
Teach your Robot an Ll(l)-Jargon

Albert Hoogewijs, Hans Gruyaert, Geert Vernaeve

University of Ghent, Pure Mathematics & Computer Algebra
Galglaan 2, 8-9000 Ghent

1u*1 3)+09 264 49 93 - bh@cage. rug. ac. be - http : I I cage.rug. ac. be/-bh

Abstract

When we talk about teaching a robot an Ll(l)-jargon, we mean specifring a language
processor, i.e. an acceptor and transducer that is able to translate robot instructions into
machine code for the control unit of that robot. A syntmc4irected development is
proposed, i.e. a software method in which the syntax of the input of the application plays
a sentral role. The syntax forms a frame on which semantic actions, attributes, local and
global information can be attached. More specifically we use the ELL(I) format for the
description ofthe language. From this sy'ntax-directed description an executable program
is automatically produced using the Visual MIRATM tool.
We illustrate the usage of this Ll(1)-jargons, in the description of an anticipating process
ofa robot.

Keywords: Domain-Specific Language, Jargon, LL(l)-Language. Domain Engineering,
Robot Control

I Introduction

Small languages, tailored towards the specific needs of a particular domain, can
significantly ease building software systems for that domain (Bentley, 1986). We
illustrate this idea through the construction of the Ll(1)-jargons CDL and RDL for a
Robot controller. According to Nakatani and Jones (1997) we use jargon in the sense of
an easy-to-make Domain-Specific Language (DSL) that domain engineers who are not
language experts can easily make themselves. We use Ll(l)-descriptions (Hoogewijs,
1997) for the specification of the jargons CDL and RDL and apply Visual MIRA (1993)
to produce the deliverable software.

2 Robot control through an Ll(1)-Domain-Specific Language

2.1 An Ll(l)-jargon

For the non language specialists we recall thal "LL" stands for a parsing technique where
the first '2" refers to the fact that the synt(x analyser, ot parser scans a given sentence
of the language from left to right, and the second '2" means that the syntax tree is built-

Internafional Jourrral of Computing Anficipatory Systems, Volume 8' 20Ol
Edited by D. lt{- Dubois, CHAOS' Liège, Betgium, ISSN 1373-gll ISBN 2-9600262-l-7

up (top-down) from left to right (see Hoogewijs, 1995). According to the "1" we need
only one look-ahead symbol in order to decide on the action to be taken. Applying this
technique to the input 2*(3+4) we see that while scanning the "*" the look-ahead symbol
"('instructs the parser to postpone the call for a multiplication until the "(3+4)" has been
parsed. The MIRATM tool as described by Huybrechts (1995) and the examples presented
by Pauwels (1995) and Huybrechts (1999) show that this technique can be used
efficiently to produce complex software tools from a description in a highJevel
specifi cation language.
To meet the drawbackthat LL(I) does not deal with left recursivity, extended context-
free @CF) instead of context-free (CF) syntax is used. In this context a LL(l) ECF
language is also called an ELL(I) language. It can be shown that the class of ELL(I)
languages coincides with the class of deterministic CF languages. For a full description of
the generation of the automatic transducers for a given LL(l) specification, we refer to
Lewi (1979, 1982, 1992).
We disagree with Marvin Minsky when he describes Noam Chomsky as a disaster for the
development of learning robots (in Van Peteghem, 1999) since we believe that CF
languages and more specifically ELL(I) languages are very useful in the control of
robots. But we do agree with Minsky when he says that there is more than syntax and
that semiotics count as well, if you want a machine to do a task and study the
performance of that machine. More specifically we refer to one such basic semiotic
concept namely Saussure's (Culler 1986) distinction between the two inseparable
components of a sign: the signifier, which in language is a set of speech sounds or marks
on a page, and the signified, which is the concept or idea behind the sign. Saussure also
distinguished *parole", or actual individual utterances, from "langue", the underlying
system of conventions that makes such utterances understandable; it is this underlying
langue that interests semioticians most, and where also domain-specific language
generators come in.

2.2 A Domain-Specifi c j argon

When we talk about teaching a robot an Ll(l)-jargon, we talk about writing a language
processor, i.e. an acceptor and transducer that is able to translate our robot instructions
into machine code for the control unit of that robot. As it is the case for software
development in general, an adequate methodology is the basis for the construction of
high quality progrums. By this we mean programs that in the first place are simple,
reliable, adaptable and well structured. Other requirements such as efficiency and
portability are important but have less priority.
The proposed methodology is based on the idea that generative devices, which involve
definitions of languages and translations, are more natural, compact and readable than
recognizing devices. To gain more insight into the problem to be solved, one must start
with a good problem definition. Thus before we start writing a language processor, we
must be able to define the language to be implemented. Therefore a number of syntax
and translation formalisms must be studied in detail. In view of the complexity of the

60

tasks and the particular possibilities and construction of the robot, we will have to apply
different technologies and algorithms for different situations.
In this sense the jargon that we use to describe the shop floor and the robot actions,
depends on the environment that the robot is going to act in and the tasks he will have to
perform. For our example, we will assume a robot to be designed to get parts from a
rack and deliver them to an assembly line or to unload a truck and arrange the parts on
the racks. The emphasis is on the aspects of the modular composition by which acceptors
and transducers are produced. The syntax-directed descriptions of Visual MIRATM are
based on the ELL(I) parsing techniques and allow systematic refinement of the
specifications. To illustrate these ideas, we start with the specification of control system
for a virtual robot, and refine this specification to a control system for the Lego@
MindstormsrM robot.

3 Environment of the Robot

We consider a robot as an autonomous unmanned ground vehicle that can perform some
tasks with a minimum of human interaction. A working definition is that an intelligent
robot is a machine that can extract information from its environment and use knowledge
about its world to move safely in a meaningful and purposeful manner and to perform a
series of instructions. In order to perform its task, the robot must be able to interact with
its environment. Note that our robot is not a conscious machine, as presented by Marvin
Minsky (1998). This means that an expert will have to provide the robot with the
knowledge and description of the working environment. So we are looking in the first
place for a formalism that is able to cope with the problem of describing the shop floor.

In order to visualise this situation, we start with a virtual robot and we consider a two
dimensional rectangular grid as the representation of the shop-floor (see also Wide and
Schellwat 1997).F;ach point on the grid is labelled with an element from the set {R,T,X,.}
where R represents the position ofthe robot, Tthetargel ofthe robot, Xthe location of
an obstacle artd "." a free location.

3.1 Configuration Description Language

For the description of the shop floor, we use a domain-specific specification language
CDL (Configuration Description Language) that is generated from an LL(l)-
specification in the Mira environment.
Advantages of using this Ll(1)-jargon:
o the implementation of the jargon mainly depends on its syntax description, easing the

adaptation to structural modifications of the shop-floor;
. higlrJevel ofabstraction and surveyable code;
o automatic generation ofthe parser, reducing the error rate;
. making syntactic changes easy;

61

. easily expandable;
r eâsy to move to another platform.

In a first approach, for the virtual environment we only need a limited number of
statements Workspace(x,y) (dimension of the grid), Robot(x,y) (initial position of the
robot), Targe(x,y), Obstacles[(x,y)tr(x,y) ,t, ..., (x,y) *,(x,y),2] (left upper corners, right
lower corners of the obstacles).

3.2 A twolevel LL(l) description of CDL

The application generator Visual MIRA takes as input a description of the lexical and
syntax analysers ofthe language.

<WorkSpace Part> = "WORKSPACE" <Posit ion) SetWorkSpace

#SetWorkSpace
Err_Code = wSpace->SetS ize(X,Y) ;
#END

#RULE
<Robot Part> = "ROBOT" <Posit i-on) PutRobot
#PutRobot
Er r *Code = wSpace->PutRobot (X ,Y) ;
#END

#RULE
<Obstac le Par t> = "OBSTACLES" " ["
<Pos i t ion> SetF i rs tPos <Pos i t ion) Put f i rs tobs tac le
(" , " <Pos i t ion> SetF i rs tPos <Pos i t ion> PutObstac le) *

" \ l "
#DECI,ARE
i n t X 1 , Y 1 ;
#SetF i rs tPos
X 1 = X ; Y 1 = Y ;
#PutF i rs tObstac le
Er r_Code = wspace->PutObstac le (X1, Y1, X , Y) ;
#PutObstac le
Er r_Code = wSpace->Putobs tac le (XL, Y1, X , Y) ;
#END

#RULE
(Pos i t ion> - " (" "NUMBER:n1" t r , " "NUMBER,n2 i l i l) i l
Se tPos i t ion
#SetPos i t ion
X = @ t t n l t t ;
Y = G " n 2 " ;
#END

Fig. l: grammar rules for CDLpars

62

A first Mira-specification "CDlscan.mir" generates a lexical scanner. It will read from
standard input and separate characters of the source language into groups that belong
together according to our specification rules; these groups or keywords of the language
(i.e. IVORKSPACE, ROBOT, TARGET, OBSTACLES) are coded irrto "tokenS'. The
output ofthe lexical analyser is a stream oftokens, which is passed to the next phase, the
syntac analyser or pqrser. A second Mira-specification "CDlpars.mir" generates this
syntax analyser.

The role of this analyser consists of recognising the commands WORKSPACE, ROBOT,
TARGET and a tuple of integers (x,y) as argument, or the command OBSTACLES and a
list [(x,y)16ft,!)n, ..., (x,y) *(x,y)"t] of tuples as argument, and generating the
corresponding semantic actions. Since these semantic actions, which are respectively:
declaring the dimension of the shop floor and describing the position of the robot, the
target and the obstacles, are obviously reflected in the syntax of the commands, we get a
selÊexplanatory Ll(1)-specification of the parser as shown in figurel.

Figure 2 shows the structure of a typical translator tool.

-=:-..'---.
Ab,gg't cllpryryjl

i---MmÂ--'l f MIRA
-l

I Application I j Applicatiorr]
i Ccnerator J I Gcnerator I

i
f f

Fig. 2: structure of a typical translator tool

3.3 A CDl-description

Figure 3 illustrates a CDl-description of a virtual shop floor and the resulting "g.id".
Note that here the robot (R) is represented as a small triangle, conform to the turtle
representation in Logo, a circle represents the target (Z) and the obstacles (,D ate shown
as filled squares.

63

WoRKSPACE (10,lo)
ROBOT(l,l)
TARGET (9,e)
oBSTACLES I

(3,1) (3,5),
(0,7, (3.7),
(s,2) (e,2),
(7,4) (7,8)

1 I
o

Fig. 3 CDL description and corresponding grid

4. Robot Control Language

Syntax-directed development is a software development method in which the syntax of
the input of the application plays a central role. The syntax forms a frame on which the
semantic actions, attributes, local and global information (such as variables, types and
routines) can be attached. From this syntax-directed description an executable program is
mechanically produced in a traditional programming language such as C++ or Java. In
(Hoogewijs, 1997) we propose to formalise human-computer interaction through the
vocabulary and the grammar of the "interaction language".

The syntax of the language is represented in Backus-Naur Form. This is a highly
structured, hierarchical metalanguage that results in a so-called "fan-out" problem. That
is, the introduction of so-called non-terminals in an expression that can be replaced by
more non-terminals through several successive iterations before a terminal symbol is
finally reached. This multilevel tree structure is difficult for human beings to follow. since
by the time the terminals are reached, the highest level expression and the language
structure may be long forgotten. In the Visual MIRA environment, these descriptions can
be visualised in corresponding transition diagrams, which helps in overcoming this
problem.
Figure 4 shows the Mira specification for a <Simple Statement> in RCL and the
corresponding graphical representation.

4.1 The Turtle Concept

The Robot Control Language RCL is based on the "turtle graphics" as introduced by
Seymour Papert. The goal of the project is to develop a simple but powerful interactive
system that is able to communicate with a robot.

64

#RT]LE
<Simple Statement> = uGOu (& Mkcol | <Expression:el> MkGo2)

UTESTU (& IvlkTestl l<Expression:eD MkTest2)UTLJRNU MkTurn
"FLIP" MkFlip

: STMT
#END

Sir,ple Stetenent

Fig. 4 Rule for <Simple Statement> and corresponding railroad diagram

4.1.1 Motion commands

"Turtle graphics" means that the movement of the robot can be mastered through
elementary commands. For a start we consider go(westlnorthleastlsouth) for the
movement actions, flip (180" turn) aîd turn (90' turn right) for changing the direction of
the robot and test(westlnorthleastlsouth) to see if there is an obstacle.

4.1.2 Control statements, basic operations

Besides the movement commands, the language has some elementary control statements
such as if ... then ..., loop ... times ...,while ... repeat... and some basic operatiots *, -,
*, l, abs, (, (:, :,): ,) ,l: ,not, and, or on the three data-types int, bool and dir
(possible directions: west, north, east, south).

4.2 LL(l\- gr am mar for RCL

The generation of the lexical and syntax analysers for the language RCL follows the
same twolevel strategy as explained above. An LL(l) description RClscan.mir specifies
the lexical scanner, which generates the tokens for the defined keywords that will be
passed to the parser.

65

4.2.1 The RCl-parser

Fig. 5: LL(l) grammar for RCL

The LL(l) specification for the RCl-parser, is given in figure 5

<RCL inpuÈ = (<variable declaraton> | <statement> | <procedure declaration>) ;
<variable declaraton> = (int I bool I dir) (& | [nunberl) identifier
<statement> = <simple s{âtement>

| <conditional>
| <iteraton>

| <procedure call - assigument>

<simple statement> = go (& (<expression>)

test (& (<expression>)
turn
flip

<conditonal> = if <expression> then <stâtement list>
<iteration> = loop <expression> times <statement list>

I while <expression> repeat <statem€nt list>
<procedure call - assignment> = identifier

(<actual argumente I
(& | [<expression> l) = <expression>)

<statement tlst> = [<statement> (; <statement>)* I
<actual arguments> = & | (<expression> (, <expressio*)*)
<expression> = <comparison> ((and I or) <comparison>)*
<comparison> = <integer> (. l.= l: | >= | > | !=) <integer>)*
<integer> = <term> (+ | -) <term>)*
<tenn> = <factor> ((* | /) <factor>)*
<factor> = not <factor>

- <factor>
abs <factor>
number
true
false
west
north
east
south
(<expression>)
identilier ([<expressioo] | &)

<procedure declaration> = prccedure identifier <formal arguments>
<local variables>
<body definiton>

<formal arguments> = & | (<variable declaraton> (, <variable declaratio*)*)
<local variable9 = & | var <variable declaraton> (, <variable declaration>)* ;
<body definition> = begin

<statement> (; <statement>)*

4.2.2 Semantic actions

By adding the C++ code for the corresponding semantic actions we get the Visual MIRA
input. Once more, since the semantic actions are immediately induced from the syntax
description, we get a selÊexplanatory Ll(l)-specification as shown in Figure 6. Then
MIRA automatically generates the C++ source file, which can be compiled to produce an
interactive robot controller.

#RULE
<Simple Statement> = *GO" (& lvlkGol | <Expression:el>

MkGo2)
I
'TEST'(& MkTestl | <Expression:e2> MkTest2)

I-TLJRN' MkTurn

I'FLIP" MkFlip
:STMT

#MkGol

@<Simple Statement>->Make0ArgStmt(GO);
#lMkGo2

@<Simple Statement>->Make lArgStmt(Go, *(@<e l>);
#MkTestl

@<Simple Statement>->Make0ArgStmt(TEST);
#lv1kTest2
(@<Simple Statement>->Makel ArgStmt(TEST. * (d,<e2>):

#MkTurn

@<Simple Statement>->Make0ArgStmt(TURN) :
#MkFlip

@<Simple Statement>->Make0ArgStmt(FllP);
#END

Fig. 6: Semantic actions

4.2.3 Object oriented function calls

The statements
@<Simple Statement>->Make0ArgStmt(G0) ;
@<Simple Statement>->Make I ArgStmt (GO, * @<el>);

are calls to methods, described in a class "Statement" (see figure 7), that make calls to
methods described in a class "Robot" corresponding to the interface that is specific for
the robot we want to "teach our jargon".
Note that this paradigm facilitates the changeover from one robot controller to another.
In a first approach, we consider the robot as a turtle, moving around on the screen. The
corresponding class "Robot" contains the method "go" as shown in figure 8, that
controls the motion of the turtle. Later on we will replace this class, with an appropriate
Robot class, which contains calls to methods that control the motor motion of the
Lego@ MindstormsrM robot.

6',1

// GO, TEST, TURN, FLIP, WHERE
void Statement::Mâke0Argsûnt(StmtKind kind) {

if (s != 0) delek s;
s = new RepStmt;
s->kind = kind'

)
ll (@l ÏEST) [west least I north I south]
void Statement: :MakelArgStm(StmtKind kind, const Expression& expr)
{

if(s != 0) delete s:
s = new RepStmt;
s->kind = kind;
s->args. Addltem(expr) ;

Fig 7: class Statement

Fig 8: method go

Bool Robot:Go(int d) {
if (mySpace != 0) {

if (d== w ll d ==N ll d == E ll d == S)
direction = d:
switch (direction) {
case W :

if (mySpace->WhatAt(positon.X-1, position.Y) == OBSTACLE)
return false;

position.X-:
break:

case N :
if (mySpace->WhatAt(position.X, position.Y-l) == OBSTACLE)

return false;
positon.Y-:
break:

case E :
if (mySpace->WhatAt(position.X+1, position.Y) == OBSTACLE)

return falsel

Position.Xr-r:
breakl

case S :
if (mySpace->WhatAt(position.X, position.Y+l) == OBSTACLE)

refurn false:

Position.Y++;
break;

default : return false;
I
J

mySpace-> SetRobotPos(position. X, positon. Y) ;
myTrace. Addltem(position) ;
return true;

)
return

4.3 Single.movers Problem and the Robot Controller

As a test for the language we discuss two solutions for the unconstrained single-movers
problem. Single-mover refers to the fact that there is only one robot moving around,

which has to avoid fixed obstacles. Note that in the proposed solutions, the robot acts as

an anticipatory system, i.e. at each point of the decision process (described as an RCL-

algorithm), the robot computes its next movement based on anticipated states of its

environment, which is modelled through a CDl-description'

4.3. I Straightforward solution

A first solution implements the following principle. In"normal mode", i.e. as long as the

robot meets no obstacle, the choice strategy as presented in figure 9 is used. The tuple
(x,y) represents the position ofthe target and (x,,y) refers to the position ofthe robot.

Â* = x-xrl
Àv = Y-Y'l
if lÂ.1>= lÂrlthen I

if ^* >= 0 then I go east I ;
if ^* < 0 then I go west] ; l;

if l^.1 < lA/ then I
f Â, >= 0 then I go south] ;
if ^y < 0 then I go north I ;];

Fig 9: Choice strategy in normal mode

Whenever an obstacle is met, the algorithm switches to "avoid mode". As long as the

chosen direction is not free, the robot keeps searching for a free "neighbour" taking it

closer to the solution. This choice is also based on anticipatory calculations of A* and Âr.

We get the RCl-algorithm as presented in figure 10.

4.3.2 Using a potential

A second algorithm uses a so-called potential function V(x,y) : l^" + ^J. Since the

strategy is based on the observations of the robot, i.e. information about the free

locations around the current position of the robof we try to get a local optimisation of

the potential along the path of the robot, based on anticipatory description of the

environment.

Both algorithms result in a description (implementation) of a goto(X,Y) function in RCL.

As a result v/e get the robot moving on the screen, and finding its way to the destination,

avoiding the obstacles.

69

PROCEDURE GoTol (int X, inr Y)

VARintMODE,
int DeltaX.
intDeltaY.
dir way,
diTOBSTRUCTION.
int stop;

BEGIN
MODE = 0;
DeltaX=X-Xr;
DeltaY= Y-Yr;
StoP = 0;
while ((@eltaX != 0) OR @eltaY != 0)) AND (stop < 4)) r€peat I

if (MODE == 0) then I
if (ABS@eltaXl >= ABS@eltaY)) then I

if @eltaX >= 0) then I way = EAST];
if @eltaX < 0) then I way = WEST] l;

if (ABS@eltaX) < ABS@elraY)) rhen I
if @eltaY >= 0) then I way: SOUTII];
if @eltaY < 0) then I way = NORTH] l;

test way;
if (NoT coNDITroN) then I

OBSTRUCTION = way;
MODE= l;
if (ABS@eltaX) >= ABS@eltaY)) then I

if (DeltaY >= 0) then I way = SOUTII];
if @eltaY < 0) then I way = NORTII] l;

if (ABS@eltaX) < ABS@elraY)) then I
if @eltaX >= 0) then I way = EAST];
if @eltaX < 0) then I way = WEST |] I l;

if (MODE == l) then I
tCSt OBSTRUCTION:
if (CONDITION) then I

way = OBSTRUCTION;
MODE = 0 l;

if (NOT CONDITION) then I
test way;
if (NOT CONDITION) then I way = way + 2; stop = stop + I] I l,

go way;
Del taX=X-Xr:
Del taY=Y-Yr

I
END:

Fig 10:RCL implementation of GoTol

V o i d R o b o t : : m o v e t ô (i n t d i r) {
F T T . F * h r ^ d r â h '

p rog ram = f open (" g r i dmove . nqc " , "w ") I
f p r i n t f (p rog ram, "# i - nc l ude \ " r ove rbo t . h \ " \ n ") ;
f p r i n t f (p rog ram, " t ask ma j -n () { \ n "

" i n i t m o t o r s () ; \ n ") ;

sw i t ch (d i r) {
c a s e N : / * N o r t h * /

f p r i n t f (p rog ram, " i n i t f o rwa rd () ; \ n "
" W a i t (8 d) ; \ n "
" O f f (O U T A + O U T C) ; \ n " , G R T D T I M E) ;

b r e a k ;

c a s e E : / * E a s E * /

f p r i n t f (p r o g r a m , " r i g h t (9 0) ; \ n "
" i n i t f o rwa rd O ; \ n "
"wa j - t (8d) ; \ n "
"of f (oUT_A + OUT_C) t \n,
" ! d a i t (8 d) ; \ n "
" l - e f t (90) ; \ n " , GR IDT IME, RE IÀXT IME) ;

b r e a k ;

c a s e S ' : / * S o u t h * /

f p r i n t f (p rog ram, " i n i t backward () , \ n "
' ,wa j _ r (t d) ; \ n , '
"O f f (OUT A + OUT C) ; \ n " , GR IDT IME) ;

b r e a k ;

case Vû : / * Wes t * /
f n r i n t f / r r a a r r n r | l ê f f l a ô \ . \ n r l

\ y ! v Y ! s ' r Y

" i n i t f o r w a r d O ; \ n "
" W a i t (8 d) ; \ n "
"O f f (OUT_A + OUT_C) r \ n "
, ' h t a i r (t d) ; \ n "
" r i gh t (90) ; \ n " , GR IDT IME, RE IÂXT IME) ;

b r e a k ;

)
f p r i n t f (p rog ram, "Wa i t (* d) ; \ n) \ n " , RE IÂXT IME) ,
f c l ose (p rog ram) ;

sys tem("nqc -d g r i dmove .nqc - r un ") i

s l e e p (5) ;

Fig. method moveto

5. RCL for Lego@ Mindstormsil

5.1 Adapting the 6'robot" interface

The considered presentation, assumes that the robot "understands" the basic commands
go, test... . In order to adapt the LL(l) jargon to the Lego@ MindstormsrM robot, we
extend the class "Robot" with a method moveto that generates intermediate NQC code
(NQC : Not Quite C by D. Baum 2000) that will be compiled to proper RC)flM-code to
control the motor movements of the robot. The go method is adapted by adding a
moveto(It|lElSllY) call depending on the case. As an illustration v/e present in figure I I
an implementation of the moveto method. The ease of this adaptation is due both to the
use of the LL(l) and the Object Oriented paradigm.

5.2 Tailoring the language

The preceding example illustrates that the considered methodology allows easy
customisation to a new environment. The following example refers to the extension of
the jargon, to allow the description of more complex tasks. Assume that we want to ask
the robot to find us a specific part from the shelves in a stockroom. Then, in the first
place we will have to extend CDL with some database elements to allow the description
of the stock and the position of each part on the racks. Secondly we extend RCL with a
gel cofiwflnd, which accepts the references of the part we want. This get command
might call a loohtp command to locate the position of that part, and then calls an
appropriate golo command.

6. Conclusions

We have shown that a simple specific language can be rich enough to describe complex
tasks for a feasible robot acting as an anticipatory system. Such a "jargon" can be
specified in a Ll(l)-format that allows easy adaptation to a new specific situation. The
considered specification is clear enough to allow tailoring by example. The most
important is that a lot of irrelevant details can be hidden to the operator of the control
system. This allows the user to concentrate on solving the main problems.
We illustrated the use of the Ll(1)-jargons, in two implementations of generic
algorithms for routing an autonomous robot. The resulting anticipating process is
described in the RDL jargon, and relies on an anticipatory cDL description of the
environment.

72

References

Baum Dave (2000). Not Quite C. http://www.eneract.com/-dbaum/nqc/index.html.
Bentley Jon (1986). Programming pearls: Little languages. Communicqtions of the ACM,
29 (8),7rr-72r.
Culler Jonathan (1986). Ferdinond de Saussure, rev. ed. Cornell Univ Pr.
HoogewijsAtbert (1997) LL(l)DescriptionsforRobots. Roboticavol15, 105-110.
Huybrechts Michel (1995). Visual lvhra. CC-AI vol 12, 365-38L
Huybrechts Michel (1999). ventilation selection program. http://www,e2s.be/
Cu stomsoftware/Industry/vamseV
Huybrechts Michel (1999). Managing an air conditioning system. http://www.e2s.bel
Customsoft ware/Industry/dacms/
Huybrechts Michel (1999). Air conditioning selection program. http://www.e2s.be/
Cu stomsoftware/Indu stry/hi-vrvl
Lewi J., De Vlaminck K., Huens J., Huybrechts M., (1979). A Programming
Methodology in Compiler Construction: Part 1 Concepts. North-Holland'
Lewi J., De Vlaminck K., Huens J., Steegmans E., (1982). A Programming Methodology
in Compiler Construction : P art 2 Implementation. North-Holland.
Lewi J., De Vlaminck K., Steegmans E., Van Horebeek L (1992). Software
Development by LL(l) syntax description. Wiley.
Nakatani Lloyd and Jones Mark (L997). Jargons and Infocentism. Proceedings of DSL
'97 (First ACM SIGPUIN Ilorkshop on Domain-Specific Languages) Pans, January 18,

1997, 59-74. Published as University of Illinois Computer Science Report'
http ://www-sal. cs.uiuc. edu/-kamin/dsl.
Pauwels Guy (1995). Process Control and Domain-Specific Languages, CC-AI vol 12,

425-434.
Van Peteghem Luc (1999) Marvin Minsky: "Het menselijk brein is een machine". De

Financieel-Economische TÛd, 3 0- 1 I - I 999, pl 5.
Wide Peter and Schellwat Holger (1997).Implementation of a generic algorithm for
routing an autonomous robot. Roboticavol 15, 207'2II'

73

