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Abstract
I simulated a large Hopfield neural net which had the signum instead of sigmoid activation
function so that it could be naturally physically implemented, e.g. in spin systems. It
has been used in computational simulations in order to analyze the following capabilities
of processing very large and complex data sets (e.g., protein-structure data-bases): 1.
completion of patterns; 2. recognition of patterns; 3. prediction of unknown parameters;
4. a.nticipation. While for tasks 1-3 we use a memory-ba,se of previouslylearned examples
using "a,ssociations", ta.sk 4 is equivalent to case 3 re-interpreted for temporal (or time-
series) prediction, i.e. prediction ofunknown future parameter'values (instead ofunknown
present ones). For tasks 3 and 4 it is concluded that a generalization of the model used
in simulation, like phase-Hebb processing or quantumJike information dynamics, ir more
promising. Data-structure conditions for zuccess of tasks l-4 are discussed in a complex
"real-life" example.
Ke;rwords: associative neural nets, pattern recognition, prediction, anticipation

1 Introduction

Computational performance of the following tasks will be discussed and simulated us-
ing an extraordinary-la"rge physically-implementable HopfieldJike associative neural net:
o l. cornpletion of (relatively very big) pattems the net completes a set or vector of pa-

rameters - it recatls them from a memory-base of previously-learned examples using "as-
sociations", i.e. activated correlations ofthe current partial input with the automatically-
selected stored vector:
o 2. recognition of (very big) pattems: the net recognizes a pattern, indicated by a pa^rtial

input, either an one of those previously-stored, or as one belonging to a class of (stored)
patterns (that's an extension of ca,se 1 by activation of contextual information and by

corresponding re-arrangement of the output'vector / attractor);
o 3. prediction of (very many) unknoutn pararneters: the net predicts unknown parameters

based on known ones and on a memory-base of previously-lea,rned examples which were

similar to the current new pattern (an extrapolation ofcase 1, triggered by new-pattern's
partial input);
o 4. ant'i,cipation: time.series prediction by artificial neural nets is a special case of pre-

diction (interpolation, as in case l and 2,ina broad sense, and extrapolation, asin case

3, in a narrow sense) using the same mechanism of attractor-reconstruction and attrac-

tor re-shaping based on collective system dynamics, but with temporal interpætation of

paxameters which are encoded in the states of "treurons".
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Anticipation is realized by "a system for which the present behavior is ba,sed on past
and/or present events, but also on future events built from the pa.st, present and future
events" (Dubois, 20fi)a, p. 29). Thus, in an epistemic way, an anticipatory system evolves
'as if it knows its future' (ibid., p. 5, quotes as in orig.).

As it will be shown in section 7, a Hopfield neural net that reconstructs a stored
pattern from memory is an anticipatory system. The net's final state (pattern-attractor)
is equal to the selected stored pattern, because the net's evolution towards the output
pattern has been guided by the memory. The anticipation abilities could be better, i.e.
(more) correct or reliable, or $rorse, i.e. producing ân enor, as the time flow will finally
reveal. (Only precognition would be anticipation with certainty.)

Il the case of net's pattern recognition from memory (task 2), anticipation is maximal
and perfect (i.e., lfi) To conæt) if certain conditions, which will be discussed, a,re satisfied.
In the ca,se of predicting or anticipating values of some variables in neu circumstances
not faced before, i.e. not lea.rned (tasks 3, 4), the prediction or anticipation about future
state at time t f f might turn out to be more or less wrong when time goes on to t * 1.
Rezults of testing such highly non-trivial cases will be prmented. Since anticipotion 'is a
speciol case of predictiun, i.e. prcliction o! future states, the presented prediction-method
and computational tests are usable for anticipation also.

We will finally mention how anticipation capabilitiescould be enhanced by implement-
ing such an algoritbm, which ts a "natural" (i.e., ea.sily phgsicallg-implernentable) one, in
qnntun slstems.

2 Operation of the Basic Associative Neural Net

If all the neurons are bi-directionally connected with all the others, a socalled sym-
metric, self-consistent network is established - the Hopfield net (Amit, 1989; Palmer et
at., 1991). It belongs to the so-called associative neural nets. Among numerous models
of neural nets (Haykin, 1994; Peretto, 1992), it 

'rs 
the most similar to physical compler

systems and praæ,sses - spin or mognetic systerns (Dotsenko, 1994; Mezard et al., 1987),
and even (with some difierences discussed in: PeruÈ, 1998, 2000) ta qttantum systems and,
hologtphg.

A state, or configuration, respectively, of a neural net, is described by the vector f=
(qr,qz,...,qx). The state of an individual formal neuron (or spia, respectively) i is given by
ft. N It the number ofartificial neurons. A neuron can be "active" (qd : 1) or "inactive"
{q; = -1, or in another notation: gi : 0). The state of each neuron is determined as
the sign (+1, -f) ofthe sum ofcontributions from all the other reurons, weighted by the
strengths of synaptic connections J;ii e; = sSn(EËr J;i e). (The function sgn gives the
sign of its a.rgument.)

Patierns d : (rf, ut,...,utià a^re those neuronal configurations which hoae a special
informational signifi,cance. Patterns can be parallel-distributiaelg encoded in the system
of neurons or stored in the system of connections (weights) which represent the memory.

The strengths of connectioîl Jij arc determined by the so-called Hebb leorning rule
which comes from neurophysiology. Experiments show that a connection between two
ûeurons with correlated activity is strengthened, but a connection between two neurons
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with un-correlated activity is weakened. Strengthening (vrca^kening) ofconnections bases
on increasing (decrea.sing) of the transmission-rate of a slmapse. Flom this obserrration,
the Hebb formula has been constructed: The connection-strength "I;i is proportional to
the auto-correlations between equilibrium-configurations (stored patterns), i.e. (to be
more specific) to the zum of correlation-rates between the itÀ neuron and the jû neuron
in the framework of individual patterns:

p is the number of patterns which are simultaneously stored in the sa,me network; lc is
the pattern-index. uf describes the role of the itn neuron in the framework of (i.e., wbile
co-realizing) the &tr pattern. Construction of matrix J made of all .I;i, which could be
gradual or immediate, is equivalent to memory-storage, or the so-called "learning" process,
respectively.

The Hopfield model with the Hebb connætion-rnatrix pdrcns potlerts which arc qthr
alent to attroctors (Amit, 1989; Geszti, 1990; PeruS & Eëimoviè, 1998). An ottractor'rs
a fixed-point of the net's collective dynamics. This is a state where the network stays
"for-ever" after it has once occupied it. Eoch attractor caffesponds to a minimurn of net's
five energg I (from the point of view of dynarnics of the network in the case of physical
implementation), or to a rninimurn of the so-called net's energg fanction (from the point
of view of a simulation / model, used for information processing) (Amit, 1989; Geszti,
1990). Attractors a,re thus configurations which are especially dominant, stable, or usually
stationary and act as eigen-states, respectively.

A pattern-attractor is a stable configuration in an energr-minimum, because the Hebb
rule determines the connections so that the neurons in connection âr€, trlong into ac-
count their "activity-sigo" (+ or -), in optimal agreement (correlated). Betvieen two
active neurons or between two inactive neurons, there is a positive counection (meaning
that the information they encode is in agreement); but a currently active neuron and a
currently inactive neuron have a negative connection (i.e., information they encode is not
in agreement).

The Hamiltonian of the Hopûeld net with specific and symmetric (i.e., {1 = Jr,)
connections is like the usual spin-system or spin-glass Ha,miltonian (Mezard et al., 1987):

t i V f f . i V
n : -iDDâiq;qi -DBrc, e)

- i=r i=1 i=1

where for connections 4i the Hebb rule (eq. 1) is insert€d. The first term incorporates
local interactions. The second term describes the influence of an additional global field
B onto a neuron (spin) i - environmental influence, for exanrple. To this term, we ca,n
encode additiond requirements and constraints during simulations.

Because the Hamiltoni* ("q. 2) with the Hebb connections (eq. 1) incorporates
information-patterns as attractors into the net-process, they regulate the net's dynamics

-TS. E is the (internal, "thermodynarnic') energr, l is the
"temperature" CstochastiC neuronal activity), and .9 is the eûtropy. Minimization of the free enerry is
a'compromise' between minimization of energr and maximization of entropy.

(1)t,,= *f_,,,i
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so that the energy of the net keeps decreasing (proof in: peruÉ & Eèimoviè, 19gg) and is
minimal when the net reconstructs the patterns-attractors.

3 Recall from Memory and Pattern Recognition

3.1 'Holographic-like" Recall or Reconstruction process

Convergcnce of the vector describing the net-state (gJ to the neaxest attractor, i.e.
those which is the most similar to the input-based pattern u*, corresponds to recognition
of that pattern. Namely, this process includes intensive coordination between neurons,
and with this, indirectly, atso betweeu the parallel-distributed patterns which extend vir-
tually over their constitutive neurons (Peru5 & Eèimoviè, 1998). The network recognizes
a pattern, usually input from environment, when the neurons find an optimal compro-
mise. Neurons with mutual interactions and comparisons optimally re.distribute the
information-traces which they encode. In the system of neurons, a superposition of the
er<ternal (new input) pattern and the internal patterns (from their traces which a^re stored
in the system ofconnections), is formed. The new pattern is in such a way physically and
informationally connected with the context and is so recognized by the net.

This subtle process is executed by a computer using the following simple equation for
the reconstruction or recoll of the pattem from memory

N

q7'N = L, Jri dio*
; - 1

The Hebb memory matrix J with elements Jii acts a.s a projector into the system's sub.
spaces conesponding to individual patterns u+ stored in those connections.

We worked with binary (i.e., bipolar) r'ectors: their components a.re only 1 or -1
(which is equivalent to 0 in another interpretation). To get the output bipola^r a.s well, we
had to use, instead of eq. 3, the followiug update-rule:

ur d @, = tgn(l q**r) (3ô)

where the function sgn gives 1 when its a.rgument is positive, else it gives -1. In general
(with integer or real input and output values gi), merely a suitable normalization is needed
instead of. sgn - if one wants to preserve linearity to enable natural implementation.

If a part of a stored vector (a part of o-1, for example) is insert€d as fnpt (socalled
"memory key''), the network reconstructs the whole bipolar vector u-l on the output. For
er<a,mple: ur : (1, 0, 1, 1,0, l, 1,0, 1, 1),
q-npnt :  (1r0,  l ,  l r0r0r0r0r0r0) .
The first five "neurons" or "spins" were put, a.s an example, to the states which are equal
to corresponding states in the chosen stored vector d. The other "zeros" h dn*, are
signifying the lack of information. Assune that some conditions are fulfilled which will be
discussed soon. After the recall-operation, i.e. ftut - sgn(Jîwt), the reconstructed
whole rl'1 is obtained at the output; dtubltt : (1,0, 1, 1,0, l, 1,0, 1, 1) = d1.

dwtrttt 
_ J {*, (3)

qt'*' - *" 
[Ë 

,,, nT 
')
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Flom the "key" nnd J, where u-l is implicitly encoded, those (the same) o'1 is re

constructed. Thus, when we can reconstruct a pattern # from memory J, it holds:

û = Jû; or in our concrete example with bipolar vectors: ff: sgn(Jû). This is the
equation which shows that all the patterns û arc ei,gen-aectors of. the matrix J, where the
eigen-value is, in the limit case of the recall of a ctrosen d, equal to 1 (Amari & Maginu,
1938). This is the result of competition between patterns, described by eigen-vectors t'*,
their relevance being specited by the ctrresponding eigenaolues lÈ. The pattern with

the biggest initial eigen-vatue (which is specified by the similaliry with the "key" given

in the input) pervades - this is u-l in our case. "Taking power" by u-r is accompanied
by increase of Àr toward 1; other ^k,k + I, decrease toward 0 (Haken, 1991; PeruÉ &
Eëimovié, 1998).

For the recoustruction of di, the following condition, beside the similarity of the "key"
with one of the chosen stored pattertt (r-t), must be satisfied: Pattern u-l has to be or-
thogonal to other stored patterns Û , k 4 1. Why? We insert an input g-' (the prime [']
denotes simila,rity of the input with the current net-state q-) and we calculate for each i:

N  N  1 p  ' r / w  N  N  \
q:'* ='rtd = E(* 8,,:'4hi = * | tt oldi)u! + (luio)a'z1+ .. + (I4qi),f Ij=t j=L , h--r " \ i=t i=r i=r 

U\:
11 û,k I 1, a,re orthogonal to u-1, then all the terrns from the second to the la.st a,re equal
to 0. The first term, because of similarity of the "key" and ul, gives 1 in the bracket
(vectors were normalized in the beginning) and so u-i is the final, output state.

3.2 Conditions for Undisturbed Recall and for Prediction

This wa.s a trivial case - reconstruction of a stored pattern. Such a reca,ll is not
sufrcient for prediction or anticipation. For prediction or anticipation, a "fuzzy" version of
the sa.me procees is needed. The difference is merely in a diferent structure of correlations
between the used "key'' and the previouslyJearned / stored patterns, and in the "rate of
orthogonality'' (cf., Kainen & Kurkov6, 1993; Kainen, 1992) between the stored patterns.

The memory recall of eq. 3 will not give any " non-sense" output if the stored patterns are
olmost orthogonol between each other (i.e., the scalar products should be close to 0, but
not too close). Then, an optimal prediction or anticipation in new circumstances could
be obtained - an interpolation or even some limited extrapolation.

The decomposition of eq. 4 can, in such a "fuzzy" case, give the following result: The
first term grves a contribution which is close to dr, because the product in the bracket
is close to 1. The other terms together contribute something to be described a^s a small

"ûoise" - a.ll their products in brackets are numbers that a^re just a bit bigger than 0. So,
all the terms toçther produce an output-vec;,-rr which has optimally taken into account
the "key" as well as all the stored patterns, but mainly that one which is the most similar
to the newly-produced (anticipated) pattern.

The recall is very simple, seemingly at least, but it is a very efficient process with
implicit selection of relevant information. Such a procedure is very simila.r to hologm'
pày - specifically, to reconstruction of a stored pattern from a hologram. A hologram
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(similar to J) is produced by an interference of so-called object (direct) wave and so-
called reference (indirect) wave. At reconstruction, on the other hand, the hologram is
illuminated-through with a "partial" reference so an image, corresponding to the
"whole" reference-wave, is produced (Hariharan, 1996). Therefore, such a memory recall
will be called "direct or holographic" recall to distinguish it from a gradual Monte Carlo
adaptation.

4 Experience with Classification and Memory-Storage

Flor a Hopfield net, it is convenient that the learned patterns constitute a suitable
number of classes, or attractors, respectively. The ratio of attractors and neurons should
be somewhat leas than 0.14 (this is my computational experience which confirms earlier
theories and simulations described, for example, in: Amit, 1989; cf., Sompolinsky et al.,
1985). Above this limit, "catastrophic melting-together" of patterns occurs, and they
"av,erage outD. It is better if numbers of elements per cla,ss are approximately equal. The
patterns which constitute an attractor should be more similar to each other than the
pattems which beloag to diferent attractors. My rough estimate is that data,similarity
(measured, for instance, as a scalar product ofbinary vectors) inside a class should be, if
poosible, above 0.8-0.9; between the classes, on the other hand, should be below 0.1-0.2
(so, at least, my "protein case', to be presented later, suggests). In mathematical terms:
patterns which belong to different classes-attractors should be such that their bina.ry
codes are opprcrimotelg.orthogonal bipola.r vectors (cf., Kainen, 19g2). On the other
hand, patterns which belong to the same cla,ss-attractor should be such that they a^re
coded with similar bina,ry (bipola^r) vectors. If these conditions are ûot satisfied, mutual
disturbances between patterns cause worse recall, and prediction or anticipation is not
pæible at all.

If the stored paùterns do not form well-distinguishable classes, then there are no strong-
enough attractors. The network in the worst ofsuch cases "averages out" all the possible
pattern-configurations - this results in a "mean pattern". In the ca.se of inconvenient
data'structure and exceeding ofthe memory capacity, there are, beside the real attractors
("good memory patterns") which are uzually more global, also many more local un-
real attractors ("spurious attractors" or "spin-glass states"). These ale "bad, unclear,
transitory memory patterns". This is because the rate of correlation is so high (or: they
a,re "not enough orthogonal") that they disturb each other ("interfere") and so "the noise
spoils the sip.al".

My simulations, whic.h will be presented in the next sections, led to the following
observations. The process of cornpletion, classificotion ond recognition of stored pattents
and, on the other side, the proc€ss of prdiction or anticipotion are not coherent, but
ra+"her esclusiae and opposing. These two sorts ofprocesses arise from difierent tendencies
of attractor dyna,mics, and usually a 'subtle, compromising interplay" between these
tendencies is needed for optimal performance. As already emphasized, a class or its
prototype is formed by an attractor which is stronger if the patterns irside a class are
more correlated, and ifrepresentatives ofdiferent classes a,re less correlated (it's the best
if they are orthogonal). If attractors axe not strong enough or if they "interfere" too

381



much, the net gives an output that is aû "average" ("compromise") over the "interfering"
patterns. Ifthe attractors axe optimally strong, but not perfectly orthogonal, the net can
classify inputdata. If the net preserves some optimal "interference", it has associative
capabilities necessaxy for prediction or anticipation based on learned orarnplea. In an
extreme case when there are orthogonal classes, but no interference, there are no abilities
for prediction or anticipation, but there is a hundred-percent capability ofreconstruction
of a stored pattern from a partial "key'' (i.e., pattern completion). An estimate for the rate
of an optimal "creativity-stimulating fteedom of interferencçlike interactions" (namely,
prediction demands "some creativity'' of the network - highly non-trivial!) depends on
the actual data-structure. This estimate is chooen intuitively, after consideration of the
correlation-structure of data.

If there a,re no correlations, the network cannot Iearn in Hebbian way so that it could
even optimally predict or anticipate in new circumstances. It could merely rigidly repro-
duce a limited number of stored pattærns. Note that theoe recipes are a result of many
years of own computer simulation experience with va,rious concrete data. In spite of their
importance, it is often very ha,rd to express these recipes mathematically in detail, be
cause of complexity and multiplicity of the process. Articulated intuition helps mæt.

5 Prediction with "HolographicD Recall is much Fbster than with
Monte Carlo Adaptation

Modeling with Hopfield-(like) neural nets has two phases. In the phase of "learning",
the patterns which have to be "learned" are encoded ("memorized") so that their joint
Hebb correlation matrix is "calculated". Thi6 matrix describes / represents the "parallel-
distributed" memory. It henceforth remains ûxed and is used in the second phase - recall
from memory or prediction (anticipation) based on memory and the new "prediction key".
For the recall phase, where the " learsed cases" a,re applied in new circurnstances, there are
two possibilities: the direct recall, which is simila,r to holographic pattern-reconstruction,
and the Monte Ca,rlo adaptation (the net adapts to the new "key" a.s much as the Hebbian
weights allow it).

When the Monte Carlo procedure is used for adaptation / learning, random changes
of the "spin"-vector are made in order to achieve optimal agreement among encoded data.
For this purpose, the cost-function called "enerry" (proportional to disagreement) is tried
to be maximally reduced as prescribed by Hamiltonian: n = -lDj:, Ej:, Jii 8i ei .
It implicitly incorporates Hebb's expression (eq. 1) for weights "I;1 where correlations
between all learned patterûs are encoded. If eq. 1 is inserted into the above He.mil1eafup,
the latter becomes: E : -* t[, EËr(tT -_ra! a!\ * ai. In Monte Carlo procedure
we accept all thæe random changes of the elements of g-which decrea.se the "energy" -E or
increase it a little bit only - up to a certain limit (the Metropolis algorithm - see reprint
in: Mezard et al., 1987).

As already described in section 3.2, direct recall gives optimal output automatically
and immediately. Although the "secret" is in ôotà cosesinthe well-knoun Hebb nile, which
encodes patterns into the sgstem of wei,ghts so that these patterns become the ottr,ctors
of net-d,ynamics, it turned out in my simulations that Monte Ca,rlo adaptation produces
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virtually the same outputs, but needs very much more time than the "holography-like"
direct recall.

Direct recall (multiplication of the Hebb memory matrix with a new input vector -
"key'') gives equally good results (in ca,se of my concrete data and computer-power) as
Monte Carlo in few seconds; Monte Carlo adaptation, on the other hand, lasts in the same
case hours or even days. With direct recall it is possible to automatically avoid many
problems of Monte Carlo adaptation: waste of time, getting trapped into intermediary
and transitory local minima, need of a.rtificial detnrmination of an optimal "temperature",
the number of Monte Carlo steps, etc.

TABLE la: 'Learning" and recdl scùeme for task I or 2

ID and 21, structur€ 3D structure
'learning' learned for all 94 "oroteinsn learned for all B4 "proteins"

recall glven for t€st "protein" (key) reconstrucced by net tom memory

TABLE lb: 'Learning' and recall s{tl@

lD ând 2i,, structure 3l-, structure
learning" lea^rned for 93 "oroteins" learned for 93 "oroteins"

recall given for test "protein" (key) unknown to net, predicted by net

6 Results of Reconstruction (from Partial Data) and Prediction:
a Complex Case Study

The rcconstraction of a previously-memorized data-vector (pattern) from partial new
input ("key"), md prediction based on the memory and the "key", a.re presented here in
the case of encoded protein structures, i.e. from approximated (simplified) and encoded
(binarized) quantitative data on proteins. ' (See Tabte 1.) However, the purpose of
this presentation is not to demonstrate a good model for prediction of the protein 3-
dimensional structure! The aim is to present the processing capabilities of a physicatly-
implementable, i.e. spin-glass'like (Mezard et al., 1987; Fisher & Hertz, 1g91), a-csociative
neural net (Appendh,A) and potentials for anticipation. (Numerous biochemical and
modeling details, available in PeruS, 1999, are not important for our pwpose.)

Table 2 presents evaluations of computational reconstructions of individual encoded
protein patterns, named with standard codes in the left-side box "proteins', (task 1, or p,
re,spectiuely).

2Multi-level feed-forward neural nets and combined evolutionary (competing) neural nets (Rost &
Sander, 1992, 1994) have the best prediction success for secondary structure and thus a^re better than
all biochemical (Cantor et al., 1980, etc.) and artificial-intelligence methods. All attempts, using va^rious
methods, to predict teûiary structure have up to now been more or less unsuccessfid. The previously-
mentioned neural nets have merely a few outputs and are thus less suitable for prediction ofmany coor-
dinates of the $dimensional (i.e., tertiary) structur€. Therefore, attempts of modeling tertiary structure
started with Hopfielèbased nets (Bryngelson & lV'olynes, 1987; Fliedrichs & IVolynes, 1989; Goldstein et
al., 1992a,b), in spite offrequent very serious obstacles such a.s astronomic complexity ofprotein structure
and inconvenient concrete data.structure (classes, correla,tions between classes, conelations inside a class.
etc.) (cf., Stein, lgg2; Flauenfelder & Wotynes, 1991).
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'I'AItl,Ë Z! l{€colatructron ol a memorrzac patrern

"protcin" K H enerSl RMS cal€gory conrme[nary

bsd 37 35 -5E3 10.66 E short "protein"
hlm 30 40 -285 L . t 4 E short "Drotein"
gdk 29 29 -3:i34 tI.67 G
lh4 m 32 -3:t34 r2.8:l G

e(nv t2 16 -6896 8.54 Y

mbc 35 :xl -7600 9.75 Y
mlf 0 0 -9785 0 R
mU 0 0 -9778 0 R
mlq -9760 2.59 R
moa 0 0 -9778 0 R
mtj 0 0 -9760 0 R
yma t4 15 - /uou 7.O4 Y
spe 0 0 -7659 0 Y SP = min. 0.9
vxd 2 3 l ô l 2.32 Y

2mAb 0 0 -9747 0 R

2msh 0 0 -9717 0 R
2spn -9766 2.59 R
mlh (, 0 -9785 0 R
bmn 37 28 -347 5.81 E short "protein"

ilk 32 32 -772 7.90 E short "protein"

First, all known data on all mentioned proteins were used in "learning" (i.e., insertion
into the Hebb memory-matrix). After lea.rning, each protein-pattern individually was
tried to be reconstructed based on the partial " recall-key" (20 % of btally 593 " neu-
rons"). Reconstruction meaûs the global graphic presentation of a decoded $dimensional
" protein" , made from a " key" of aminoacid sequences and of data on local meso-structure
such as a-helices and p-sheets.

Toôle 3 shows evaluations of responses which the neural net makes after learning of all
protein-patterns ercept the one given in the left-side box, with the "recall-key" incorpo-
lating paftiol data on this given "protein" (task 3, or I in the case of tempoml interpre-
tation of uariables). The other, unknown data on this "protein" were then interpolated
("predicted") by my HopfieldJike net. The second experiment thus studied responses in
somewhat new circumstances from those learoed. A response wa.s based on a new key
interacting with memories of other "proteins". The network automatically selected the
most relevant (similar) examples from memory to produce an optimal response-pattern.

The difference is also that in the case of reconstruction we can compaxe the net's
result with the (t€rtiary) structure that we know about, but in the case of prediction or
anticipation we cannot, since the result is "gu€6ised" by the net.

Since the correlation structure of data is very important for a network with Hebbtype
memory, let us see the rates of strzctural similority, measured with the "INSIGHT*-
progmrn in RMS, between some arbitra.ry proteins from the DSSP-base. Classes are
denotæd as R, Y and G (see Appendh B):
1. RM$difiereuceg between paire of 'learned proteine' Ê_om two difierent clæEes:
RMS (gdl-brn: G-Y) = 5.lO A /RMS (gdl-alf: G-R) = 4.9O A I RÙfS (nlf-bnn: R-Y) = 3.89 À
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l'Ajtllli ô: l\ew neaponae Daaeal on aunilâl memonea

"prot€in" K H enerRr ftM5 category conrmentary

bgd 37 35 -354 10.66 E short "protein
a€p u 4l -818 12.95 E short "protein
hlm 30 40 -60 tt.75 E short "protein
gdi m 29 -3117 r.66 G

cdj 28 29 -3067 to.72 G

sdk 29 29 -31 l6 11.67 G
sdl 31 26 -3142 ro.77 G
cdm 31 30 -3164 r0.77 G
lh4 29 32 -3118 12.83 G

2gdm 3l :ru -3154 1O.77 G into R-catesorv
zlhS :ru ïl -JIIô L2.4b G

2mgg 0 0 -9519 0 R
bvc 3 o -7526 4.57 Y
emy L2 16 -6884 8.54 Y
fcs 0 0 -9390 0 R
tiD 3E 52 -E52 L2.42 u short "protein"

hrm rf:l 4K, -6898 t 5.13 Y into R-catesorv
hsv L2 t4 - JU'Iô 7.33 Y
lhs qè !t(t -56u rSJr Y
tht 2 2 -5764 1.87 Y

mbc 35 T' -14L4 9.75 Y
mbd 39 42 -I4aXt t4.u Y
mbo 410 4l -74U 14.84 Y
mbs 37 u 4324 9.62 Y into R-cateqorv

mcy 0 0 -9428 0 R
mfrr 0 0 -9510 0 R
mlf 0 0 -9579 0 R
mI J -957r 0 R
mlk (, (, -9579 U R
mIl (, (, -9572 U K

mlm -9557 2.59 n
mln 0 0 -9579 0 R
mlq -9550 2.59 R
mlr 0 0 -9552 0 R
mls I 1 -9759 2.59 R
mlu 35 32 -9278 10.37 R sl'= max. u.Ë
m@ 0 0 -9572 0 R
mob a u -92n 10.13 R Jr = max. u.ë
moc (, (, -9523 0 R
mod 0 0 -9523 0 R
moh 4L oo -14ùl 14.86 E
mtj 0 0 -9552 0 R
mtk 0 0 -9579 0 R
mym 0 0 -9559 0 R

contimoûion of tLc TûblÊ 3 on the nd Nae



prot€in" K H energr RMS category commentary

spe 0 (, - (L4l 0 Y 5H = mrn. U.9
swn 1 2 - ( b'ztt 2.32 Y SP = 111it. g.n

tes 0 0 -92T2 0 R

vxc 2 -7526 2.32 Y lir = mln. u.9

vxe 37 4l -7343 13.61 Y
vJd 39 42 -7433 t4.u Y
vx8 39 42 ,4t té t4.u Y
vxh 39 4U ,Jôt, L3.74 Y
ytna t4 l5 -6E49 7.O4 Y
ymb +3 46 -/t rY 12.U' Y
vmb 43 39 -6E5E 13.3r Y
2hif 35 u -382 r0.96 FJ short "protein"

2mb5 40 u2 - ,JOi 15.6r Y

2mga 3:' 35 -92tIi r0.46 R SP = rnax. 0.8
2msb 0 0 -95.$ 0 R

hgc I I -9489 2.59 R

ZmAd 0 0 -9490 0 B
2mge 0 0 -9490 0 R
zngf 0 0 -9523 0 R
zmgh 0 0 -95r0 0 R
zmçi U U -9î'rJ U R
2mgk 0 (, -9579 0 R
2mel 0 0 -9579 0 It

2mgrn I I -9570 2.59 R

2mya 2 3 -75?E 232 Y SP = min. 0.3

2nyc 39 42 -7433 14.E4 Y
zspl 0 0 -9579 0 R
2spm I -c657 2.59 R
2spn t -9557 2.59 R
2spo I 2 -9559 zill B
bvd 6 7 -7/|a1 2.17 Y SP - min. 0.3
ilk 32 32 -5/U 7.W E short "protein"
lrc 0 0 - /J8f,i o Y SP - nin. 0.3

bmn 37 2E -IU4 5.Er B short "proteln"

mbw 6 E -w73 3.06 R
mls 0 0 -9577 0 n
nlh 0 0 -9577 0 IÙ
mlo I I -9555 2.59 R
mti b a -95(n z,L R
vxa I 3 I2LY o.m:l Y SP - min. 0.3

vxb 1 l 13 L26 432 Y SP - min. 0.3

vxd 2 3 :lb'Ati 2.32 Y S.P = mm. U.3

2cmm , 4 - lrz4 3.37 Y SP = mrn. 0.3

2mci 0 0 -95æ 0 R
Zmml J7 4l -6865 14.19 Y
2myb 3E 42 -7397 14.74 Y
2myd 2 -7'Xi 2.32 Y itr : mrn. u.é

2mye -7526 2.32 Y sr : mrn. u,é
4mbn 39 4{) 1J6t L3.74 Y
Smbn 2 3 -7528 2.32 Y SP = min. 0.3



2. RMS between pairs of t'learned proteins' ftom the eeme claâs:
2a. class G: RMS (edr-€dr) = 0.a3 Â
2b.c lassY:RMS(nrn-yna)=0.69Â/RMS(hrn-vxd)=0.96Â/RMS(v: td-yroa)=0.7a4
2c.c lassR:RMS(nrr- 'xgÈ;=0.39Â/RMS(Bl f - -d l )=0.10Â/RÀ,IS(nlh- ' ,hgh)=0.41 Â
Proteins in our data-base are thus quite similar: mostly inside the sarne class, but they
axe less simila,r if belonging to different cla.sses.

For our purposes, it is sufficient to note low values ofthe three measures ofrecognition-
error: K (class error), H (number of wrong coding "neurons"), RMS (coordinate distance
or discrepaûcy), and much negative values of "energ'y". (For detailed descriptions of
these " distance measures" and details on the test-simulation in the case of " proteins" see
Append,in B.) "Energy" refers to the Hopfield energy-function which ha.s a more negative
l'alue if there is less reconstruction-failure. Several protein categories were found in the
Brookhaven protein data-bank (cf., Murzin et al., 1995; Kabsch & Sander, 1983). The
net's attractors were shown to correspond to categories with codes G, Y, R. E denotes all
ectra (usually short) protein-patterns not belonging to any category / attractor.

The prototype R was almost orthogonal (i.e., not similar) to other prototypes, there-
fore reconstruction of a R-type "protein" (its 3-dimensional structure) from partial input-
data (2-dim. and 1-dim. structure, i.e. aminoacid sequences) was almost 100 % perfect
(H, K, RMS zero or very small). Almost 60 % of all the "proteins" used in the com-
putational experiment were reconstructed with such a high success - they were mainly
members of the strongest R-category.

The prototypes G and Y were similar (as mea.sured by the scalar product SP: minimum
0, manimum 1) to each-other, but not to R. Therefore, there were memory-disturbances
("interferences") between Y and G, which resulted in unclear ("mixed") responses, indi-
cated by higher value of H, K and RMS, for Y and G. Some Y-type'proteins" converged
to the R-attractor, because of having some simila"rity (denoted by "SP : minlimally] 0.3"
in Table 3) with the R-prototype which constituted "fa,r the strongest lobby". Some other
Y-type "proteins" were similar to each-other (see "SP = min[imally] 0.9"), so they con-
stituted an independent (small) Y-attractor. G-type "proteins" were, because of being
too few, always attracted into "foreign" attractors.

There were only few R-type "proteins" being less similar to the R-prototype (see "SP :
max[imally] 0.8"), so their reconstruction was not successful. These, and other "proteins"
with H- and K-errors about 30 to 40, converged to a wrong attractor, called "spurious
attractor". This was unavoidable in this case because of a.n "ambivalent" key sha,red by
more than one attractor. The results demonstrate dependence of pattern recognition on
categorization, i.e. on memory-based prototypes (attractors).

7 Conclusions: Improving Anticipation

For our systematic computational research of data,processing tasks 1-4, we used va.r-
ious large data-bases, including finally the encoded information on the structure of "pre
tæins" (up to the &dimensional arrangement of protein constituents like a-helices and
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B-sheets). Our Hopfieldlike network has stored in its Hebbian content-addressable a,sso-

ciative memory about hundred pattern-codes of protein's 1-, 2- and &'dimensiona.l struc-
ture. Then, capabilities 1, 2, 3 have been studied for individual unknown patterns (e.9.'

encoded proteins): the part of the new vector encoding the protein &dimensional struc-

ture wa.s reconstructed ("protein was recognized or classified") or predicted.

Tasks I and 2 work perfectlg if certain conditions (see section 3.2) a,re satisfied, but

task 3 is highly non-trivial (therefore, our results a,re good for correlated cases only, aad

are relevant for studying net's prediction-potentials rather than for biochemistry).
According to Dubois (2000a), an incursi've anticipatory system is the one where its

state q at time t * At depends on the state at present time t (in other cases also at past

times t - Lto, ...), but also at future time t + Lt. This is described, in general, by:
q(t + At) = flq(t),q(t * At),p1, where p is a pa,rameter (unimportant for us here).

For pattern reconstruction in a Hopfield net or a simila,r one (like ours), the final

stat€ of dynamics is: f(t + At) = Û, where u- is a selected pattern' Indeed, after eq' 3,

6 = f[q(t),û,p1, where û isf are hidden in the weights a.s in the Hebbian equation - eq. 1.

Thus, the process ofHopfield-(like) pattern reconstruction, or memory recall, respectively,
incoryomtes incursiae anticipation (cf., Dubois, 2000a; Nadin, 2000; et al. ibid.; Dubois,

2000b; Dubois & Niba.rt, 2000.)
In the case of our-net's prediction and anticipation in neur circumstances (i.e., predic-

tion of an unknoam pattern or future state) the final state (pattern u') is adaptable, i.e'

changeable according ùo influences of the stored patterns, hidden in matrix J, and the

current " key'' . It depends on flexibility of the final attractor formation whether prediction

or anticipation will be successful, i.e. correct, or not. In the case of anticipation, we can

only wait and compare later.
To improve the rate of success, some sophisticated physical implementations of the

net or their simulations could be tried. Our artiûcial neural net is roughly physically

implementable (and that's why it was chosen!) in magnetic systems like spin glasses
(Dotsenko, 1994; Fisher & Hertz, 1991) or, analogically, in quantum systems (Peru5,

1998, 2000). The quantum implementation would improve the prediction and anticipa-
tion abilities by introducing the processing of (oscillatory) phase, thus replacing the Hebb

rule by the phase'Hebb rule, i.e. Jy,i : fouf;ufe-i1sf 
-sf) (pha.sedifference in the ex-

ponent!), as in PeruÈ (2000) (cf., Ezhov & ventura, 2000). An analogical alternative,
using phase.Hebbian processing, is so-called Holographic Neural Technology, a sort of

simulated holography (Sutherland, 1990). However, success could not be great, except for

simple cases, unless some more fundamental (necessarily quantum-field-based, I think)
anticipation possibilities as debated at the CASYS conferences could be incorporated in

the net dynamics. For instance, the quantum forward and backward propagations (i.e.,

dynamics due to anti-parallel time'arrows), V and V*, suggest new, zubtle anticipation
capabilities (rfrlr. :1 .I, l'...) - see, especially, Dubois (2000a), Dubois & Nibart (2000)'
Nadin (2000) for review and further references. I will discuss them in a future work.

Appendix A: Algorithm for Prediction

Our computer prograrn incorporates the following steps (details in Peru5, 1999):
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- input of selected DSSP-ba.ses and "learning" parameters;
- for each DSSP-base of an individual protein, DSSP-data are 'transloted' into bioary
(i.e., bipolar) spin values of # (a.s a sub-.task, Cartesian coordinates of Co-atoms of residua
are transformed into so-called internal coordinates d,g,î);
- colculation of the Hebb nenxory matrix J following prescription eq. 1, i.e. Jij =

#E*afaf, based on the known exa,mples t,k:t,...,p (p:93 or 94 in our case);
- input of DSSP-base of a selected test protein and "trans-coding" of its prima,ry plus
secondary part into a simplified binary "key";
- "trans-coding" of the tertiary part of DSSP-ûle of the test protein into a set of lengths
of "cylinders" 3 and a set of angl€s g and r created by the cylinde.rs - these are the
correct coordinates for testing the prediction capabilty (details in PeruÈ, 1999);
- Monte Corlo odaptetioæ (ærtiary part of the tæst vector randomly changes so that, on
average, 'energt" decreases) ot dirc*t æcall {tertiary part obtained by multiplication of
the Hebb matrix with the "key") - the result is a completed tertiary part of the test
binary protein-pattem (tc.s* t);
- decoding of the completed tertiary pa,rt from a binary code into internal coordinates
(*glo ç'n r) or their classes, and their transformaùion into Cartesian coordinates;
- comparison of the correct and the predicted sructure spin by spin (Hanming distance)
and angle by angle; calculation of discrepancy between the correct and the predicted
coordinates for the test "protein" (measured in "distances" K on the level of classes of
internal coordinates and/or RM$errors between Cartesian coordinates); visual compari-
son of rotatable 3D graphics (RASMOL).

Appendix B: Error Measures: K, fI, R,MS

In Ta,ble 2 (for reconstruction) and Table 3 (for prediction), from left to right, the
columns incorporate values of the following quantities (described later): standard ab'
breviation of the reconstructed (Tbble 2) / predicted (Table 3) "protein"; class-error -trf,
Harrming distance .f,f, "energ'y" E, RMS-error in Â (= 10-10 m) between the conect poly-
gon of cylind,ers anil the rc,constructd (Table 2) / predicted (Table 3) polggon of cylinders;
protein class (after a rough informal classification); commentary (sometimes).

In each row of T[ble 2, the result of reconstruction, or recall, respectively of an
individual protein-pattern (given in the lefumæt column) is shown a^ftcr its primary plus
secondary part has been used as the "key". All 94 proteins (an their parts) have been
used for learning. Cf., T[ble la.

In eaÆh row of Table 3, the reoult of prediction is shourn for a case where the primary
plus secondary part of a giv€û (in the left) protein wa.s used a.s the "key'' and all the other
93 proteins (all their parts) for learning. Cf., Table lb.

Descriptions of the error-measures:
ff: The correct values (calculated from the DSSP base) and the predicted values (de'

coded output of the net) of individual angles 9 (angles between inter-atomic links) and
dihedral angles r were compared. If they differed for one class (less than 45 degres), the
'error' K inoeased for 1; if they difierd for two classes (4S90 degre€s), K iucreasd for

3A cylinder is an apprdiûrative enrælope of a prrotein drain.
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2, etc. K was summed over all the angles g and r, and so the total discrepancy of the
prediction from reality was obtained measured in tùe "clas-distancen r(.

I* The rate of similarity of binary vectors wa.s mea.sured with scalar product or with
so-called Hamming dislanoe. The Ha,mming distance is the number of diferemces in indi-
vidual elesrents (corresponding to each other) between two vectors. The scala.r product
is more convenient if we would have real-valued "neurons" in the Hopfield or similar net
(the theory is more developed for such a case). The Hamming distance is more convenient
for bina,ry coding.

RMS:Therateofstructor.lrimilarityofsto"*fot*sis-. edby alled'loot-
mealr-squaxe errortt: RMS = ,
where (r., gr, , zn) arc the predicted coordinates of Co-atoms (the out most ones) of appru-
imative polygons of cylinders, (îr,Uo, zr) arc the correct coordinates from the DSSP-base,
and N is the number of all C"-atoms.
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