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Abstract

This paper begins with an introduction to the emergence of chaos in a game of
evolution proposed recently (Dubois, 1998). The law of conservation of materials in
nutrients and populations is used as an environmental closure. Malthusian growth is so
transformed to a Pearl-Verhulst map. The game of evolution deals with the competition
between a species with its successive mutants. Such a population with random
mutations evolves when the ratio birth rateldeath rate of a mutant increases. Chaos
appears in such an evolving ecosystem.
In this paper, several new basic models of nutrients and population interaction are
presented and simulated.
Firstly, a second order Pearl-Verhulst is proposed: a second time derivative term is
added to the classical Pear-Verhulst model. This term permits to control the velocity of
propagation of a population by spatial diffrrsion. With low value of the diffusion
coefficient, the population front is followed by a spatial uniform concentration of the
population. For higher values of the diffusion coeflicient bifircations then chaos appear
in the spatial structure of the population. This is what we already called a "diffusive
chaos" (Dubois, 1996, 1998).
Secondly, this second order Pearl-Verhulst can show either the classical chaos either a
strange attractor similar to Hénon's attractor (1976). The final states in the bifurcation
depends on the initial conditions: this system has a memory of its initial conditions, and
the system goes to different attraction basins.
Thirdly, the nutrients N - population P interaction model is complicated in adding an
intermediate state P* for the population: P* is the satiated population and only non
satiated population P can take nutrients. Surprisingly, such an ecosystem has memory
but also anticipatory properties similar to the incursive model of the Pearl-Verhulst
given before (Dubois, 1996). Such a system depends on the initial conditions and show
a strange attractor similar to the Hénon attractor.

Keywords: chaos, population propagation, second order Pearl-Verhulst map, Hénon
attractor, memory and anticipatory population.
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I Introduction to the Emergence of Chaos in a Game of Evolution

This paper will consider very simple ecological systems represented by the growth of a
biological population constrained by a quantity ofnutrients. Indeed, the conservation
law of the total materials in the ecosystem is a constraint noted "C" grven by the sum of
the nutrients and the populations.
Let us consider explicitly the nutrients N(t) for the growth of a population p(t) with a
Malthusian growth, the discrete equations are given by

N(t+Ât) = N(t) - o.^t.N(t).P(t) + p. Ât.P(t)
P(t+Â$ = P(t) + o. Ât.N(t).P(q - P. ̂ t.P(t)

N(t+At) + P(t+Ât) = N(t) + P(t) = C
N ( t ) = C - P ( t )

( la)
( tb)

where t is the time and Ât the time step, u is the birth rate, p the death rate of the
population P(t), and the growth rate is a function of the quantity of nutrients N(t). From
the conservation law of materials, it is assumed that the dead population is recycled to
nutrients so that the total quantity of materials is represented by the control parameter C
(Dubois, 1998):

(2a)
(2b)

The total quantity of materials C is a global constraint which gives rise to a non-linear
saturation in the growth rate of the population. Indeed, in replacing N(t) grven by eq. 2b
in eq. lb, we obtain the following equation

P(t+At) = P(t) + a.C. Ât.P(t) - ct. Àt.P(t)'- Ê. At.P(t) (3a)

which is a form of the Pearl (1924\ -Verhulst (1847) models. For a constant constraint
C=l and parameters At=9=1, eq. 3a is

P(t+l ) = a.P(t).(l - P(t)) (3b)

which is the well-known Pearl-verhulst map which gives rise to chaos (May, 1976;
Mandelbrot, 1983). Populations with a low birth rate 0 < o < l, disappear p(È0,
populat ionswithl<a<3haveastablestat ionarystateP(t)=l- l laandpopulat ions
for which 3 < o < 4, show bifurcations and then a chaotic behaviour.

For a system with two species P1 and P2, the equations with nutrients N are

N(t+At) = N(t) + At.(P r.Pr(t) + p2.P2(t) - a1.N(t).P1(t) - az.N(t).Pz(r))
Pr(t+^t)  = Pr(t)  + Ât.(c l .NO.Pr(t)-  Fr.pr(r))
Pr(t+^t) = P:(t) + At.(c[2.N(t).P:(t) - F:.P:(t))

(4a)
(4b)
(4c)



t
where c and p are the birth and death rates respectively. The dead populations are
recycled to nutrients, the total quantity of materials being a constraint C:

N(t+ÂO + P1(t+Ât) + Pdr+^r) = N(t) + Pr(t) + P2(t) = C
N(0=C-Pr ( t ) -Pz( t )

P1(t+Ât) = Pr(tlrÂt. [qr.Pr(t).(C-Pr(t))-ar.Pr(t).Pz(tFFr.Pr(t)]
P1(t+Ât) = Pdt)+Ât. [a:.PdO.(C-P:(t))-a:.Pr(t).P2(tFp2.P](t)l

(4d)
(4e)

In taking e.1=Q12=sl) and pl=pr=p12,the addition of the two populations P(t) = p,11; *
P2(t) by eqs. 4b-c gives the previous eq. 2b for one population. This means that the
population P(t) can be split into two populations Pr(t) and P(t) with the same birth and
death rates.

when these rates change, in replacing eq. 4e of N(t) in the last two eqs. 4b-c, we obtain

where the effective go\ryth rate of the populations shows a Pearl-Verhulst saturation
and an effective competing term between the two populations appears as a.P1(t).P2(t) as
in the Voltena (1931) model.

Let us norv consider the following game of evolution (Dubois, 1998).

Let us start with a very elementary system with one nutrient N(t) and one species pl(t)
evolving with time t for which C = Pr(t) + N(t) = I (in taking C = I and Ât = l):

Pr(t+l) =Pr(t) + cr1P1(t)( I - Pr(t)) - ÊrPr(t) (5)

In taking crr=3 and Fr=2, for example, the population stabilises to the value
Pl=l-p1/ç1r=113.lf a small part of the species ÂP1 = P12 gives rise to random mutations
at a time T which have the effect to change the growth and decay rates to the values
clz = crr + Âcr1 and Fz = 9r + Âp1 where Âc1 and Âp1 can be separately positive, null or
negative values, this mutant species Pr2 will compete for the nutrient with the rest of the
original species Prr = Pr - P12 so that

C = Prr(T+t) + P12(T+t) + N(T+Q = 1

The new system can be described by

Pr r(T+t+ I )=Pt 1(T+t)+a'Pt 1(T+t[ I -P1 1(T+t)-P12(T+t)-0 rPr r(T+t)
Pr2(T+t+l FP,2(T+t)+orP,2(T+t)( l-P,,(T+tFPr2(T+r)Fp2prdT+t)

(40
(4e)

(5b)

(5c)
(5d)



Different evolutions are depending on the values of the mutations (Dubois, 1998):

l. If cr2 = crr ârd Êz = 91, there is no evolution.

2.If u2/$2 < drlpr, the mutant population P12 disappears.

3.If u2l$2> crrlÊr, the mutant population P12 increases and the original population P11
disappears. This is a phenomenon of succession which is important during evolution. In
this case, the original species shows three phases: growth, stabilisation (maturity) and
decay, and the mutant species increases and reaches a biomass value P12 = | - gzlaz
greater than the biomass of the original population.

For example, (t2 = 3 and F: = l, which means that the mutant population shows a
smallest mortality and its biomass is given by Pr: = l-ll3 = 2/3. Now if a new mutation
occnrs, a new species will succeed to the old one if a/pr > oz/Fz.For example, a = 4
and p3 = l, which means that the mutant population shows a greater groffih rate. But
here a new phenomenon occurs: the population shows chaos and its average biomass is
again greater than the preceding one: P13 = l-l/4 = 3/4.
Let us remark that in the reality, the number of mutations to reach the chaos must be
more than two, but the final state is always the same.

The general law is that the species evolves so that its biomass increases: evolution tends
to maximise the biomass and at the same time, goes to chaos where the system becomes
then locally unpredictable.

But the things are a little more complicated. Indeed, from the chaos theory, there is no
solution for a new mutation a+/9+ > 4 with oa>4 and pacl. The solution is that the
mutations diminish the turnover of the dynamics of populations. So, a mutant species
Pr4 with &+ = 2 and pa = 0.4 so that aalpa = 5, will replace the chaotic species and its
biomass will be higher Pr+ = I - 0.412 =0.8.

The evolution goes thus to the continuation of the maximisation of the biomass but with
a slower dynamics and chaos disappears. At the limit case, a mutant species with a, = 2
and B5 = 0 will give the maximum biomass Prs = 1.

A numerical simulation of this game of evolution is given in Dubois ( 1998).

Is it possible to have species without mortality or at least with a very low mortality?
Yes, the brain cells, called neurons have such a properfy: once the neural network is
created, these neurons live during all the life ofthe organism (some neurons died and
perhaps some new neurons can appear but this is not significant). what can we say
about these cells which are the elementary parts of the brain: these cells are at the top of



the evolution. The neurons have realised the dream of the evolution: maximise the
biomass and the immortality for only one category of cells (no diversiS-).

Remark 1: With a weak or null mortality, the growth parameter is limited by the value
F = 2, at the edge ofchaos, because there is no more nutrient.

Remark 2: For some values of the parameters this is possible to obtain the coexistence
of a species and its mutant species.

There is another possible solution for aaipa > 4 for which the dynamics is faster than in
the preceding case (diminution of the turnover). If the mutation is incursive, there will
be a change in the structure of the equation of the species instead of a simple change in
the values of its growth and decay values.

The competition between a recursive species P13 and the mutant
grven by the equation system (Dubois, 1998):

P13(t+l ) = Pr(t) + o3N(t)Pr3(t) - FrPn(t)
P14(t+l) = Pu(t) + caN(t)P1a(t) - 9aPr+(0

incursive species P1a

N(t+l) = [NC) - û,3N(t)Pr3(r]r 9:PB(0 - B4Pr4(r+l)l/[1 + o4Pr4(t+l)]

This system obeys the conservation of materials given by

C = N(t) + Prdt) + P1a(t+l) = I

For example, the chaotic species P13 is computed with crr = 4 and Fr = 1 and the mutant
incursive species is computed with cr+ = 4.1 and 9+ = l. The mutant species replaces the
other(See the simulation in Dubois, 1998).

So, the mutant incursive population Pla obeys the incursive equation:

P14(t+ I ) = Pr+(t) + 44P14(t[ I -Prq(t+ I )) - FrPra(t)

which can be transformed to the recursive equation:

P14(t+1) = [ Pr4(t) + oaPla(t) - F4Pr4(t)]/[ I + arPr($ ] (7a)

which is an equation of the Michaelis-Menten-Monod type (see Odum, 1983, for such
models).
Let us notice that J. Monod (1942) shows experimentally that the growth of bacteria
follows such a similar law

(6a)
(6b)
(6c)

(6d)

(7)



In conclusion, I demonstrated that with a simple model that some natural effects of
evolution can be modeled and simulated.

Are the dynamics shown here Darwinian or Lamarkian processes?

When random changes in the parameters gives rise to new species by competition, the
process is similar to the Darwinian natural selection of the fittest. The 'fittestu means in
this game of evolution "the more stable population" with the maximisation of the
biomass which leads to chaos and then a diminution of the dynamics of the population
and immortaltty with the disappearance of chaos. Neurons seem to be such evolutive
cells with a slow dynamics.

When a structural change in the equation of evolution occurs, the incursive solution is
rather similar to a catastrophic process. E. c. zeeman (1972-1977) propos€s a
Lamarkian evolution complementary to aDarwinian one.
In my game of evolution, the incursive solution suppresses the chaos and at the same
time, the dynamics of the population can increase beyond the possibilities of chaos in
maximising also the biomass (see also Odum, 1983, for the maximum biomass related
to Lotka (1925) maximum power principle). Growth in a Michaelis-Menten-Monod
way plays a central role in ecological models (OdunL 1983).

This game of evolution is evidently too simple to be realistic and must be based also on
other evolutionary basic models, but its results are rather surprising and not obvious at
all.

Thus, in this paper, I will consider other evolutionary basic models which show
different chaotic behaviours with the emergence of strange attractors.

2 A Second Order Pearl-Verhulst Population

The Pearl-Verhulst eq. 3a

P(t+Ar) = P(t) + a.C. At.p(t) - Ct. Ât.p(t)2 * F. ̂ t.p(t)

with P.^t = I = C = l, can be rewritten as

(3a)

P(t+t) = (o/p).P(tXl - P(t)l (8)

where t = ll!.This equation gives rise to bifurcations and chaos. The successive
bifurcations correspond to a discrete oscillatory system of successive periods 2, 4, I, etc
for increasing values ofa, then to chaos.



Classically, this map (8) corresponds
Pearl-Verhulst equati on

dP(tYdt = a.P(t)[1 - P(t)] - pP(t)

for which no oscillatory solution exists.

to the following differential continuous

In fact, we can deduce this differential equation in expanding P(t+r) in Taylor's series in
the following way

P(t+r) = P(t)+ rdP(t)/dt

so

P(t) + rdP(t)idt = (c/B).P(t)[l - P(r)]
o1
dP(t)/dt = cr.P(t)tl - P(t)l - p P(t)

This equation can be called a first order Pearl-Verhulst differential equation

(10 )

A second order differential equation can be deduced in expanding P(t+t) to the second
order in Taylor's series as

P(t+r; = P(t) + rdP(t)/dt + irri2ld2P(tydt?

and then the differential equation is written as

P(t) + rdP(t)idt + (rrr2)d:P(t )/dt: = ( c/p).P(t)t 1 - P(t)l

or

dP(rydr + (l/2p)d2P(r)/drr = u.P(t)n - P(r)l - p.P(t)

which is a non-linear damped oscillator with a damping factor equal to 2p:

d2P(0/dt2 + 2FdP(t)/dt = 2aÊ.P(t)n - P(r)l - 2F2.P(t)

(e)

(1  la )

(1  1b)

(12)

(13a)

( r3b)

( l3c)

In the game of evolution, we have seen that the population evolves in increasing the
ratio orlp, so when p decreases, the damping effect will diminish, and when cl increases,
the frequency of oscillations will increase.
These oscillatory properties could conespond to a new evolutive effect for populations.



A similar evolutionary properly of populations was pointed out by Jiri Slechta (1995),
who pointed out the importance of the acceleration term for the population dynamics.
He argued that this acceleration is the missing link to the derivation of the Darwin
evolutionary dynamics. For him, the acceleration term is related to environmental
properties. In my model, the acceleration term comes from an intrinsic property of
population: a temporal delay in the reaction dynamics. Indeed, let us show in the
following section that the second order Pearl-Verhulst model is similar to the classical
Pearl-Verhulst model with a time lag.

Moreover and very curiously, when we add a spatial term to population dynamics with
second space derivative, the equation becomes a parabolic equation for which
perturbations propagate at an infinite velocity, what is impossible in practice. This
properfy of infinite velocity was pointed out for the heat equation and the Burgers
equation in hydrodynamics which are ideal incompressible flows. To avoid such infinite
propagation of perturbations in parabolic equations, some authors (Maxwell, 1867,
Cattanbo, 1958, Green and Laws, 1972, Vemotte, 1958, Chester, 1963, Kranys, 1966,
Mûller, l96T,Lambermont and læbon, 1973, 1976) proposed to add a second order
time derivative, so the parabolic equation is transformed to a hyperbolic equation.

3 Diffusive Propagation of a second order Pearl-verhulst population

Let us consider the Pearl-verhulst population written in the following form

dP(t)/dr + td2Pltydf = cr.p(r)[C - p(r)] - F p(r)

which corresponds to a delayed equation when t is small

dP(t+r/dt = a.P(r)[C - P(t)] * p.P(t)

because

P(t+t)= P(t) + rdP(t)/dt

This means that the growth of the population occurs with a time lag of r.

The one-dimension spatial diffusion of such a population eq. l4 is given by

âP(rya + rdyçt1tr2 = a.p(tXC - pc)l - F p(r) + odp(t)iax:

where D is the diffusion coefficient.

(  l4 )

(  l 4a )

( r4b)

( 1 5 )

10



This equation can be written in the following discrete form

[P(x,t+Àt) - P(x,t-Ât)]/2Ât + t[P(x"t+Ât) - 2P(x,t) + P(x,r-Ât)]/Ât2 =
c.P(x,t)[C - P(x,t)] - p.P(x,t) + D[P(x+Âx,t) - 2P(x,t) + P(x-Âx,t)]/ Âxr (16)

Let us remark that a similar correction to an epidemics equation system was proposed
earlier (Dubois and Sabatier, 1998).

A particular case occurs when r = 1129 and Ât = lip

P(x,t+Ât) = Ât.[a.P(x,t)[C - P(x,t)]l + Ât.D[P(x+^x,t) - 2P(x,t) + P(x-Âx,t)]/ Àx2 ( l7)

which corresponds to the one-dimension spatial diffrrsion ofthe Pearl-Verhulst map, as
given in the preceding section.

The following numerical simulations of tfus equation 16 given at Figures I to 8, show
that the velocity of a population front is related to the time lag r. When r increases, the
velocity of propagation v of the population front decreases: the velocity v is
approximately related to v = {[D/r]. The values of the parameters are: ̂ t = l, c! = Z, C =
1, F = 1, Âx2 = 1, D = 0.2. In these Figures, the space length is 200 and the spatiat
population front is given after 200 time steps, for different values of t.

r : r r r r r r r t r r r t r r a _

r r r a . r a . . a a . t a r

Figure 1: Simulation of eq. 16 for r = 1/3. A 2-period bifurcation appears.



Figure 2: Simulation of eq. 16 for r = l/2

Figure 3: Simulation of eq. 16 for t = l

I2



Figure 4: Simulation of eq. l6 for r = 2

Figure 5: Simulation of eq. 16 for t = 8.

t 3



Figure 6: Simulation of eq. 16 for r = 16.

Figure 7: Simulation of eq. 16 for r = 32



Figure 7a: Simulation of eq. 16 for r = 32, with a re-scaling of the spatial domain.

Figure 8: Simulation of eq. 16 for t = 128, with a re-scaling of the spatial domain.

15



4 Diffusive chaos in the second order pearl-verhulst population

Let us now show that chaos can et.nerge by spatial diffusion, what I called "diffirsive
chaos" (Dubois, 1996, 1998).

Figure 9: Simulation of eq. 16 for D : 0.17.

P

Figure 10: Simulation of eq. l6 for D: 0.6.

1 6



Figure ll: Simulation of eq. 16 for D: 0.68.

The Figures 9, l0 and I I give the numencal simulations of eq. 16 with the parameters
Ât= l ,  a=2.9.C= l ,  Âx:= l , r= I  for3dif têrentvaluesofthedif fusioncoeffrcient
D. For low diffusion, a stable homogeneous spatial distribution occurs. A 2-period
bifurcation emerges with a higher diffusion and then chaos.

5 Hénon Strange Attractor From Second Order Pearl-Verhulst Map

Without diffusion, the discrete second order Pearl-Verhulst eq. 16 is written as

[P(x,t+Âr) - P(x,r-Ât)]nÂr + r[P(x,r+Ât) - 2P(xJ) + p(x,r-Ât)]/at2 =
cr.P(x,t)[C - P(xJ)] - Ê.P(x,t) ( 1 8 )

For the following values of the parameters: Ât = l, C = 2.2627, 0 = 0.7 and
r = 0.2492307, this map is similar to the Hénon strange attractor.

The numerical simulations of eq. 18 are given for cr = 0 to 1.0769, cr = I to 0.0769 with
initial conditions P(0) = 1.48, P(-l) = P(0) in Figures 12 and 13. With initial conditions
P(0) = 1.48, P(-1) =0 in Figure l3a. Different initial conditions give different
bifurcation diagrams: these equations have a memory ofthe initial conditions.
Figures l4abc give the first, second and third return maps which are similar to the
Hénon sffange attractor.

t7



Figure 12: Second order Pearl-Verhulst bifurcation diagram
for c = 0 to 1.0769, with initial conditions p(0) = 1.4g, p(-t ) = p(0).

Figure 13 : Second order pearl-Verhulst bifurcatron diagram
for& = 1.0 ro 1.0769 with initial conditions p(0) = 1.43, p1-t I = p161
Look at the specs similar to the specs in the Hénon strange attractor.

1 8



Figure l3a : Second order Pearl-verhulst bifurcation diagram for cr = 1.0 to 1.0769
with initial conditions P(0) = 1.48, P(-l) = 0. The specs disappeared in comparing to

Figure 13. Thus this stamge attractor has a memory of its initial conditions.

Figure 14a : First retum map of eq. 18. This is similar to the Hénon attractor.



P(r+2)

P(r+3)

Figure l4b : Second return map ofeq. 18.

Figure l4c : Third return map of eq. l8



5 Anticipatory and Memory Effect in a Hénon-like Population

Let us consider the following model

dN,rdt= -aNP +yP
dP'r/dt=+cNP-SP*
dP/dt=+pP*-yP

conesponding to

N + P - + P * - + P - + N (201

where P* are satiated P which do not take nutrients: when the satiated P transform to
hungry P, they take nutrients. The dead P transform to nutrients: this is a closure
condition to have a closed biomass (the nutrients are included to the biomass) svstem
for which

N + P * + P = C  e l \

where C is the total biomass of the system corresponding to the conservation ofthe total
mass of the ecosystem.
with the closure condition (21), the 3 eqs. l9abc are reduced to the following 2
equatlons

dN/dt=-crNP+yP
dPld t=+p(C-N-P) -yP

After some mathematical transformations, we obtain

rdzPldt2 + dP/dt = aP[CFr - ypr/a- p - rdp/dt] (23)

where t = l/(F + y). In this eq. 23, we remark that the growth rate of the p depends on
the temporal derivative of P: this is an incursive equation which is an anticipatory effect
of the growth of the population.

So eq. 23 can be written as

:'/'2ptdf + (1 + ad)dP/dt = crPlCÊt - ypr/cr * pl

Eq.23a can be rewritten as

dzPH( + (T + I + aP)dP/dt = gPlCp - y1/u- (y + F)Pl

( lea)
(1eb)
(l9c)

(22a)
(22b)

(23a)

21

(23b)



This equation can be written in the following discrete form

(t + 0 * aP(t))[P(t+^tFP(r-^t)y2Ât + [P(t+ÂtF2p(t)+p(t-^t)ft Lt2 =
aP(t)tCp -ypta- (y+ F)P(t)l

or

P(t+Ât) = [+(r + F + aP(t) - 2/Lt)P(t-^t) + 4p(tvÂt+ 2Âtap(t)[cp - yïta
- (1 + p)P(t)l I i (y + p + crP(t)+2/^t)

Qaa)

(24b)

The numerical simulations of this eq.24b was made with the following parameters:
Ât = 1, C = 2,F - l,y = l. So eq. 24b becomes

P(t+l)=[crP(t)P(r-^t)+2p(t)+4crp(t) [ t  -p(r) ] l i  (4+6p1111 eS)

Figure 15 gives the bifurcation diagram of eq. 25. Figure l6a is an enlargement of the
preceding bifurcation diagram. Figure 16 b is the enlarged bifurcation diagram with
other initial conditions.

Figures lTato l7e give the first to the fifth return maps of eq. 25 for s = 4.305

Figure 15 : Bifurcation diagram of eq. 25 for a=0 to 4.3.
Initial conditions: P(0) = 1.48, P(-11 = p19;

22



Figure l6a : Bifurcation diagram of eq. 25 for cr = 3.8 to 4.3.
Initial conditions:P(0) = 1.48, P(-1) = P(0).

Figure 16b : Bifurcation diagram of eq. 25 for o = 3.8 to 4.3.
Initial conditions: P(0) = 0.5, P(-t) = 0.5P(0).

Additional bifrrcation specs are seen at the left of this figure.
This anticipatory attractor has a memory of its initial conditions.



P(r+l)

Figure l7a : First return of the eq.25.

P(r+2)

Figure l7b : Second return ofthe eq. 25.



Figure l7c : Third return of the eq.25.

Figure l7d : Fourth retum ofthe eq. 25.



Figure l7e : Fifth retum of the eq. 25.

Conclusion

This paper begins with an introduction to the emergence of chaos in a game of
evolution proposed recently (Dubois, 1998). This game of evolution deals with the
competition between a species modelled by the Pearl-Verhulst equation with its
successive mutants. Such a population with random mutations evolves when the ratio
birth rateldeath rate of a mutant increases Chaos appears in such an evolving
ecosystem.
In this paper, several new basic models of nutrients and population interaction are
presented and simulated.
Firstly, a second order Pearl-Verhulst is proposed: a second time derivative term is
added to the classical Pear-Verhulst model. This term permits to control the velocity of
propagation of a population by spatial diffusion. with low value of the diffusion
coefficient, the population front is followed by a spatial uniform concentration of the
population. For higher values ofthe diffusion coeffîcient bifurcations then chaos appear
in the spatial structure of the population. This is what we already called a "diffulive
chaos" (Dubois, 1996, 1998).
Secondly, this second order Pearl-Verhulst can shorv a strange attractor similar to
Hénon's attractor (197 6).
Thirdly, the nutrients N - population P interaction model is complicated in adding an
intermediate state P* for the population: p* is the satiated population and only non
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satiated population P can take nutrients. Surprisingly, such an ecosystem has memory
but also anticipatory properties similar to the incursive model of the Pearl-Verhulst
given before (Dubois, 1996). Such a system depends on the injtial conditions and show
a strange attractor similar to the Hénon atfactor with several attraction basins.
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