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L Constructivism and the Quantum Computer

Constructivism in mathematics cotcerns existence and proof. That is proving that
a mathematical object exists and reaching conclusions to demonstrate connections
between such objects not just by verification but by constnrction. But where do the
mathematical objects and their connections exist? Methods adopted by pure mathe-
maticians suggest the answer that they are in the mind. It is an ontolory of the rnind:
mathematics operates at an epistemological level. This ha.s been very successftrl even
in applied mathematics where mathematical models are epistemological represen-
tations of real-world systems. With anticipatory systems the phase change is uot
usually between reality and mathematics but between one mathematical representa-
tion and another: a reactive system and its anticipation [a6]. (This is an important
distinction between models and anticipatory systems. For a^nticipatory systerns are
not just models by another na.me). Applied mathematics therefore mostly make do
with non-constntctive forms. This is even true for topics beyond the classical range
like quantum theory so long as we a.re only concerned with epistemological rnodels.
This has been the history of the development of quantum theory with its many in-
terpretations. One finds non-constructive proofs at places throughout mainstream
quantum theory. For instance the indistinguishability of non-orthogonal quantrun
states is proved by Nielsen & Chuang (in Bo:< 2.3, [43]) by a method of. rvductio ad
absutdum. Also Bell's theorem is local and involves a non-constructive proof. The
concept of. tbe qubi,t is derived from this case of a quantum object by analo$r with
a binary digit (a bi.t). ln the terminology of category theory the term a quantum
subobiect would seem to be preferable. Part/whole complementa.rity is a pervasive
theme of non-locality [41] and can be well represented in category theory whereas
set theory is very restricted because a set cannot be a member of itself.

Now however we a,re talking about building systems with significant operation
in the quantum zone. This is ontological constmction and requires even more than
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mathematical constructivism as currently envisaged. For with quantum computers
we are more concerned with hardware than with software.

Computation itself is a very good example of this phenomenon at the episte-
mological level with a vast amount of thinking subsumed under the notion of the
universal T\rring machine. The T\rring machine is more of an abstract softwa,re ma-
chine than a piece of hardware. That is it really only exists in the mind. Davis
is able to survey the history of computation [11] from Leibniz to modern corn-
puters without the need to acknowledge the point. However, Deutsch [12] in his
seminal paper showed that the principle of universal computation a,s found in the
Church-Turing hypothesis could be extended to its quantum analogue. However the
Church-lring hypothesis and the quantum theory used by Deutsch is still only at
the epistemological level. As such it may be a very good model and an anticipatory
(knowledge) system for the quantum computer but only with weak anticipation.
Strong anticipation is needed to construct a real quantum computer.

The salient point is therefore that a digital computer can perform any calcu-
lation of a universal Tïlring machine. According to T\rring: ulogical Computing
Ilachines can do anything that could be described as 'rule of thumb' or 'purely

mechanical' " [56]. Church's phrase for 'purely mechanical' was 'effectively cal-
culable' and now following Gôdel this is more specifically referred to a.s recursive
functions (of positive integers, it is to be noted). This is not the same as anything
computable by the human brain or more appropriately here computable by the uni-
verce or pa^rt of it. We have to conclude therefore that the universal Tl.uing Machine
is only a weak anticipatory system. The quantum computer is on the other hand
a strong anticipatory system. This suggests that the Deutsch specification for the
cluantum computer [12] as only epistemological is an inadequate ontological basis for
the construction of a physical quantum computer. We are in the reakn of construc-
tive applied mathematics which may not correspond exactly with what is commonly
referred to as constructive mathematics.

How does all this relate to logic? The basis of computation is logic. Classi.
cal logic provides weak anticipation. As a wea.k anticipatory system the universal
Turing machine can operate with classical logic and under the Church-Turing hy-
pothesis this is adequate for classical computers. By a parallel strand of argument
the standard model description of quantum mechanics is a weak anticipatory sys-
tem. However, as pointed out by Landauer [35. 13, 1-4] computation is ultirnately a
physical process and quantum computation is the ultimate process. As a pa,rt of the
Universe, quantum computation is a strong anticipatory system. The underlying
logic has therefore to exist in physical reality-. That is, it is constructive logic.

lVlathematicians have explored constructive logic in the context of intuitionistic
reasoning. Brouwer won the argument for his intuitionistic form of mathematics
(potentially a strong anticipatory system) against Hilbert's prograrnme to establish
classical mathematics formally [28]. Hilbert lost the argument that physics can be
axiomatised [10] but won the day in establishing classical mathematics as a main-
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stream model for science. This was because it is, as far as it goes, a weak anticipatory
system even if rather inefficient. Now with the arlvent of the strong anticipatory
system of qrtantum computation we need a correspondingly strong anticipatory form
of logic. Does intuitionistic logic satisfy the requirements of a strong anticipatory
system?

Btouwer's intuitionism [55], \Iarkov's recursion analysis [34] and Bishop's con-
structive analysis [9], these different schools all have a common basis of logical
reasoning. They allow the law of contradiction (that anything follows from a con-
tradiction) but not the law of excluded middle (terlium non d,atur). Brouwer's
informal intuitionistic mathematics in the hands of his student Heyting [26] proved
to be, not less but, rnore formal than classical mathematics. The philosophical as-
pects are dealt with by Dummett [16] but unfortunately for present purposes the
various treatment of intuitionistic logic is still couched very much in weak antici-
patory terrns. This is because they are normally considered in the context of pure
not applicable mathematics. Bishop for instance relies heavily on the fundamental
notion he calls 'finite routine' but does not define this in any applicable sense. In-
tuitionistic logic can perhaps be said to show the way trut cannot be relied upon
conclusively as a strong anticipatory system. \atural language may have the power
of strong anticipation. Aristotle. usually credited with the invention of symbolic
logic. relied rnore heavily on natural language expressions and went ftrther even
than the urodern intuitionists in examining the fine structue of the copula 'is'.

Thus in the Organon Aristotle distinguishes the truth value of Socrntes is not i.ll
which is true even if Socrates cloes not exist from that of Saantes zs zll which is not
true if Socrates does not exist ( Categories 13ô15 - 35 [1]). Aristotle does not go on
to consider the corresponding tnrth value of Særates k well but it is to be presumed
he would treat that as not true if Socrates does not exist and so reject tertium non
datur in the copula. It is bridging the gap between the weak and the strong an-
ticipatory system that we contend is supplied by the category theory [24]. where
intuitionistic logic has an incarnation in physical reality comparable with natural
language as illustrated by Aristotle's examples. The Philosopher himself however
dicl not apply this logic to physics although he seerns to have gone frrrther down the
intuitionistic road than is usually credited.

2 Applying Non-local Category Theory to Quantum Theory

The physics of quantum is process: Aristotle's was a physics of types and l{ewton's
one of primary properties. Jammer ([30] p38O) quotes Hoffding:"The 'qualities' of a
thing are indeed nothing more than the different forms and ways in which this thing
influences that thing or is influenced by it. They are a thing's capabilities of doing
and suffering" [29]. This sums up the covariancy and contravariancy of nature.
Jammer continues ([30] p38t) with his own view that "the language of quantum
mechanics is a language of. 'interact'ions and not of attnbutes: processes) and not
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propeû,ies, are the elements of its syntax". These are descriptions of the categorial
arrow and seem sufficient reason for the use of category theory but there is much
more: it is constructable in a mathematical sense and does not require tert'ium non
datur. It can represent both right- and left-class in Table 1 in Part I ofthis paper.

It can deal with concept of choice and free will (this is latent in Figure 1 in Part I of
this paper). It is not constrained to use any particular reference coordinate system,
'container' or background for describing entities like time and space.

To begin with a given container like space-time is to pass from strong to weak
anticipation. These are consequences of theory and cannot also be given a priori.
We cannot a.ssume initial frames, coordinate systems, etc. Since Einstein's theory
of special relativity it is not just space or time but also space and time that is space-
time. However, also since Einstein's general theory, neither space nor time nor space-
time are independent of matter. \,Iatter does not exist in a space-time container

[a2]. The matter makes the container. Observations of the relationship between
matter is what we call motion. It does not exist with respect to any 'background'

(Rovelli [49, 50]). The relationship between motion (namely acceleration) by lvlach's
principle corresponds to rnass. This is where category theory comes into its own as a
geometric-kinematic representation rather than onc like topology which is geornetric-
spatial.

There are always problerns at the formdations of mathematics and care has to
be taken to ensure that the category theory applicable to realising actual quantum
systems in the real-world has robrst foundations. Over the last two centuries math-
ematics has de.i'eloped with the ernphasis on axiornatic methods. Because these are
epistemological and derived by filtering through human intuition (which may itself
be a cluantum process in consciousness) these axiomatic systems have been fairly
successful. Yet this is not always the case and as we have no a ptioti scientific basis
for âny axiomatic system we cannot be sure of such foundations. Category theory is
usually presented in text books axiomatically and from a set theoretic perspective
with the use of objects. However. the whole of the (pure) theory only requires the
concept of the arrolv. The arrow represents the (applied) theory of the universe as
a process.

It can be shown that a version of Zerrnelo-Frankel set theory with the axiom of
choice (but independent of the continuum hypothesis) is a valid model within a gen-
eral elementa,ry topos (Mac La,ne & I{oerdijk, Chapter VI) but with no distinction

.between 
'global and local existence' ([38] Chapter VI. Section 10). However- this is

weak anticipation. Boolean and Hevting algebras are not isomorphic.
We need to be non-local and to be constructive. Weak anticipation in the form

of local theory lies in the realm of epistemologr which may be important for under-
standing quantum theory, quantum computing and quantum information systems
but is inadequate for constructing quantum cornputers. This requires a move into
strong anticipation and the realm ofontology. Historically category theory has de-
veloped in local mode using non-constructive proofs and with an emphasis on the

330



category of sets. This can often give better understanding of set-theoretic models.
For it is possible to use n-categories to model quantum field theory [2, 3, 4] or in
2-categories to describe a more advanced categorial analysis of the Hilbert space

[4]. However, these are still local methods and we cannot be sure therefore we can
rely on these versions of category theory any more than we can rely on set theoretic
methods to design and build a quantum computer. For using category theory as
an anticipatory system of existing mathematical models is a twestage process and
can be expected to provide only a better understanding and not more information.
Whereas the direct application of category theory offers the opportunity for strong
anticipation by constructive methods.

The fundamental constructor is the concept of the arro\il. The universe is just
one single arrow [25] consisting 6f sempocable arrows in the sense of Figure 1.

l \
/ D"-.-

/ "  
- \

/ - \
c

Fig. 1: Composition written a"s c: b o a

The diagram in Figure l- is itself just one arrow, the composition of b with a writ-
ten c : ôc by convention where ô operates on the result of the operation o. Diagrams
are formal statements but constructive. This diagram is a proof of the equivalence
(or the quality, depending on contexb) identifying c with ba. However, the categorial
version is more formal than the algebra for it will not permit statements like c : ba
without defning what is meant by equality. If ôa is indistinguishable from cô this
diagram is an identity arrow. That is, it just identifies its own existence and for
convenience is usually referred to as an object. Categories are composed of objects
(that is identity a.rrows) and other arrows relating them.

For applied category theory the principal (possibly the only) category ofinterest
is the one with co-limits, that is with identiûable existence and known as the carte-
sian closed category. The narne is not to be confused with a cartesian coordinate
reference frame and the epithet 'closed' does not mean that it cannot have the prop
erty of openness. Some concepts of the cartesian school of philosophy are embedded
in the concept of the ca,rtesian closed category for example the denial by Nicholas
Malebranche that like entities exist [37] is borne out in the difficulty of defining
'equality' as mentioned in the last paragraph. Another example is the principle of
Spinoza that the infinite is contained within the finite (Spinoza's letter, On the na-
ture of the i,nfini,te, to Lodewijk Meyer, 2ûth April 1663 [51]). That same point was
a prime motivation for the development of category theory by those like Mac Lane
[39], the co-author with Garett Birkhoff of the main student text on algebra [S]. If
John von lleumann had collaborated with Saunders Mac Lane rather than Birkhoff
the development of quantum theory in the second half of the 20th century may have
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been much accelerated by the application of category theory. Instead the general
notation used is that of Dirac in his monograph [15], which ha.s been continuously
in print since 1930 because of its quite elegant notation. It is nevertheless quite id-
ioeyncratic, rather obscure and lacks the clarity ofcategory theory with its abstract
universality, inherent logic and natrual ability to express global non-locality.

Because a cartesian closed category has celimits it also ha.s limits like exponen-
tials, usually written in the form Yx meaning all a,rrows from object X to obiæt Y.
This describes the universe as what is accessible from one another. The arrovrs of
Yx themselves form a category written as C(X,Y) or horn(X,Y) in the old termi-
nology from homology. The universe is therefore a category of categories which is a
topos. A significant featue of the topos is that its internal logic is the intuitionistic
togic of Heyting [7, 31, 38].

Cartesia,n closed categories have pullbacks and pushouts [40]. Figure 2 combines
them in a pullback-pushout diagram sometimes known a.s a Dolittle diagrarn from
the Push me-Pull you creature invented by Hugh Lofting in his book The Story of
Dr Doli,ttle. (It is by the way the formal mathematical representation of another
mythical creature the Schriidinger cat). Y a.s a subcategory of C is pulled back
over X in C. Alternatively and cecurrently and ceterminously the projection Y is
pushed out of the left entangled state over the projection X. In set theory the right
gives the joins X u Y and the left the meets X f\Y but a.s category theory is more
precise X U Y only refers to the disjoint union X, Y. Other kinds of conjunction
have to be specifically defined. The whole diagram in Figure 2 is a universal logic
gate for X, Y.

- - \- " '  - \x+Y
X x Y  a '-\ 

.-'
\___.-

Y

Fig. 2: Dolittle Diagram of Pullback/Pushout: Y of X

It is possible in this way to handle context so that the limit X x Y obtained
by putling back Y over X may be restricted to a particula,r context c (a subobject
which may be an object or subcategory) of C (Figure 3). Examples of this can
be found in various types of information systems [23] like law, expert systems [47],
object-relational databases [a8] and consciousness 122, L7l.

The cartesian category on the left of Figwe 3 is a left-exact category of limits

where alt the concepts in the left class of Tâble 1 (in Pa.rt I of this paper) reside.

It was sometime known a,s a LEX (Ileyd & Scedrov [20] section 1.43; Taylor [52]
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X  x " Y

\ --'
\_---

Y

Fig. 3: Diagram of Pullback of Y over X in the context of c, a subobject of C

at footnote 2p259). The category on the right (c in Figure 3) is the right-exact of
co'lirnits where all the concepts of the right class of Table 1 (in Part I of this paper)
are to be found. This is the classical world of the basic components of the Universe,
the elemental particles, atom. molecules, physical structures. cla^ssical objects we
recognise including the mind of the observer. These are all local structures that is
subcategories of the category C. Thus for instance the concept of sets exists in the
mincl. Ceunits in the subcategory of sets form a disjoint union but in general do
not neecl to be discrete.

It might be remembered that the original paper on the EPR paradox [1S] is
entitle<l Can Quantum-Mechan'ical Desaiption of Physi,utl Reali,ty be Consi,dered
Complete? On the frrst page Einstein and his coauthors are rlescribing in effect
left- and right-exactness: "if. without in any way disturbing the system. we can
predict rvith certainty the value of a physical rluantitr'. then there exists an element
of physical reality corresponding to this physical quantity" (at p777). Physical
quantity is on the left and physical reality on the right.

The nature of the Universe is that there are innumerable paths between any
two objects but only one effective resultant for each pair. This is the structure of
partial order where there is only one arrow at most between each pair of objects.
The importance of partial orders was originally recognised (for sets) by C S Peirce
[aa]. Again it is to be noted that the logic of a partial order is Heyting.

The category C is a signature of sorts X, that is the categories of observables.
Taylor [53, 54] uses for X the term half-bits which is reminiscent of Reichenbach's
three-level logic [45] with truth value of half. Taylor however is interested in foun-
dations of pure mathematics where C can be a concrete category with E as a set.
In QIS we axe concerned with physics where the set does not exist and X is a large
category. Likewise the pre-order Xt corresponds to Taylor's poset and his funda-
mental condition for monarlicity [53]. The modern mathematical concept of the
monad (trlple in Barr & Wells [6] at 14.3, and [S]) as abstract adjunction viewed
as an endofunctor seems to correspond to Leibniz's use of the term monad [36], for
reflective subcategories are monadic and idempotent (Taylor at example 7.5.10(a)
[52]).

The left side is the quantum world. It has a non-local entangled structure as a
pre-order. The pre-order is a pa,rtial order without the anti-symmetric condition of
isomorphism between a and ô whenever a ( ô and b 4 a. Removing this condition
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removes the restriction to locality. The nature of the pushout is any partial order
on the right is one of the equivalent quotient class of the pre-order on the left.
This captures the essence of the collapse of the wave function or Everett's multi-
world interpretation [19]. If X and Y in Figure 2 represent the double slits in the
experiment of that name the entangled quantum state on the left give rise to a
diftaction fringe pattern on the right.

Consider the conjugate variables P and Q. P (the classical momentum) is matter
in motion and is to be found in C. This is Bohr's individuality postulate. Q is a
generalised coordinate ofspace which need not exist a priori but is generated by P.
That is Q is pulled back over P to form the limit P x Q as in Figure 4(a) which
describes motion in space (Bohr's quantum postulate). Heisenberg's uncertainty
principle tells us that the minimum limit is a pullback over the Planck's constant
h which is an enerry object (a special case of the context c of Figure 3 above) and
a co-equalizer in C. The Heisenberg uncertainty principle is represented by Figure
4(b).

Fig. 4: Pullback of (a) Q over Pr (b) uncertainty q over the uncertainty p (Heisen-
berg's principle)

For quantum computing in qubit mo<le we have Figure 5(a). 'p is the entangled
state of the qubits l0 > and 11 >. In hobit mode there are only the non-local
quantum bits corresponding to the initial object I of the cartesian cltxed category
and its terminal object T giving diagram Figtre 5(b). On the right is the monoidal
category of the Universe as a whole with the conventional * svmbol.

(b)a(a)

(a) 11 >

Fig. 5: Diagram of Pullback of (a)

(b )

l1 > over l0 >: (b) T over I
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A fuller system of anows is given in Figure 6 from the perspective of the adjoint
relationships in the pullback (including the apparent structure of entanglement) and
illustrates many of the corresponding concepts in the third column of Table 2 (in
Part I of this paper). The fundamental X -1 A t II arises from the pullback view
of the Abotract Stone Duality [32, 52,33] between pullback and pushout. Bohr's
individuality of elementary process is X. Bohr's postulate of the interaction of object
and instrument is given by the adjunction ̂  -1 II. The diagram therefore not only
gives a formal specification for the three postulates of Bohr but goes further to give
the adjointn"tt or th" ù"île 

-r observer -.r obser'ation

The observer is right adjoint to the observable and left adjoint to the observation.

qlX > r* lY > X > +7lY

Fig. 6: Pullback of Y over X

Therefore a.s a universal diagrarn the pullback-pushout adheres to the correspon-
dence principle and includes both classical and quantum computing. The categorial
version not only accords with the qua,ntum scene but also in the classical realm in
connecting existence with the observer in the sense of Descartes' ægito ergo sum,
with general empirical philosophy and even with the speculations of Bishop Barclay.

The universality of the diagram includes also cla,ssical ca.ses and collapses the
obeervable-observer observation onto the two-level ontological/epistemological rela-
tionship [21]. The pullback also captures the various aspects of complementarity:
correspondence between left and right exactness; the wave particle duality in the
arrow/object identity; and the canonical conjugate categories P, Q.

3 Results and Conclusions

It is apparent that the prospect of building a quantum computer forces us back to
re-evaluate the fundarnentals of qua,ntum theory from a constructivist perspective.
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This requires a fresh look at the Copenhagen and other interpretations. As Nadeau
& Kafatos note 'most physical scientists have tended to relegate Bobr's views to a
file drawer called philosophy .... we must open that drawer and review its contents'
([41] p3e).

Quantum mechanics itself tells us that its own subject matter is non-local. By
the application of the concepts of anticipation and realisation from an alternative
object viewpoint ba,sed on Roeen's theory of anticipatory system,s, we can see that s,e
need a non-local form of language description where set theory and the axiomatic
approach have limitations. Category theory can be used in a non-local mode of
formal description as strong anticipation. Unfortunately category theory as a cul-
mination of algebra topology and geometry wa.s not advanced sufficiently at the time
to be utilised by the founders of fundarnental quantum theory or for that matter
by Einstein. So we shall never know how quantum theory and the theories of rela-
tivity would have been advanced and perhaps merged with a universal formal tool
in their hands. In particula^r the a.rrow is a language of interaction not of a bound
background. Just as the twentieth century freed these theories from the fixed frame
of the ether. So the twenty-first century is able to escape the mathematical ether of
a set-theoretic co-ordinate reference fra,ne.

We can see from this cursory glance the relevance of fundamental idea.s like
limits and adjointness which have only really been appreciated since the advent
of category theory. By a compa,rison of existing theory with that of a poosible
categorial representation? we can already glimpse a deeper understanding. It is
the 'third way': the natural inherent intuitionistic logic and non-local constructive
approach for quantum information systems.
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