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Abstract
Present paper addresses an approach to determine optimal recruitment and transi-
tion strategies in strict hierarchical manpower system by the application of simula-
tion modeling and optimization methods. The transition model is represented in the
form of discrete state space. The target values for each particular rank are deter-
mined by the user defined trajectory function. Optimal recruitment and transition
dynamics is determined by the minimization of the differences between desired and
actual state values. Analytical approach to the optimization is considered in order
to provide proper control strategy.
Keywords : state space? modeling, manpower, optimization, Potryagin

L Introduction

Strict hierarchical model of human resources transition addresses the organizational
structure, where only sequential transitions between different ranks are possible i.e.
jumps in the promotion are not allowed. Such systems could be found e.g. in
military, where only the sequential, highest, ranks are considered [1; 2]. Long-term
manpower planning in an army is a strategic and important task involving enormous
amounts resources therefore the anticipative value [3;  ] of developed model should
be applied. An army is a part of a complex social system, in which dynamics over a
longer time frame must be considered due to large time constants and delays across
feedback loops. Non-sequential transitions are not permissible due to the mandatory
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training. The system is described by the principle of system dynamics [5; 6; 7] in
discrete form as:
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here the matrix A from the Eq.
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In continuous form the system could be represented as:
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where Eq. 2 represents the net change of the state r. The state variables
rt,r2,...,tn describe the system state which are in our case the member numbers
of particular rank tr,t2,. . . ,rn. The rate elements R and F represent the intensity
of the state change. Here the transitions between particular ranks and \ryastâges are
considered. The meaning of the symbols is the following:

r Âs rate element which represents the input to the system determined by the
value u.

o rB1 rate element which represents the transitions from rank 11 into rank 22.
Â1 is determined by the value of z1 and the coefÊcient 11.

o R2 rate element which represents the transitions from rank 12 into rank 13.
J?2 is determined by the value of 12 and the coefficient 12, etc.

o fi rate element which represents the wastages from the rank rt. Ft is deter-
mined by the values of z1 and by coefficient fi.

c F2 rate element which represents the wastages from the rank 12. F2 is deter-
mined by the values of 12 and by coefficient Ï2, etc.

Writen in the discrete state space matrix form where At : 1, the considered
system has the following representation:

(k)

5 is determined as:
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The input of the considered system z(k) is determined by the matrix B into the
state 11 by stating:

r1(k * 1) : [1 - r{k) - /'(k)] r{k) + u(k) (7)

According to the stated Eq. 7 u(k) represents the number of new recruits which
enter the rank determined by the state variable ry u(k) represents the single input
to the considered system. The system is therefore dependant on the parameters of
input, promotion and wastages.

2 OptimizationApproach

One would strive for optimal control according to the initially given trajectories
which should be achieved by the values of state elements. In order to reach this goal,
the Pontryagin maximum prinicple will be applied [8]. Let us state the Lagrangian
multiplicator for the boudary i: f (r,u):

T
f

L:J  +  /  ÀV@," ) -ù ld t
J
0

Stated in different form:
T T
f r

L  :  I  V( * ,u )d t+  |  ^ lT@,u)  -  ù )d t
J J

T
f
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Hamiltonian function is stated as:

H ( r , u ) : V ( t , u )  +  À  f @ , u )

Therefore one gets:

T
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The change in Lagrangian AI is stated as:

T

ot: I l#^. (#+ i)a"] ù - ̂ (r) d'rr (1s)
0

If one considers that the A.L : 0 the following conditions are obtained:

AH :
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i _

À(r) :

0  0  < t<T

A H-=  0<r<?
iJx

0 V r (T) :  vr

(14)

( IÔJ

(16 )

(18)

(1e)

(20)

(21)
(22)

The condition stated by the Eq. 14 declares, that the Hamiltonian function is max-
imized by the selection of the control variable on the path of the stated trajectory.
Here we anticipate, that there is no limitations at the control variable. The con-
dition stated by the Eq. 15 addresses the intensity of the change of the costate
variable ). The intensity of the change of the costate variable is equal to the nega-
tive value of the Hamiltonian function with respect to the proper costate variable.
In the case, that more variables would be considered, e.8. rr,t2,... one would get
\1: -ffi,\r: -#,.... The condition stated by the Eq. 16 determines the end
value ofthe costate variable. The end value could be 0 or, if the final value is stated
as r(Z) : r"; then the d'nT :0.

According to the stated Hamiltonian function the state variable could be deter-
mined as:

(17)

At the determination of the optimal strategy one should first add the costate variable
À to the initial equations and define the Hamiltonian function H(r,u) : V(r,u) +
),f(r,u) and solve by the trajectories {"(t)}, tÀ(t)} and {r(t)}, here the following
conditions should be fullfiled:

ÔH
ôu

i

ry

À(")

r(0)

Hamiltonian function could be expanded for the arbitrary number of state variables
tr,frz,..., here the proper costate variables À should be added as well as control
variables z(l).

: 0  O< t<T
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3 Application Example

Let us consider, as the example, the system with the one state element. The criteria
function is stated as:

(23)

In the Eq. 23 one considers, that the trajectory is determined by the linear equation;
here we want that the response of the system r(t)is as close as possible to the stated
trajectory. The criteria function is in the boundaries of 0 to T : 10. In the Eq. 23,
before the integral sign, the - has been put, since the deviation should be as small
as possible. Boundaries in the sense of Pontryagin actually represent the state space
with the input:

1
t : r o _  

n f r
(24)

Boundary conditions for our câse are defined as z(0) : 10, r(10) : 50. Hamiltonon-
ian function for our case is stated as:

H( r ,u ) :V ( r , z )+À  f  ( * , u ) :  - ( 4 t+  10  -  r ) 2  + \  ( r o  -  
ù r )

Partial derivatiove of the Hamiltonian function according to our input tr, : rs:

ÔH\
; - :  ^
OTo

(26)

By regarding the condition ffi: 0 we have À : 0. Partial derivative of the Hamil-
tonian function according to the state of system r:

aH 1 .-È :10À-2(10+4 t - r )

By considering that ):0 one gets:

r : 4 t * 1 0

He differential equation is deterimned as [9]:

1
r ( t ) :  ro ( t )  -  

10  
(4 t  +  10)

where the function of interest is r"(l):

2
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We consider that r : 4t ]-10 and first derivative ù :4 and also consider the value
of the derivative in the Eq. 30; therefore one gets the optimal control:

16(r) : ?ut*u (31)

Let us proceed with the solution of the second order system where we will anticipate,
that the value on the state element is 12 : 10 i.e. constant:

(32)

In the Eq. 32 we will consider, that the desired trajectory is declared by the constant,
besides, we want that the response ofthe system stated by r2(t) is as close as possible
to the desired trajectory. Criteria function is stated in the boundaries of0 to ?: 10.
The boundaries in the sense of Pontryagin i.e. the determination in the state space
is:

ù2 : (4t+ 10) x fi 
- rrT, - ir,

Boundary values for our case are declared as r(0) : c(10) : 10. Further, we will
consider, lhat 4t * 10) represents value r(t), if we also consider the coefficient S
we get the inflow to the state element 12, which is Â, : *(4t + 10). Hamiltonian
function for the state z2 is:

H ( r 2 , u )  :  V ( r z , u )  +  À  f @ r , u ) :  - ( 1 0  -  r r ) ' +  À  ( ( 4 t  +  1 û )  r  
*  

-  r z T z  - * r )

Partial derivative of Hamiltonian function with regard to the input u: 12:

AH
; - :  - À f r
orz

At the condition thàt #: 0 we have À : 0. Partial derivative of the Hamiltonian
function with the regard of the system state 12:

ÔH
(35)

0rz
: ) , R z - 2 ( 1 0 - r )

The differential equation is state as:

ù2(t) :(4f + 10) . 
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- r2ft) R2(t)

where the variable of interset is R2(t):
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wastage

Fig. 1: Structure of the System Dynamics model of the transitions in the cannonical
form. rn represents the state element.

We consider that the rz: !0 and the first derivative ù2 :0 as well as the value of
the derivative defined by Eq. 37; therefore we get the optimal control:

R 2 ( t ) : (38)

The system could be represented by the elements of System Dynamics as shown in
the Fig. 1, where the part of the system structure is shown. Here the transitions
between particular ranks are represented as well as wastages and recruitment. In
this case the part of the structure is considered which takes into account the number
of entities in rank rr which represent the state element. Here the canonical form is
anticipated.

4 Conclusion

Determination of the optimal strategy in the strict hierarchical system is demand-
ing task. The importance of the optimal strategy is determined by the ubiquitous
presence of such systems e.g. supply chains, manpower systems etc. The SD method-
ology proved to be a proper tool to present the users with the hard methodological
concepts such as state space. The cascading exponential delay structure represents
an abstract form of the considered system whose main characteristics could be easily
presented to the users. If the user does not fully understand the concepts applied in
the developed system, the acceptance of the developed strategies cannot be reached
and therefore tha anticipative advantage of applying the developed model is not
taken. The described methodology of the system optimization by the Pontryagin
maximum principle for the case of first and second order offers the possible alter-
native of optimization for the systems of higher order. The optimization is due to
the large number of parameters demanding. Besides the problem of equal strategies
occurs for which the Hamiltonian function could not be determined. In the further
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development the problem of oscillation in the system will be considered. In our case
the oscillation of system states as well as strategy functions should not exercise the
oscillations. For example the optimal strategy could be stated which considers the
oscillation in the parameter values which, for the real case, would not be appropri-
ate. In this case the additional criterion should be introduced in order to provide
the proper, optimal strateg-y.
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