We consider an arbitrary stochastic antagonistic positional game (X, A, X1, X2,
c, p,À, 116) and show that saddle points always exist. This result follows as particu-
lary case from results from [2, 3] where the stochastic positional game of rn players
with discounted payoff functions have been formulated and studied. In [2, 3] it is
shown that in such games Nash equilibria always exists. Therefore on the bases of
these results we can be proven the following theorem.

Theorem 2. Let (X, A, Xt, Xz, cp, À, î) be an arbitrary stochastic antag-
onistic positional game with a discounted payoff function Fr(sr,s2). Then there
exist the values o, for r e X that satisfy the conditions:

r ' l1) Effit\u,,"+ ^ 
P*or,o"u 

- o,j:0, vr € x;

r )
2) mF. { F,,o t À D pi.,o, - o,l :0, Vr < Xz.'  a e A \ r ) ,  u a "  )

The optimal stationary strategies ,1*, s2* of the players in the game can be found
by fixing the maps

st.(r) = a* €urg"Ëf(Tl 
{r,r* 

\l ni.oo,y - o,}, Vr € X1;

,".(r) : o.* <"rs.SËr {r,rn lfini.aoo - o"}, Vr € Xz.

where
4("î, "i): oz, vn e x.

Based on this theorem we can propose the following algorithm for determining
the optimal stationary strategies of the players.
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5 An Algorithm for Determining the Optimal Stationary
Strategies for Stochastic Positional Games with a
Discounted Payoff Function

Preliminary step (Step 0): Fix the arbitrary stationary strategies

sl, ni -- a e A(r) for r1 € X1;

sl t ri -' a e A(r) for t; e X1.

and determine the situation so : (s!, s!).

General step (Step k, k > 0/; Calculate

for every r; € X. Then solve the system of linear equations

ax;  :  l t rx  ,sk-r ( r , )  *  x  D p{ , , } , ( r r )  o*r ,  i :  ! ,2 , .  .  .  ,n
zi€X

and find the solution of;rr, o!;r, . . . , o!:'. After that determine the new strategies

s! t ri ---+ a € A(za) for 14 € Xy,

sf, ro --+ a € A(r) for ra € X2,

and the corresponding situation 
"t 

: (sf, sf), where

sf (2,) : l- ' 
I pi,.,, of;tl ro. ri e. x1iut8"âË,1 (xi.a+ o 

ïu, 
-,*, -, 

J

s l ( t r | :  
I  r  s-  '  u- ' l  'uts"âil,r 
1H",,"+ 

^à Pi,.,,oi;'1ror ri € x2.

Check if the following conditions hold

s!(ro):  
" f - t (" l ) ,  

Vr i  € X;

sf (rn) : 
"f-t(rn), 

Vq e Xz?

If the condition (8) holds then fix

si :  sf ;  o\o: ol,,  Vr; € Xi
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"i 
: sf ; oi,: o!,, Vq e Xz;

otherwise go to the next step k + 1. The strategies si and sl represent the optimal
stationary strategies of the players in the game.

The convergence of this algorithm can be grounded in a similar way as the
convergence of the iterative algorithm for determining the optimal solution of the
Markov decision problem with a discounted optimization criteria (see [6, 8]).

6 Determining Saddle Points for Stochastic Antagonistic
Positional Games with Stopping States

The stochastic antagonistic positional game model with a discounted payoff function
can be modifred if we assume that the dynamical system in the Markov process stops
transitions as soon as a given state z € X is reached. Thus, we may assume that z
is an absorbing state and the cost c"," is equal to zero. It is easy to observe that if À
satisfies the condition 0 < ) < 1 then for Markov processes with an absorbing state
z €. X with c",": 0 the saddle point condition and the algorithm for determining the
optimal stationary strategies of the players from Section 3 are valid for the considered
game. If À : 1 then the results from Section 3 can be used for determining the
optimal stationary strategies of the players in the antagonistic positional games for
Markov decision processes with stopping states only for a special class of games.
Note that in the case pr,s € {0,1},Vn,y € X and À: l the considered class of
games is transformed into finite dynamic c-games studied in [4, 5]. Therefore a
saddle point condition for finite dynamic c-games can be derived from the results
from Section 3. Some algorithms for determining the optimal stationary strategies
in dynamic c-games âre proposed and grounded in [4].

7 Conclusions

As Markov decision processes have a prominent role within the theory of dynamic
games and anticipatory systems we have developed a new characterization which
might support modern decision support systems. The considered stochastic po-
sitional gâmes generalize deterministic parity cames and dynamic c-games. For
antagonistic positional games in Markov decision processes the saddle points al-
ways exists and the optimal stationary strategies in such games can be found using
efficient iterative calculation procedures.
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