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Abstract
Verhulst logistic curve either grows OR decays, depending on the growth rate param-

eter sign. A similar situation is found in the Gompertz law about human mortality.
It is aimed to encompass into ONE simple differential equation the growth AND

decay features of, e.g., population sizes, or numbers. Previous generalizations of

Verhulst or Gompertz functions are recalled. It is shown that drastic growth or

decay jumps or turnovers can be readily described through drastic changes in values

of the growth or decay rate. However smoother descriptions can be found if the
growth or decay rate is modified in order to take into account some time or size

dependence. Similar arguments can be carried through, but not so easily, for the so

called carrying capacity, indeed leading to more elaborate algebraic work.

Keywords : Logistic law; Gompertz equation; time and size dependence of growth

and decay ratel time and size dependence of carrying capacity

1 Introduction

Verhulst 1845 seminal paper [1] bore on previous (1798) considerations by Malthus

[2] on populatlon size evolution. Verhulst model attempts to describe how the.growth
(or mutatis mutandis its decay) of a single species towards its equilibrium popu-

lation is limited, taking into account the reproduction rate r and the nowadays so

called carrying capacity M,i.e., the maximum value the population can sustain in
the long term in its environment., due to limited resources. He obtained what he

called the logistic curve (or map). In a subsequent papel, Verhulst [3] attempted
a different mathematical form of the blocking growth term, thereby obtaining an

exponentially slow approach of the carrying capacity, but not a sigmoid.
There have been many considerations starting from Verhulst approach of popula-

tion size evolution, generalizing his original work. However, it is of interest to recall
that among the generalizations, one should distinguish between those which stick to
one single differential equation, and those which involve a set of equations, because
they consider a competition effect with another population. Among the former ones,
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Fig. 1: (l.h.s): comparing Verhulst and a Gompertz growth or decay laws; (r.h.s):
comparing the first derivative, - in the case of growth laws; see the asymmetry with
respect to its inflection point in each Gompertz law

I am fond of the 1939 work by Avrami [4] on crystal growth, - the so called species
changing its thermodynamic phase or state, but there are many others. Among the
latter, one has only to go back to the work of Lotka, published [5], in 1925, and of
Volterra [6], in 1931, pertaining to so called prey-predator models. Not attempting
to cite here many subsequent publications., let it be pointed out that Blanco [7] has
suggested a trivial relationship between the logistic equation and the Lotka-Volterra
(LV) models, indicating that the former is in fact a sort of limit of the LV equations,
pending a redefinition of the parameters.

However, growth can neither be infinite nor reach a finite steady state at an
infinite asymptotic time, as in the logistic map. Moreover before some decay, some
grov,th must have occurred. In pa,rticular, some leveling-off could occur at finite
time, though followed either by some growth again or then by some decay, in both
cases, with a smooth or an oscillatory variation.

It is of interest in contrast, to recall ideas byGompertz [8] who in a series of
papers near 1825 discussed 'the Nature of the F\rnction Expressive of the Law of
Human Mortality, and (...) a New Mode of Determining the Value of Life Contin-
gencies". The Gompertz model for describing the decreasing number of members of
a population can be in fact easily reformulated in terms of a (simple first order dif-
ferential) growth equation of Malthusian form, with an erponenti,allg decaging birth
rate. This leads to another form of an analytical sigmoid curve, though asymmetric,
in contrast to the Verhulst logistic map.

In brief, depending on the sign of the parameters in Verhulst or Gompertz ap-
proach, one can describe some growth or some decay see Fig. 1 (l.h.s). However
numerous examples show that both Verhulst and Gompertz modelizations are thus
too reductive (or restrictive) descriptions of their original purpose. Whence, it is
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of interest to aim at finding some simple description combining some less trivial
behavior, i.e. obviously, practically inducing some extremum at some time in the
function which should be the solution of a, by request, simple first order differential
equation. This is the aim of this note, i.e. to encompass into ONE simple first order
differentia,l equation growth AND decay features of, e.g., population sizes, or num-
bers, but also of many other measured characteristics found in social and physical
science systems.

In Sect. 2, aft,er recalling Malthus and Verhulst equations, a few applications are
mentioned in order to substantiate the broad framework in which Verhulst equation
can be applied. Growth, indeed, is not only found in population studies, through
counting the number of individuals in some system, but can be measured through
other means, like the number of stems, the mass, the length, ... of "something". It
is often found, of course, that the Verhulst sigmoid is only a rough representation of
the data. Whence one has sometimes invented artificially skewed logistic curves [9];
see Sect. 2, for a general introduction to growth and such subsequent considerations.

Subsequent considerations on decay, with examples about languages and reli-
gions, are to be found in Sect. 3, before outlining Gompertz law. Discussion about
bio-demography applications can be found in an interesting 1997 review, up by Ol-
shansky and Carnes [10]. Nevertheless, ad hoc, previous generalizations of Verhulst
or Gompertz functions are trriefly recalled to conclude Sect. 3.

In Sect. 4, a few examples show that the Verhulst and Gompertz modelizations
are indeed too reductive (or restrictive) descriptions of reality. However, drastic
growth or decay jumps or evolution turnovers can be readily described through
drastic changes in values of the growth or decay rate, as shown inSect. 5. Sometimes
the evolution show drastic jumps or drops indeed, - due to exogenous or endogenous
causes. However smoother descriptions must be found, i.e. combining some less
trivial behavior. Obviously, one should aim at practically inducing some extremum
at some time in a smooth function which should be the solution of a, by request,
simple first order differential equation.

It is aimed, in Sect. 6, to encompass into such ONE simple differential equation
the growth AND decay features of population sizes, or numbers, but also of many
other measured characteristics found in social and physical science systems. In
fact one can observe that one could consider that he growth or decay rate has
either some time or some size dependence. The algebra is rather simple in order to
recover a \/erhulst or Gompertz evolution equation. In Sect. 7, the time andf or size
dependence of the so called ca,rrying capacity is considered in the same spirit as the
growth rate. However this is less trivial, indeed leading to more elaborate algebraic
work. Sect. 8 serves as a conclusion.
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2 Introduction to Growth

Following the above historical points, let us do some mathematics and data analysis
within Verhulst equation framework.

2.1 Growth Equations

First, recall the Malthus equation for describing a (normalized) population s'ize r
evolution as a function of time f , due to a birth rate r, i.e.

dx
f  : '  ' ,  (1)

which has the (catastrophic) exponential solution r(t) : 
"'t.The original Verhulst population growth model considers that resources are lim-

ited, such that the evolution of the number of members N(t) in the population is
described in terms of a carrying capacity M and a growth rate r, according to

#: "N [1 -#]
With the change of variable r: NlM,if. M is a constant, a dimensionless form

equation can be thereby written, i.e.

(2)

(3)
dr rl

d,t

It has for solution, the so called logistic map, a sigmoid curve,

e't
t: =---------., (4)

L * e r t

if r is a constant as well. Notice that Verhulst had examined complicated forms of
the growth limiting term, like a square, but also a squâre root [1], both cases without
any theoretical justification, but aiming at better fitting available data Indeed, there
is no biological justification for this assumption; Gilpin, Case, & Ayala [11] proposed
a growth equation of the form drf dt: r rl7 - (rlM)tl, - a larger than L value of
d resulting in a steepening of the growth curve and a higher value for the inflection
point, as it is easily calculated.

2.2 Applications of the Logistic Map

Let us point out to a few cases of the "Verhulst population growth model", in order
to show some universality value of the logistic map application.

r Population size: Beside those considered by Verhulst, an interesting appli-
cation on population size is that of Montroll and Badger [fZ], in 7974, who
studied the USA population between 1810 and 1970. An interesting parameter
value is found, i.e. r : 0.02984, which implies interesting considerations on
American sexuality during those times.
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Mass growth: However the logistic map can also be applied to, e.g., mass
growth, like in the report of Lee and'Werning [13], in 2008, who compared Al-
ligators, Elephants, Shrews and Ostriches, on one hand, but in the other hands
Tenontosauruses, Allosauruses, and Tyrannosauruses, using skeletochronol-
og-y; see reference [13] for the parameter r values, in kgf yr, and subsequent
discussions. For completeness, let us mention that the growth curves were
compared with an alternative model to that of Verhulst, i.e. the von Berta-
lanffy [14] curve of mass accumulation.

Length growth: As far as 1928, Pearl group studied the Cucumis Melo stem
length, either under field conditions [15] or in the absence of exogenous food
and light [16]. The populat'ion was considered to be the number of nodes.
Notice that r is of the order of 0.7 in their observations.

2.3 Skewed Logistic

In so doing, i.e., studying Canteloup growth, Pearl et al.
should generalize the logistic map to better reproduce
mere logistic, they propose a form like

u ( t \ :  
f  

,  , "  .a\ "  |  -  
!  +  e"o+o '  t+a2 t2* " ' '

empirically found that one
the data. Rather than the

(5)

where g, in [t6], is the number of seedlings of the canteloups. It is quasi obvious
that a more general form which is discussed below, is

v(t) : |  +  e l?) '

3 Introduction to Decay

Recent applications along Verhulst (limited growth) approach have been concerned
with the decay af a population size, rather than its growth.

3.1 Religions

The time evolution of several "main" religions was considered to be described, at
a so called microscopic level, along the lines of the Avrami-Kolmogorov equation,
describing a liquid-solid state formation in a continuous time framework [1fl, i.e. a
peculiar form of Verhulst law [18]. The solution is usually written as

c ( t ) : 7 - e - K t n  ( 7 )

where c(f) is the volume fraction being transformed from one phase to another; K
and n, are adjustable parameters. Howevet, it is "obvious" that before decaying
the number of adepts of any religion had to grow from the founder, N(0) : 1.

(6)
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Nowadays, several "religions" have still a growing number of adepts. Others have
reached a maximum, thus decay, or go again into a growing pattern. Population
growth-death equations have thus been conjectured for modeling such religion size
evolution dynamics, in a continuous time framework [19], [20], 121), [22], [23] and

[24] attempting to describe the existence of maxima in the number of adepts. An
interpretation of the features, after data fitting, can resort to an attachment pa-
rameter, as resulting from joining at first one's "mother religion", within exogenous
field conditions, a,s one "joins" at first one's mother tongue.

3.2 Language Death

For completeness, notice that the disappeârance of world's languages has also been
recently considered through a Verhulst time evolution equation in terms of the num-
ber density p1 of practitioners of some language i, in [25] and [26], i.e.,

where C6 is the carrying capacity of the environment for the population speaking
the r language and r; is a "negative growth" rate. The rr values are at this level
of no interest. However notice that the speakers do not fully represent a single so
called population, since their member evolution is toward a bilingual attitude. In
fact, there is a compet'itzon between two (or more) languages/populations, - which
according to the point of view mentioned in the Introduction rather pertains to a
prey-predator problem.

4 Gompertz Death Law

In fact, previous to Verhulst, Gompertz [8] discussed human population mortality
dynamics from a practicing actuarial point of view. Gompertz used equal long time
intervals, i.e. 10 year long intervals, to observe that the differences between the
common logarithm of the number of persons living in such successive equal age in-
tervals were almost identical during a significant portion of their life span. Thus
the numbers of living individuals in each yearly increase of age are in geometrical
progression. 

'Whence 
mortality progresses geometrically as age increases arithmeti-

cally. Therefore Gompertz proposed a 3 parameter expression for the number l/(t)
of surui,uors of a population at time t:

N(t)lNiû : erpl-b erp(-rt)1, (9)

where Nmf , b and r are positive constants. This corresponds to an exponentially
decaying birth rate r in Malthus equation, i.e. r: roe-*t, pending 16 ând rc being
positive constants. For completeness, notice that Makeham introduced an age inde-
pendent mortality rate to be considered in order to better represent available data

* : , n  oo ( t -  
â )

(8)

2A



127), i.e. adding a A* Bt term in the right hand side of Eq.(9, thus attempting to
take into account extrinsic effects.

The easily derived differential equation describing the exponential rise in death
rates between sexual maturity and old age, is commonly referred to as the Gompertz
equation, i.e.,

(10)

where lc has rnutatis mutandis the same meaning as M, the carrying capacity, in
the Verhulst approach. Notice that Gompertz and Makeham wondered whether k
can be interpreted in a socio-biological framework, i.e., as a biological limit to life,
based on some uital force.

4.t Skewed Gompertz Law

In the original Gompertz model, r and k are supposed to be constant; ô, in Eq.(9),
and k, in Eq.(10), are related to each other through r and the initial (or final) condi-
tions on N(t). In L92(,T\achtenberg [28] already examined extensions of Gompertz
law, sometimes departing from Gompertz geometric progression hypothesis, - ex-
tensions which do not necessarily lead to a sigmoid curve, but can be called skewed
Gompertz laws. One of them reads

N(t) : Ni4 sl"*bt+tt2+dt3+etal (1  1 )

It can clearly be the solution of a second order differential equation for log(N(t)),
as wished by Gompertz, and presents two inflection points at precise to andtp.

In fact, similarly to Eq.(6), the most general extension of a Gompertz form can
be hereby proposed to be

N(r) : Na6 erpl-b erp(-s(t))l . (12)

4.2 Biomedical Considerations

For the purpose of the reader general information, an interesting 1997 review by
Olshansky and Ca,rnes [10], on "ever since Gompertz", should be quoted. However,
since the discussion is mainly about demography applications and biological causes
of mortality, in various species, - like the vital force concept and in particular the
influence of radiations, the paper content is quite aside our present considerations.
and not further elaborated upon, though of great interest.

Nevertheless, it is of common knowledge that erogenous causes can manifest
themselves and influence some "decay" in the number of living individuals in a
population. Take the trout population data of Lake Ontario measured by Beeton

[29], quoted by Meadows et al. [30], for example. Pollution is supposed to be
the influential external field. On the other hand, a case of endogenous-like cause

dr  f t l
æ:, " ton 

l ; l
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Fig. 2: Evolution of the populaùion in Bauduen, Var, Flance since cû.1750

wâs noticed by Kormandy [31], in 1969, who commented on data, which I did not
find, and who stated that deer or goats, even though natural enemies are absent,
"often overgraze their range and cause erosion or destruction of the vegetation",
and consequently die. Finally, in Bauduen, a city in the French department of Var,
the city population, increased from 1793 till 1820, thereafter decreased till 1970
and is going back up nowadays, according to the city wikipedia website (http :

I lf r.wi,ki,pedi.a.orgf wikif Bauduen). In this case, sharp turnovers are found at the
time of war ends; see Fig. 2.

5 Growth and Decay and Growth and Decay and ...

In the case of Lake Ontario trouts, here above mentioned [29], there is obviously a
maximum near 1925, followed by a rather sharp drop of three orders of magnitude
in 1955 or so. Similar though smoother, features are found for Bauduen population
(FiS. 2). In brief, such examples should remind us that, in many measurements,
when counting the evolution of a population (of whatever nature), there is a suc-
cession of maxima and minima, though the growth and decay regimes can be of
different sizes and time spans, - and origins. Remember business cycles as well [32],
[33], [34], [35], or [36]. To debate on the evolution laws per se is out of question
here, but to find an equation containing both types of extrema is the goal of this
report, basing our considerations on either Verhulst or Gompertz equation.

5.1 Beyond Verhulst and Gompertz Equations

In view of the above, it is obvious that many multiparameter extensions have been
proposed in order to "improve" Verhulst or Gompertz laws [37], see App. A.
However, parameter justification is often missing, within our present "agent based
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model" requirements. Thus a simple mathematical framework to find several in-
flection points on a time dependent "growth" curve is still of interest. One may
imagine to introduce extra terms, representing endogenous or/and exogenous câuses
for growth or decay in Verhulst or Gompertz formalisms, like in Bass model [38] of
innovative and imitative behavior of consumers, or as in Zwanzig introduction of
a (damped exponential) heredity kernel [39], both generalizing Verhulst approach.
There is to my knowledge no equivalent extension within Gompertz framework.
However both, Bass and Zwanzig considerations, have more physical bases than
other purely mathematically oriented extensions.

For completeness, let us recall Bass model [38] of new product acquisition by
consumers; it leads to a single "diffusion" equation with constant coefficients, -

perfectly suitable to our aims:

#: tN - x(r)l 1p+ 1$yx1ry1 (13)

where X(t) is the number of product users at time l; N is the number of potential
users, like the carrying capacity previously, p is the so called coefficient of innovation,
and q is the so called coefficient of imitation. It is a VerhulstJike equation, though
the r.h.s has an extra zero order term. The solution reads

1 ^ - (p+q l t

(14)X ( f ) :  N j
t (qlp)e-{n+ùt

By differentiation, one can easily find the time at which the function has a maximum
as well as its value.

On the other hand, Zwanzig [39] writing of Verhulst equation amounts to a
change of variable e" : N/M, - somewhat as in Montroil [40] considering that the
evolution concerns log(N) rather than N, and the introduction of a heredity kernel
K(t) : K(0) et/T , such that one obtains an integro-diferential equation (not written
here). K(0)7 is in fact like the growth rate r in Eq.(2). For ânite 7, one obtains an
oscillatory but damped evolution, with an overshoot of the carrying capacity value
in fact; see Fig. 1 in [39].

Both previous formalisms present at least one hump in the "population" evolu-
tion. Nevertheless already within e.g. Verhulst framework, it can be observed that
describing either (i) sharp turn-overs or (ii) drop or jump transitions is possible. It
is for example, simple to introduce a drastic change in the r value. Similar situations
can be illustrated with Gompertz framework, as shown for both cases here below.

5.2 Sharp ï\rrn-overs

The four possible cases of sharp turn-overs forcing a continuous evolution of the
population number, in a Verhulst approach, due to a drastic shift in r values, i.e.
from some r to some -r value, or the opposite, at some time t, are shown in Fig.
3. Similar curves are shown for the Gompertz evolution law in Fig. 4. Note the
pronounced asvmmetry in the latter case.
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5.3 Drop or Jump Tlansitions

On the other hand, the four possible cases of population drops or jumps in a Verhulst
approach due to a drastic shift in r vâlues, at some fixed time t are shown in Fig.
5, as if a strong external event had influenced a shift from some r to some -r1 or
the contrary. Similar curves are shown for the Gompertz evolution law in Fig. 6.

5.4 Time and Size Roles

However such drastic changes of signs of the growth rate are rather unlikely or very
rough approximation of reality. A smoother evolution of r must be searched for. In
this respect, let us recall that the dimension-prone Verhulst differential equation,
Eq.(2), is easily integrated,

o if the growth rate r is constant, and

o if the carrying capacity M is a constant.

Let us first observe that there are two equivalent ways to write both Verhulst
and Gompertz equations, either emphasizing the ti,rne role or the s'ize ro\e.

5.4.1 Time Role

It is easy to observe that, after an appropriate simple change ofvariables, the differ-
ential equation corresponding to Eq.(3), e.g. for the skewed logistic, Eq.(6), reads

- thereby defining zr(t). One can easily integrate both sides of the equation, by the
#:is lk-v) a(t),

technique of separation of variables, i.e.,

dvb

t1 i4:  iu( t )  dt  '

and easily obtain the skewed logistic in so doing.

(15)

(16)

5.4.2 Size Role

Another interesting way, for further discussion, is to rewrite the evolution equation,
letting the time f in the right hand side be an implicit variable, thus referring to the
evolution through the size itself, i. e. Iet

#,:u,,,, (r7)

where V(y) : rA$ -g) in Verhulst model. Imposing the stability condition {P :

V(a):0, one easily finds out that the r.h.s. is like

v (ù :ay *bg2+ca3* . . . . ,
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i.e. there is no zero order term. Only keeping the cubic term leads to

du
Z  :  oy ( y -aù (a -a ) ,
a,t

therefore simply generalizing the Verhulst equation, through the introduction of two

inflection points al y6 and y..

5.5 Second Order Derivative

Without going into elementary considerations for mathematicians and physicists

about the conditions on a differential equation to produce, as its solution, a curve

with an extremum, it is immediately obvious, in the present framework that to

difierentiate once more Eq.(a) and Eq.(9) will produce a maximum, because of the
introduction of a second inflection point; - see Fig. 1 (r.h.s). However, the goal is

to find a first order differential equation (ODE) not a second ODE. As hinted here

above, a time or size dependence of r and/or k (- M) seems the simplest way.

6 Growth R"ate Role

6.1 Growth Rate Role in Verhulst Model

One may rewrite Verhulst equation, Eq.(3), explicitly expressing the time depen-

dence on the right hand side, i.e.

dr re-'t r

E: 1t a -*y 
: 

zlt + "*n1rty 
'

In order to have a curve with an extremum the most simple way seems to consider

its derivative; the extremum being located at the inflection point of the logistic map.

One finds

d z r  . ,  ^ , d r
# 

: r 11 - 2r) 
ît 

: 12 t (1 - 
") 

(7 -2r),

or emphasizing the time dependence on the right hand side, i.e. explicitly writing

d2r 12 e't (I - e't)

dt, : 
-lT+ 

""F-
One can also rewrite the above as

dzr  l  r r -e ' t1- :  l r"--- i l  
"  

( t  -  r)  :  Rv x (1 -  r)
d t 2  |  1 + e " , 1

in order to reproduce the r.h.s. of Verhulst equation, but with a new r)
Æy having a specific time dependence, i.e. âs

|  ,1  -  e ' t1
!7y :  l r - - l :  - r ' tanh( r t )  ,

L  r + e " J

(1e)

(20)

(2r)

(22)

(23)

called

(24)
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- which is not a birth-death growth rate of any known population, up to now. In
so doing one obtains the "generalized" time-Verhulst equation, admitting that the
growth rate should be time dependent.

Considering a writing in terms of a size dependent r, one can write

dzr  d  ,dx ,  ,d r ,  , .  ,d t , ,
dt ,  

=  

" (  " ) :  
ov  (  

* )  t1  -  ( * ) l  (25 )

which has the Verhulst form * : p, , [1 - r], with, comparing Eq.(21) and
Eq.(23),

Rv l r  r (1 -2 r )
U L ,  : -r v  ! - r n ( 1  - r )  1 - r u ( L - r )

where py is expressed in terms of the population size. If one wishes py to be
expressed in terms of the time f, one should replace z (= r) and ,Ry by their
expression found in Eq.(a) and Eq.(24) respectivelyi e. 8., Rv:12 (t-Zn(t)).

6.2 Growth Rate Role in Gompertz Model

Similar manipulations and algebra can be performed for the basic Gompertz model,
i .e. ,

thereby defining Rç, in terms of its size dependence,

Rc:r2l^t lLl-11-  
L"Lr l  I

Therefore, in order to write

dzr d .dr,  ,dr.  -  |  te I
dt" 

= 
æ( at): oc ( *) 

t"s 
L@rjdù)

which has the Gompertz form, one has to introduce pç with

o.:ffi:,ffi
where pc is expressed in terms of the population size. If one wishes ps to be ex-
pressed in terms of the time f , one should replace -R6r and (dr ldt) by their expression
given in Eq.(28) and Eq.(9). It seems that such a writing is out of necessity here.

(26)

#:,'ltosl*] - tf ,usl:] = *" ',"n1:] , (27)

(28)

(2e)

(30)
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Fig. 7: Possible cases of population evolution in a (l.h.s) Verhulst or a (r.h.s)
Gompertz approach when the carrying capacity has a t'i,me dependent component,
as compared to an ordinary growth or decay evolution for constant r or k (- M);
r : 1 for all curves; used analytic forms are given in the main text. A bump or a
dip can be seen to occur here at finite t ( 0

7 Carrying Capacity Role

Beside the possibility of expressing the growth rate in terms of some time or size
dependence, let us recall that k and M in Gompertz and Verhulst model respec-
tively are considered to be constant. To remove such a restriction has already been
considered in works referenced to here above. However such a consideration is of
highly relevant modern interest in our growing world, and thereby requests some
attention.

Note that some population growing in a limited environment can approach the
ultimate carrying capacity of that environment in several possible ways: (i) it can
adjust smoothly to an equilibrium, (ii) it can overshoot the limit and then dies back,
either in a smooth very damped way or (iii) in an oscillatory, more or less damped,
way. Let it be emphasized that the population can overshoot the carrying capacity
and in the process decreases the ultimate carrying capacity by consuming some
necessary nonrenewable resource: e.g., deer or goats ofben overgraze their range and
cause erosion or destruction of the vegetation [31].

7.1 \ilorld Model

Related considerations on the carrying capacity are used in Meadows et al. [30] on
the "standa.rd" world model. At first it assumes no major change in the physical,
economic, or social relationships that have historically governed the development
of the world system. Food, industrial output, and population grow exponentially,
as according to Malthus [2], until the rapidly diminishing resource base forces a

3 l



slowdown in industrial growth. Population growth is finally halted by a rise in the
death rate due to decreased food and medical services. However, because of natural
delays in the system, the population (and pollution) continues to increase for some
time after the peak of industrialization. The evolution of the world features) e.9.,
its population evolution, has been studied considering plenty of interfering causes,
like the doubling of resources, in developments of the "standard" world model [30].

7.2 Carrying Capacity Role in Verhulst and in Gompertz Models

The time and/or size dependence of the so called canying capacity could be consid-
ered in the same spirit as the growth rate. However this is less trivial and apparently
can only be tackled through numerical work. Indeed, one can only easily separate
the variables when one has either a form k(r), or k(f), in Gompertz model, or M(l/),
or M(t), in Verhulst model, in Eq.(10) and Eq.(15) respectively, i.e.

yr:rr(t)tosl#]

: 
*&6 N(t) [M(N(t)) - N(t)] ,

However to go on, some analytic form for lc and M is needed. This is leading to
more elaborate, less universal, algebraic work, and is outside our present report.

Nevertheless in order to substantiate the role of the carrying capacity time de-
pendence effect in the Verhulst and in Gompertz model, a posteriori analytic cases
have been considered. A few results are shown in Fig. 7 when a time dependent
behavior is a posteri,ori included as a mere factor into the original Verhulst of Gom-
pertz laws, r being kept constant. For completeness, the used equations in Fig. 7
read

1 .  e L  . . . e t - l
zv \ t ) :  

r L , * " t l  t t " t * ,  + t J

zc(t):tut"-"-'lt+ffi + rt .
Bumps or dips are markedly seenT within overall growth or decay features, even

in this simple manipulation. A size dependent effect of the carrying capacity either
in the Verhulst or Gompertz approach has not been studied.

8 Conclusion

A goal has been to describe some simple way toward one single simple first order
differential dynamics equation, recalling that 3-parameter families of curves often
describe growth data adequately, like in Verhulst or Gompertz approach. It has

dN
E

(31)

(32)

(33)

(34)
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been stressed that extensions of the corresponding equations in order to introduce
extrema, or more than one inflection point, are easily found in the second order

derivative. However a change of variables is necessary, implying that the growth rate
or/and the carrying capacity becomes time (or size) dependent. This corresponds
in practice at considering exogenous or/and endogenous causes, in other words,

external or internal field interactions with the population, i.e. intra-community
interactions in the latter case.

Bass model [38] and Zwanzig model [39] already contain such extrema in an ad
hocway, within Verhulst population growth framework. Here, it has been aimed at
providing a single diffusion Riccati equation with time/size dependent coefficients
of realistic nature, enforcing that the corresponding first ODE is of the Gompertz
or Verhulst type. An analytic form for the growth rate coefficients has been derived.
The carrying capacity form seems to demand numerical work.

Other ways of interest to describe a population evolution are those taking into
account some time delay, as in the world model, and in work on anticipation by

Dubois [41] or Rosen [42]. Indeed, in biological and sociological terms, the logistic

and Gompertz equations present a logical absurdity, since it requires that cause and
effect occur guosi simultaneously.

In fine, let it be pointed out that considerations of di,screte time effects on

Gompertz models seem to have not been much studied, - except in [43]: that might
be of interest in the framework of CASYS conference reports on chaotic, anticipatory
or not, systems. The more so indeed when it is recalled that it was demonstrated
by Dubois 144), in the corresponding Verhulst case, that an inclusive recursion is a
discrete anticipation removing chaotic behavior, - as if through an intrinsic control
parameter.
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Appendix A. Multiparameter Extensions
For completeness, it seems appropriate to recall generalizations of Verhulst and

Gompertz laws, beside the so called skewed laws, mentioned in the main text. E.g',

one can write indeed

Gr ( t )  :  e -Pe -L /d

l / , 1 + \ - 1 1 t n o - t / o t t - qv r \ u , / - \ r  I  , / ç  , /  '

(35)
(36)
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where p, o, and d are to be positive numbers, - the logistic map corresponds to d:1.
Ahuja and Nash [37] have further generalized these distributions by introducing

an additional parameter ô > 0. The density functions of these distributions are
respectively

G,(t; p,o,ô): 
ldô Q,:'u101 e_,Pe-'i/d

v,( t ;p,o,o,ô): làA(o a+y1 0+ p "- t /oy@+ô).

(37)

(38)

However, it seems that there is no physical justification of these parameters to be
usefully discussed within the present context.
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