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Abstract
Why are attentional processes important in the driving of anticipations?

Anticipatory processes are fundamental cognitive abilities of living systems, in order to
rapidly and accurately perceive new events in the environment, and to trigger adapted
behaviors to the newly perceived events. To process anticipations adapted to sequences
of various events in complex environments, the cognitive system must be able to run
specific anticipations on the basis of selected relevant events. Then more attention must
be given to events potentially relevant for the living system, compared to less important
events.

What are useful attentional factors in anticipatory processes? The relevance of
events in the environment depend on the effects they can have on the survival of the
living system. The cognitive system must then be able to detect relevant events to drive
anticipations and to trigger adapted behaviors. The attention given to an event depends
on i) its external physical relevance in the environment, such as time duration and
visual quality, and ii) on its intemal semantic relevance in memory, such as knowledge
about the event (semantic field in memory) and anticipatory power (associative strength
to anticipated associates).

How can we model interactions betv/een attentional and semantic anticipations?
Specific types of distributed recurrent neural networks are able to code temporal
sequences of events as associated attractors in memory. Particular leaming protocol and
spike rate transmission through synaptic associations allow the model presented to vary
attentionally the amount of activation of anticipations (by activation or inhibition
processes) as a function ofthe external and internal relevance ofthe perceived events.
This type of model offers a unique opportunity to account for both anticipations and
attention in unified terms of neural dvnamics in a recurrent network.
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I Semantic and Attentional Anticipations

Why are attentionnal processes important in the driving of anticipations?

1.1. Associative Semantic Anticipations

Anticipatory processes allow living systems to rapidly adapt their behaviors to
events encountered in their environment (e.g., objects, scenes, and behaviors).
Behavioral responses adapted to a given event perceived in the environment can be
more rapid and accurate when the perceived event was anticipated by the cognitive
system. According to the general concepts of anticipation (Dubois, 1998a; Rosen,
1985), anticipations are driven in memory on the basis of semantic knowledge (Lavigne
& Lavigne, 2000). Then intemal representations about the relations between events
occurring in the environment and possible future events are important for the living
system to anticipate adapted behavioral responses (see Lavigne & Lavigne, 2000 for a
presentation). For this the cognitive system stores associations between events
perceived in sequences. Events frequently occurring closer in sequences are learned as
associated in memory. Within the framework of experimental studies of reading
behavior in cognitive psycholory, semantic knowledge is based on associations in
memory between word meanings (concepts), which correspond to perceived events
during the activity of reading. The associative strength between (words) events is
learned from the (textual) environment and depends on their frequency of co-
occurrence (Conrad, 1972 Freedman & Loftus, 1971; Landauer, Foltz & Laham, 1998;
Foltz, Landauer & Dumais, 1997; Perlmutter, Sorce, & Myers, 1976, Spence &
Kimberly, 1990). When an event occurring in the environment is perceived (e. g., 'an

approaching snake'), dynamic activation processes propagate through associations in
memory. Then the cognitive system can activate (i. e. anticipate) events which has not
yet occurred in the environment but likely to occur in the very near future on a
probabilistic basis (e. g., 'a dangerous attack').

Anticipated (words) events being already activated in memory when they are
actually perceived, their perceptive processing (lexical access in memory) can be
accomplished more rapidly. Then reading behavior can be enhanced by shortening
fixation durations or lengthening saccades sizes, adapting a reader's oculomotor
behavior to (words) events perceived in a sentence as a function of anticipations
triggered in memory by previously perceived (words) events (Balota & Rayner, 1991;
Keefe & Neely, 1990; Neely, 1991; Neely & Keefe, 1989; Neely, Keefe & Ross, 1989;
Rayner & Balota, 1989). For example, a perceived target word ('attack') is more rapidly
processed (about 550 ms) if already activated in memory according to an associated
preceding context ('snake'), and is more slowly processed (about 600 ms) when
preceded by a non-associated context ('cloud').

The natural environment of a living system consists of simple and complex events
occurring in sequences or perceived in sequences. Events in the environment
conespond to simple objects (natural, artifactual, living, etc.), complex situations
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(conelations ofobjects, interactions between the living system and other objects, etc.),
or are abstract concepts elicited by perceived events (social representations, etc..). They
are all represented as events at different levels of abstraction and are memorized as
sequences organized in time. The memoriz,ation of sequences in memory allow the
cognitive system to anticipate possible future events from actually perceived events.
The simplest type of sequence of events is of a perceived first event triggering
anticipation in memory of a second event not yet perceived. This type of anticipation
needs to take into account only one perceived first event to activate associated ones in
memory, the more activated (associated) corresponding to the one more likely to occur.
However natural environments are complex, within which living systems are
surrounded by sequences of numerous events, When several events are perceived, the
cognitive system can trigger several anticipations in parallel, which can be coherent
with each other or not (i. e., leading to compatible behavioral responses or not)
depending on the associations between the sequentially perceived events (Lavigne &
Vitu 1997; Lavigne & Lavigne,2000; Masson, 1991, 1995).

In addition to simple activation of an event in memory from a perceived one,
anticipations in complex environments imposes the cognitive system to select the most
adapted anticipations among a set of several events perceived in sequences in the
environment. Attention given to perceived events is therefore important to evaluate the
relevance ofa perceived event, and to trigger anticipations leading to behavior adapted
to the more important events encountered (see Laberge, 1995: Lecas, 1992;' Jones &
Yee, 1993). Perceived event's evaluated relevance can then help selection processes of
the more adequate anticipation leading to the more adapted behavior.

The purpose of this article is to present experimental results, theoretical views and
a neural network model of anticipatory semantic and attentional processing. In Section
I we present anticipatory semantic and attentional processes allowing several different
anticipations from sequences of several perceived events, attentional evaluation of the
relative relevance of the perceived events, and selection of the more adequate
anticipations for adapted behavior. In Section 2 we define attentional factors allowing
to evaluate the relevance ofperceived events to trigger anticipations, such as processing
time of the event, time elapsed after processing the event, processing load elicited by
the event in memory. This allows defining common associative and temporal properties
ofsemantic and attentional anticipatory processes, as well as their adaptive properties.
In Section 3 we present an attractor neural network model giving simulations of the
functioning of both semantic and attentional anticipatory processes based on a common
neural architecture.

1.2. Attentional Drive of Semantic Anticipations

When at least two events triggering different anticipations are perceived at the
same time or close in a sequence, the cognitive system must select the best possible
anticipation activating the more probable event to occur. When perceiving sequences of
events the system must not only (i) anticipate events from every perceived event, but
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must also (ii) anticipate events from the whole sequence of events, or at least (iii)

anticipate from the most relevant event in the sequence.
(i) Every perceived event ('snake') triggers automatic propagation of activation in

memory through links to associated events ('attack') (Anderson, 1983; Collins &
Loftus, 1975; Collins & Quillian, 1969; Neely, 1991; Thompson-Schill, Kurtz, &
Gabrieli, 1998; VanVoorhis, & Dark, 1995). These rapid and unconscious activations of
associated events in memory (see Posner & Snyder, l975a,b) are anticipations which do
not last very long in memory (Keefe & Neely, 1990; Neely, I 991 ; Neely & Keefe, 1989;
Neely, Keefe & Ross, 1989; Neely, 1976, 1977). Indeed, when subliminal (i. e.,
processed under the tkeshold ofconscious perception), events allow only unconscious
semantic anticipations (i. e., anticipations activated in memory under the threshold of
consciousness). They can predict events only very closely related in time (a few
milliseconds, Greenwald, Draine & Abrams, 1996). However, when supraliminal events
allow conscious attentional control of the anticipations in memory. anticipations can be
sustained longer and predict events far off in time (Balota, Black, & Cheney, 1992
Fuentes, Carmona, Agis, & Catena, 1994; Fuentes, & Ortells, 1993; Fuentes, & Tudela,
1992; Neely, 1991). So a role of attention is to maintain anticipations activated longer
in memory to give them more predictive efficacy with time.

(ii) Two or more events perceived in the environment can already be associated
together ('snake' and 'fang') and have common associates in memory ('attack'). Then,
when perceived at a same time or close in a sequence, they are coherent and can trigger
compatible anticipations leading to behaviors adapted to both of them. Furthermore,
anticipation triggered by one event is amplified by other events triggering similar
anticipations. This corresponds to additive activation processes triggered by two or
more words on common associates in memory (Balota & Paul, 1996; Brodeur &
Lupker, 1994;Lavigne & Vitu, 1997). The anticipation additively activated by several
(words) events is then more available in memory for further attentional processing.

(iii) Two or more events can be incoherent if not associated in memory or not
sharing common associates ('snake' and 'wasp'). They can trigger different
anticipations leading to different motor responses corresponding to incompatible
behaviors, each adapted to only one ofthe perceived events ('to walk back away the
snake' and 'to wave off the wasp', respectively). Under the assumption that one
behavior can be accomplished at a time, the actual adopted behavior must be adapted to
the most relevant event with regard to its effects on the survival of the living system.
This implies a selection among several anticipations of possible behaviors (Glenberg,
1997; see Berthoz, 1996), which correspond to incursion and hyperincursion in
memory, for which one future state is selected in the system among several potential
ones (Dubois, 1996, 1998b). In memory, attentional selection involves inhibitory
processes operating on activated anticipations, to maintain activated only the selected
anticipation corresponding to the most relevant event perceived (Laberge, 1995; Lecas,
1992; Jones, 1976; Jones & Boltz, 1989; Jones & Yee, 1993; Neely, 1991; Posner &
Snyder, 1975). In this case attention plays a role in selecting anticipations in memory by
activating the appropriate ones and inhibiting the inappropriate ones.
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2. Attentional and Semantic Factors Driving Anticipations

What are useful attentional factors in anticipatory processes?

2.1. Attentional Relevance of Perceived Events to Drive Anticipations

The relevance ofevents in the environment depends on the efïects the events can
have on the survival of a living system. With regard to their associated potential danger,
some events have no or weak effects (e. g., 'a snake' or 'a wasp') on the intemal state of
a given system. Some events can kill the system and must be given priority in
anticipating adapted behavioral responses. The cognitive system must then be able to
detect the most relevant event in a sequence, in order to drive adequate anticipations
and to adopt a behavior adapted to this event (see Laberge, 1995; Lecas, 1992: Jones,
1976; Jones &Boltz,1989; Jones & Yee, 1993).

Attention must then be allocated to relevant events to orient anticipations by the
system to behaviors presenting the greater adaptive value. To achieve this aim a
fundamental role ofattention is the evaluation ofthe relevance ofthe perceived events,
in order to select behaviors adapted to relevant events and avoid behaviors not in
relation to relevant events (Broadbent, 1982). More attention is then given to relevant
events in order to drive anticipations. The attention given to an event depends on i) its
extemal physical relevance in the environment, such as persistence of the event in the
environment and visual perceptibility, and ii) on its internal semantic relevance in
memory, such as anticipatory power (associative strength to anticipated associates) and
knorvledge about the event (familiarity and semantic field in memory) (see Broadbent,
1971: Shiffrin, 1988).

2.1.1. External Physical Relevance in the Environment

Physical properties of the events themselves define their perceptive salience, and
can be cues for attentional processes in their perceptive selection, independently ofthe
semantic knowledge the cognitive system has about them (cf., the signal detection
theory: Tanner & Swets, 1954; Green & Swets, 1966). Two physical properties are of
particular importance for attentional processing: (iv) processing time and (v)
perceptibility.

(iv) During reading, behavioral responses (e. g. eye movements or identification
times, see Lavigne & Lavigne, 2000) adopted on anticipated target-words are influenced
by the duration of the preceding prime words which led to the anticipations (Greenwald
et al., 1996: Lorch, 1982; McNamara, 1994; Ratcliff& McKoon, 1981). The longer the
prime-ll'ord is perceived the more it activates associated target-words in memory and
facilitates behavioral responses to target-words. More generally, the longer attention is
given to a (rvord) event, the more it can lead to anticipations.

When two prime-words are perceived in a sequence during reading, they trigger
diflbrent and incompatible anticipations if they do not share common associates. Then
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the prime rvhich is processed longer benefits more attention and can cancel

anticipations made from the other (Lavigne & Vitu, 1997; see Lavigne & Lavigne,

2000; Neely, 1991 for revieu's). This conesponds to general properties of attention in
w.hich events perceived longer actirate their associates in memory at the expense of
other perceived events (Posner & Snyder, 1975a,b, Posner, 1980; Posner & Cohen,
1e84).

Therefore the amount of time during rvhich an event is perceived determines the
amount of attention given to this event and its abilit-v to trigger anticipations. When
perceiving different events triggering competing anticipations in parallel in memory (e.

g., 'a snake' and 'a wasp'), processing time rvould he a cue of relevance of an event (e.
g., 'a still snake' r's. 'a rapidly fleeing rvasp'). Increasing attention with processing time
lvould lead to selection processes maintaining the most relevant anticipation activated
(e. g., '*alking back from the still snake') and inhibiting the other ones (e. g., 'waving

ofT the fleeing \.vasp' ).
(v) Perceptibilir,v- of an event can also influence attentional processing of the

event. During reading, anticipatory activation of associate<J target-words in memory

depends on quantitative and qualitative roles of attention as a function of the
perceptibilify of a preceding prime-rvord. In case of very shortly'perceived words (10 to
30 ms), perceptibility is diminished when the word rs visually masked by non-verbal
visual stimuli (e g., a row of X's, random dots or a random letter string like 'skefgklj';

see Holender, 1986 for a review). Shortly presented and masked prime words lead to

unconscious processing n'here no attentional control is possible. Onl-v automatic
processes occur to generate semantic anticipations on associated target-words in

memory, these prirning effects being rveaker than when the prime-lvords are fully ancl

attentionally processed (Greenwald et al., 1996: Holender, 1986). FurtherTnore, during

reading as well as in many situations of perceiving events in the environment, (word)

events can be foveally or parafoveall,v perceived. Parafoveally perceived words are

unconsciously processed and benefit less attention, leading to lleaker anticipatory
priming effects than foveally perceived words which benefit from greater attentional
processing (Fuentes, Carmona, Agis. & Catena, 1994; Fuentes, & Ortells, 1993;

Fuentes, & Tudela, 1992, Lavigne & Dubois. 2000; Lavigne, Vitu, & d'Ydewalle,
2000). This is coherent with the general effects of perceptive salience influencing

attenlion to a perceived event (Tanner & Swets, 1954; Green & Swets' 1966)- In this

case attentional processing plays a quantitative role in enhancing semantic

anticipations.
A more qualitative role of attenlion arises from experimental studies on foveal

and parafoveal word processing. Both consciously and unconsciously perceived words

lead to automatic and unconscious anticipations (Neely, 1991), their strength varying

with attention (quantitative effect of attention). However, when two prime words are
perceived at the same time and trigger incompatible anticipations (e. g., 'snake and

wasp'), only foveally perceived words (e. g., snake'), which benefit from more

attention, can lead to anticipations (e. g., 'walking away') that inhibit other

anticipations (e. g., 'waving off ) (Fuentes, Carmona, Agis, & Catena, 1994; Fuentes, &
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Ortells, 1993; Fuentes, & Tudela, 1992). Then the ability of attention to not only
increase the strength ofanticipations but also to inhibit other anticipations corresponds
to a qualitative role of attentional drive of anticipations.

To resume, attentional drive of semantic anticipations can vary as a function of
external physical properties of perceived events, such as perception time and
perceptibility. Exogenous selective attention allows a selection of relevant events (see
Laberge, 1995; Sperling & Reeves, 1980; Weichselgartner & Sperling, 1987), to drive
semantic anticipations in memory differentially as a function of their physical salience.

2.1.2.Internal Semantic Relevance in ùlemory

ln addition to extemal properties, internal properties can modulate the relevance
of the perceived events. These intemal properties depend on the knowledge the
cognitive system has about the events in its environment. The1, are leamed from
previous encounters rvilh the events as a function of(vi) their frequency ofoccurrence,
(vii) the frequency of co-occurrence of two events, and (viii) the frequencv of co-
occulTence of several events.

(vi) Events can be encountered and learned more (e. g., 'a peach') or less (e. g., 'a

cherimoya') frequently in the environment. The more frequently a word is read, the
more knowledge rve have about it as a visual fbrm. It can then be more rapidly accessed
in memory and identified for further reading because of its higher level of activation in
memory than other less frequent rvords (see Monsell, 1991 for a review). Although
high-frequencv words are more activated, activation thresholds put a limit to this level
(Rumelhart & McClelland, 1981, 1982). Therefore" an important parameter is that low-
frequency (rvords) events need more time to be accessed in memory and are processed
longer (Rayner & Balota, 1989: Vilu, 1991: Lavigne, Vitu & d'Ydewalle, 2000). A
consequence is that a less frequently encountered event can activate anticipations of
associated events in memory fbr longer time. This is consistent with the efïects of
habituation to frequently encountered events, and of attention given to less frequently
encountered events (Tipper, Bourque. Anderson & Brehaut, 1989), in the sense that
anticipations which benefit from longer activation are given more attention. To
generalize, infrequent events (e. g., 'a cherimoya') are privileged as more relevant by
the attentional system to drive anticipations at the expense offrequent events (e. g., 'a

peach').
(vii) Event frequency alone can not account for every attentional drive based on

internal knowledge about the event. lndeed, one can drive strong anticipations from
both infrequent and frequent events (e. 9., 

'a cherimoya' and 'a peach' respectively) if
one has strong knowledge about them (e. g., 'it tastes very good'). Knou'ledge about the
taste ofa fruit depends on the co-occurrence ofthe eating ofthe fruit and ofits flavor.
The strength of the association betrveen t$'o events (or rvords or concepts) in memory' is
largely determined by their frequency of co-occurrence (Conrad. 1972. Freedman &
Loftus, l97l Foltz, Landauer & Dumais, 1997; Landauer, Foltz & Laham, 1998:
Perlmutter et al., 1976; Spence & Kimberly 1990). The more t\ryo events are
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encountered together at the same time or close in time. the more they are learned
together (associated) and the more one ofthe trvo events can trigger strong anticipations
of the other event (Becker, 1979; Lorch, 1982). More generally, events strongly
associated in rnemory to a perceived event benefit from more activation and are given
more attentional relevance during anticipatory processes (see Jones & Yee, 1993).

(viii) Basic knowledge based on binary associations is not the only semantic
tàctor which can influence attention given to anticipations. Associative norrns are
constructed experimentall-v in collecting words given by persons as associated to prime-
words (see Lavigne & Lavigne 2000; Fenand & Alario, 1999). The more a rvord is
associated in memory to a prime- word, the more it is given as the first associate to
come to mind when reading the prime-word. These associative norms show the
variability in associative strength between words, and also that the number of different
words given as associates can greatly vary among different prime-words. A given word
(e. g., 'snake') is represented in memory through associations to several others (e. g..
'fangs, 'tail', 'reptile', 'rapid', 'dangerous', 'attack'. 'poison', 'death', etc. ). Not onl.v
binary associations between a prime-word and one of its associates (e. g., 'snake' and
'attack'), but many associations between a prime-word and all its associates (e. 9.,
'snake. 'fang', 'poison', ..., 'altack') define the semantic field of the prime-word.
Depending on the learned co-occurrences between a prime-word and a variable number
of co-occurrent words, the semantic field size may vary from large ('snake' has many
associates) to small ('auburn' has few associates). The larger the semantic field, the
more activation propagates within the field from the prime-word to many other
associates. Because many associates transmit their activation to a given associate in the
field, the level ofactivation ofeach associate is higher when the field size is large than
when it is small (Lavigne et al., in preparation). Then perceived events for which one
has the more knowledge (i e., which have large semantic fields) are lnore relevant for
attentional processes and lead to stronger anticipations.

To resume, internal cognitive factors determine attention which is sustained
through time to anticipate possible upcoming events in a sequence (Jones, 1976; Jones
& Boltz, 1989; Jones & Yee. 1993).

2.2. Common Structures and Processes for Semantic and Attentional Anticipations

Attention is a well-defined concept in cognitive models leading to various

fundamental processes in semantic anticipations. However it is important to define
theoretical properties of attention in terms of actual structures and processes in order to
propose cornmon properties of a neural network model of both attention and semantic
anticipations. The discussion of experimental results and theoretical views strongly
suggests that attentional drive of semantic anticipations involves levels of activation of
event representations in memory. A common associative structure for semantic and
attentional anticipations can be proposed: event representations are associated in
memory, and activation propagates through the associative network from activated
events to associated ones. The variable level of activation of the event representation
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can be determined by semantic anticipations themselves as well as by attentional
control. Then semantic anticipations, running on associations between events, and
attentional drive, based on physical and semantic properties of the events, interact to
modulate the degree ofactivation ofthe representations ofanticipated events. Through
these interactions of dynamic processes based on a colnmon associative structure,
attention appears to be influenced by semantic structures in memory and semantic
anticipations are influenced by attentional modifications of event representations. A
common neural structure can then be presented that precisely models both attention and
semantic anticipations in terms of common neural networks dynamics.

3. Recurrent Attractor Neural Network ùIodet with Delaved Neuronal
Activities

How can we modelize interactions between attentional and semantic
anticipations?

From previous models able to code temporal sequences of perceived events as
associated attractors in memory (Amit, 1989; Amit et al., 1994, Brunel, 1994, 1996), a
modified and extended version of a recurrent neural network was presented to modelize
semantic anticipatory processes (Lavigne & Lavigne, 2000). Mathematical properties of
a new model are presented as well as simulations of interactions between attentional
and semantic anticipations.

3. l. Network Architecture

The network is a local module similar to a cortical column connected to other
areas of the cerebral cortex (see Brunel, 1996). It is made of 1000 neurons, 750
excitatory 1p; ând 250 inhibitory 111 rêurorS, with equal probability of having a synapse
on any other neuron. (connectivity parameter c :0.1). The network has then Ssp:
56250 excitatory to excitatory synapses, Ser: Sm: 18750 excitatory to inhibitory and
inhibitory to excitatory synapses, and Sn:6250 inhibitory to inhibitory synapses.

Excitatory neurons code for events perceived by the network and inhibitory
neurons prevent runaway propagation of activation throughout all the excitatory
neurons and maintain stable states in the net*'ork.

3.2. Neuron Properties

Neurons are connected through four types ofpre-synaptic (f) to post-synaptic (i)
s-vnapses. Synaptic effrcacies correspond to post-synaptic potentials (mV) provoked by a
spike. They are initially randomly defined as follows with respective means JijEE:0.04
mV (excitatory to excitatory), Jrji:f 0.05 mV (excitatory to inhibitory), and Jij6:Jijn:
O.l4 mV (respectively inhibitory to excitatory and inhibitory to inhibitory), with a
synaptic variabi I it-v A:J.
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3.3. Neuron Dynamics

All neurons in the network are leaky integrate-and-fire neurons converting input

currents I (mV) in firing rates vi (spikes.s-1 ), according to the transduction function

vi "' <WI1 "' O ff wtr 
- t( - d)(fl ilJ llttt.rzr 16t eJ lluz --r (1)

approximating Brunel's (1996)values for Ricciardi's (1977) transduction function, with

l l rc, tr t :1 forthecorrespondingintervalsof I ,  O i f  not '  I l  :15'  12 :25. a:  13, P-
0.2, Z'-  I  I ,  6 " '  1,  t - '  10.

A neuron receives a total input intensity

1i,1,,1,'' Ii,r^-,, Tç2v1,6J,i,g,- qEvlrtJ4tt' T,,,lt,p,

.11,o,,; is the external input cunent received by 50o/o of the neurons from the other

cortical areas outside the network. The distribution of 1i,,o,, has mean I,ur,,: 1l mV and

o : 0 . 9  m V .
rsE v1,r,Ji1,r, is the internal input current received b-v the neurons from excilatory"

neurons: and r1E vi,tJiir, is the internal input culrent received by the neurons from

inhibitory neurons; rvith 4.= 0.01 and 4 : 0.002 the time constants for excitatory and

inhibitory neurons respectively, ri the spike rates of neuron i and s and,l,1 the s.vnaptic

efficacies from neuronj to neuron i.
r,,y'i,r, is the external input current when an event p is perceived, applied to

excitatory neurons coding lbr the corresponding event 1L r,,, is the time variable slowly
increasing with perception duration (1) of the event, which guarantees slow spike rate

dynamics during event perception.

3.4. Learning Dynamics

Synapses connecting excitatory neurons (JEE) coding for perceived events are
plastic and sensitive to hebbian leaming. Synaptic dynamics incorporates both

associative long term potentiation (LTP) and depression (LTD) defining modifications

of the synaptic efficacies J;1 betrveen neurons j and i (Amit & Brunel' 1995):

r"dJ4 dt : - Ju Cu J, '

calculated in the network as

J,ju-r, -- (q- l)J4x1 ç - ('iiui r, - Js 1 r.

(3  l )

(2 )
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J;1vary according to the time constant r": 20.
Jyttakes the minimum (J0 : 0.04) or maximum (Jr : 0.15) values when Ji; crosses

(getting respectively lower or upper) a threshold w;1, which stochastically vary between
Jo + 0 and Jr - e, with 0 :0.04 with steps of {:0.01 mV.

Potentiation or depression of the sy'napse is given by the values of C,i,, defined by
the Hebb leaming rule according to Brunel (1996):

Ciiltt.= )"-v;111 virti- ),-[ti,,, ' uiltJ (4)

vy1; înd virti ffê the spike rates of neurons i and j respectively, and ),-: 0.0005 and
).-: 0.004 are the potentiation and depression parameters respectively.

3.5. Network Dynamics

Each cycle in the network consists in a random updating of the spike rates of the
neurons as a function of the intensities they receive. When currents are received only
tiom outside the network and liom other excitatory and inhibitory neurons (equation 2),
neurons emit about 3.9 spikes per second (equation I ) and the network has a stable state
of spontaneous activity.

In order to simulate slorv variations of attentional activation of the attractors in
the network, slow network d,v'namics are guaranteed by a variable increase of input
intensity lit!). A perceived elent slorvly increases the total input intensiq li(tu,, to
simulate attentional activation as a function of perception duration.

Before learning, synaptic efficacies are randomly distributed, and no or few
changes occur when spike rates are low. Before learning, the network has no structured
attractor corresponding to events stored in memory. After learning of sequences of
events, leamed attractors coding for each event correspond to neurons activated by the
event, which are strongly associated. When perceiving the corresponding event, neurons
in a same attractor transmit activation within the attractor, the activation being
sustained and progressively decreasing through time after removal of the perceived
event.

4.l{etwork Simulations of Attentional and Semantic Anticipations

The neural netuork model presented allows to define long term and short term
memories as different internal states (association/activation) of attractors coded in a
same neural structure. This type of model presents several interests including its
neurobiological plausibility, its ability to fit the extemal behavior of the system such as
associative leaming and activation processes, and most importantly its accounting for
internal cognitive properties of the system such as the time course ofl activatory and
inhibitory processes as well as attentional processes. This last feature gives the model
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cognitive plausibilit-v making it an explicative model of internal processes not limited to
predictive abilities ofthe end product ofthe processes (see Perfetti. 1998). Indeed, this
model intemally functions in accordance to basic properties of the cognitive system. a
crucial point when attempting to model attentional drive of anticipatory processes.

4.1. Semantic and Attentional Learning of Co-occurrences and Similarities

Each event perceived by the network is coded as pattems of activation across a
subset (10 neurons) of the entire netrvork (1000 neurons). Events are coded in a
distributed way by several neurons so that each event can be a complex event,
corresponding to coqjunctions of sub-events coded by individual neurons or small
goups of neurons. Patterns memorized by the network are also non-orthogonal in the
sense that they do not share neurons. This means that learned events are not associated
in a pre-defined way by common neurons, but are associated through leaming
depending only on co-occurrence of events in the network environment.

Given that the attractor of a perceived event decreases slorvly through time after
removal of the event, neurons coding for a first event are still activated when a
following event is perceived. This property of the network allows it to associate
attractors corresponding to events occuning t'requently in temporal sequences, that is to
co-occurrent events. The model is then able to perfonn (i) semantic learning based on
the events encountered, and (ii) attentional learning based on its internal states.

(i) Semantic leaming is achieved by an unsuperv'ised learning mechanism
involving the Hebblike rule (equation 4) varying synaptic efficacies and associating
neurons coding for successive events (equations 3.1. and 3.2.; see Brunel, 1996;
Lavigrre & Lavigne, 2000). After learning, the network has many attractors
corresponding to leamed events. The attractors are associated as a function of the
temporal co-occurrence between the perceived events. Semantic learning in the netrvork
then corresponds to binary associations between representations of events perceived in
temporal contiguity (e. g., 'peacb; and'good taste'). These binary associations based
only on co-occurrences between events are not sufficient to account for semantic
leaming and processes (see Pertèui, 1998). Similarity relations are also explained by the
model, based on relationships betueen events which do not directly co-occur {e. g.,
'peach' and 'cherimoya') but rvhich co-occur with a common other contextual event (e.
g., 'good taste'). These indirect co-occurrences lead to associations between events on a
similarity basis due to a common contextual event surrounding the perception of the
associated events. Furthermore, a contextual event leading to similarity relations
between two non co-occurrent events (e. g., 'peach' and 'cherimoya') can be activated
through the perception ('good taste') or through the internal activation ofthe non co-
occurring event as an associate (e. g., 'grow in trees') to the perceived events ('peach'
and 'cherimoya') The general properr-v to store events in association with a sunounding
contextual event allows the network to represent not only binary association but also
semantic similarity relations not directly dependent on the encountered co-occurrences
in the environment.
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Figure l:
Activatory
anticipations of
event 2 ûom
perception of event
I, as a function of
associative learning
between two events
from direct co-
occurrences (events
l a n d 2 u e
presented in a
sequence); and of
similarity learning
from indirect co-
occurrences (events
I and 2 are each
co-occurrent with
event 3).

Netrcrk cyclæ

(ii) Attentional factors can modulate associative learning based on direct binary
co-occurrences as v/ell as on context-based similarity. Indeed, these two modes of
learning can be depicted as dependent, directly or indirectly, only on co-occrurences
encountered in the envirorurent (Landauer, Foltz & Laham, 1998; Foltz, Landauer &,
Dumais, 1997; Perfetti, 1998). However, to run adapted anticipations, a cognitive
system must be able not onl-v to store sequences of events occurring in its environment,
but also to store them as a function ofthe event's relevance, that is on the basis ofthe
attention given to the encountered events. Indeed, the acquisition ofa new knowledge
through associative learning processes can benefit from cognitive behavioral features
such as attentional processing. For example, two co-occurring events (e. 9., 

'cherimoya'

and'good flavor') can be learned differentially as a f-unction of the attention given to
one or to both events. A simple hypothesis would be that (suprathreshold, possibly
conscious) attention given to an event in memory is defined in the network as greater
activation of the corresponding attractor's neurons compared to (infra-threshold
possibl-v unconscious) semantic anticipations. The more an event is learned (frequency
of occurrence and perception time), the more its corresponding attractor would be,
attentionally, activated in memory during a further perception. Then, the more attention
is given to an event, the more its attractor can be activated (in intensity and time
duration), and the stronger it can be associated to a co-occurring event through
associative hebbian leaming. Then, from the perception of one co-occurence,
attentional learning can modulate associations in memory from neady zero to a
maximum, which is a function of the intensity (equation 4) and time duration (equations
3.1. and 3.2.) of the activated attractors. Intemal states of the network are as important
as sequences of events perceived in the environment to determine the types and degrees
of binary associative and similarity learning.
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4.2. Attentional and Semantic Anticipations

A common basis is given by the neural network model for semantic and
attentional anticipations, in terms of degree of activation of attractors as a function of
external and internal semantic and attentional properties of the perceived events.
Semantic and attentional learning are based on common neural dlnamics, modifring
synaptic rveights between event's attractors semantically associated in long term
lTremorv as a function of their attentional level of activation. Memorized knorvledge can
be differentiall-v- activated b.v.' perceived events and internal states of the s-vstem. The
reverberating activations of neurons associated in attractors of delayed activi$ then
correspond to knowledge activated in short term memory (see Amit et al.. 1994). The
attractor activated by the perception ofthe conesponding event activates in short term
memory associated attractors corresponding to anticipated events not yet perceived in
the environment (see Lavigne &. Lavigne,2000). Particular spike rate transmission
through synaptic associations and slorv netrvork dynamics allorvs the model to vary-
attentionally the amount of (infra- or supra-threshold) activation of (the attractor's
neurons of) semantic anticipations, as a function ofthe external and internal relevance
ofthe perceived events. This type ofmodel offers a unique opportunity to account for
both anticipations and attention in unified terms of neural dynamics, associative
semantic being coded in the synaptic weights between neurons and attention being
represented as the level ofactivation ofthe event's attractors.

(iii) The model accounts for the rapid anticipations (2-3 network cycles) by
automatic spreading of activation from a perceived event to an associated one (see
Anderson, 1983; Balota, 1983; Greenwald, 1996; Keefe & Neely, 1990; Neely, l99l;
Neely & Keefe, 1989; Neely, Keefe & Ross, 1989: Neely,7976, 1977; Collins &
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Figure 2: Actiratory
anticipations of
event 2 from
perception of event
1, as a function of
the amount of
attention given to
event 1 during
direct associative
learning (values of
t,4li,u, in equation
2) .
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Loftus, 1975; Collins & Quillian, 1969; Thompson-Schill, Kurtz, & Gabrieli, 1998;
VanVoorhis, & Dark, 1995). Furthennore, anticipations are sustained longer through
time when more attention is given to the perceived event (Fuentes, Carmona, Agis, &
Catena, 1994; Fuentes, & Ortells, 1993; Fuentes, & Tudela, 1992; Neely, l99l).
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(iv) The model explains how tuo perceived events triggering the same
anticipations activate more an associated event in memory than a single perceived event
(Balota & Paul, 1996: Brodeur & Lupker, 1994: Lavigne & Vitu, 1997), b-v" increasing
the amount ofactivation ofthe attractor coding for the anticipated event and received
from perceived events in an additive wa]'.
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(v) When two events are perceived in a sequence, the model rapidly activates
anticipations in parallel in memory, which are associated to the each events (rapid
activation of anticipations and resistance to local incoherence between perceived
events). The model also slowly inhibits anticipations associated to only one event
(change of anticipations when perceived events are not coherent together: Lavigne &
vitu, 1997; Neely, 1991; see Glenberg, 1997; see Berthoz, 1996; Dubois, 1996,1998b).

Acti|ation of event 3 in memory from perception of evênts 1 and ?

Figure 5: Fast
activation and slow
inhibition of
anticipation ofevent
3 from perception of
events I and 2
(inhibition of
anticipations).
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(vi) The model account for the effect of perception duration of an event on the
strength of the anticipations driven in memory (Greenrvald et al., 1996: Lorch, 1982;
McNamar4 1994; Ratcliff & McKoon. 1981). The longer an event is perceived the
more it activates an anticipated associated event in memory.
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Figure 6: Activatory
anticipations of
event 2 from
perc€ption of event
I as a function of
rhe perception
duration ofevent l.
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(vii) In the model, the perceptibility of an event corresponds to the number of
neurons coding the event which are actually activated by the presentation ofthe event.
The more neurons coding the event are activated during perception (e. g. all the
neurons) compared to a noisy stimulus (e. g. part of the neurons and a background noise
to the whole network), the more an anticipated associated event is activated in the
network (see Holender, 1986; Fuentes et al., 1992, 1993, 1994; Lavigne & Dubois,
2000; Lavigne, Vitu, & d'Ydewalle,2000).

Aclimtion of event 2 in memory from perception of event 1
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(viii) In the model low tiequency events need more time to reach neuron's
activation thresholds and activate associated anticipations in the network (Rayner &
Balota, 1989: Vitu, l99l; Lavigne. Vitu & d'Ydewalle,2000: see Monsell, 1991 for a
review). When activated longer, the attractor of the perceived event activates longer
associated anticipations, which reach higher activation levels. This accounts for the fact
that more attention given to less frequently encountered events (Tipper, Bourque,
^no""o:,,*,3.::llli;13.it]; 

æ.æption of even, 1

q

c
o

o

o

x 6

t Â
o P
5 È

E
o

o

. : a

e

15

35

25

t 5

5

Figure 7: Activatory
anticipations of
event 2 from
perception of event
I, as a function of
the perceptibility of
event I (learned
event I vs. noisy
event l).

Figure 8: Activatory
anticipations of
event 2 from
perception of event
I, as a function of
the frequency of
occurrenc€ of event
1 (in numbers of
cycles of
presentation of
event 1 during
learning).
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(ix) In the model the frequency of co-occunence of two events during learning
leads to stronger associations between their corresponding attractor neurons (see
Conrad, 1972 Freedman & Loftus, l97I'. Foltz, Landauer & Dumais, 1997; Landauer.
Foltz & Laham, 1998; Perlmutter et al., 1976; Spence & Kimberly 1990). The more two
events are associated the more a perceived one can trigger strong anticipation of the
other in memory (see Becker, 1979: Lorch, 1982), which is then given more attentional
relevance (see Jones & Yee. 1993).

Ac-ti€tion of event 2 in memory frcm pêrception of ev€nt 1

Figure 9: Activatory
anticipations of
ev€nt 2 from
perception of event
l, as a function of
the frequency of co-
occurrence of
e v e n t s l a n d 2 ( i n
numbers ofcycles of
presentation of
events I and 2 in a
sequence during
learning)

- f , -  LNfreqæ

ir, Hagh frequency ceæ

Network rycles

(xi ln the netrvork the more a perceived has associates. the more activation can
add on an anticipated event through all the associated (i. e., the semantic field), given
that many associates transmit their activation to a given associate in the field (Lavigne
et al.. in preparation). Perceived events for which one has the more knowledge (i. e.,
which have large semantic fields) are more relevant fbr attentional processes and lead
to stronger anticipations.

Figure l0:
Activatory
anticipations of
event 2 lrom
perception of event
l, as a function of
the number of
events associated to
events I and 2
(semantic field = 0
vs. 3).
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5. Conclusion

Attentional processing of events occurring in the environment is a fundamental
cognitive ability to drive semantic anticipations (see Lavigne & Lavigne, 2000).
Attentional drive of anticipations appear to be an important process in memory to finely
adapt behavior to complex sequences ofperceived events. As a function ofboth events
external properties and learned semantic internal properties, attentional processing
allows to evaluate e\€nts relevance in order to orient anticipations toward behaviors
adapted to the most relevant anticipated events.

The ability to drive anticipations, through attentional processes, as a function of
learned semantic knorvledge about events in the environment, guaranty the adaptation
of behaviors adopted by the cognitive s.v-stem. This fundamental cognitive ability can be
handled by anticipatory attractor neural networks, which allow to understand the
interactions between semantic and attentional anticipations on the basis of a common
neural structure. To deal rvith attentional drive of semantic anticipations, f'urther
developments of the model will need tuning of the neuronal parameters to allow. the
network to learn more events and to be more porverful in dealing with the processes
reported altogether.

Furthermore, semantic anticipations are central cognitive processes u'hich interact
with fundamental cognitive abilities such as attention (Laberge, 1995)- emotion
(Damasio, 1998) and goal direction (Levine. Leven & Prueitt. 1992, Thagard- 1998). In
addition to the attentional properties presented in the model, a great challenge to
anticipatory neural networks is 1o code emotiorrs and goals that can drive anticipations
(Lavigne, & al. ln preparation). This rvould lead to a better understanding of the
learning and processing ofernotions and goals by a cognitive system rvhich adaptively
anticipates in its enrironment.
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