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There are various views on collective animal behavior such as birds flocking, fish 
schooling, and insects marching. Despite neither brain nor central control, they behave as 
a whole. The relation between parts and whole is needed to attack this problem because 
the collective behavior emerges through the interplay between individuals and the whole 
collective. However, the bridge between individuals and whole collective remains an 
open question. Recently, more accurate analysis of flocking behavior has become 
possible. Cavagna and others found that fluctuations in a flock show the sizes of spatial 
correlations scales linearly with the size of the flock. They called this scale-invariant 
coherence of fluctuations "scale-free correlation." We suggest, in this paper, that 
scale-free correlation fills the gap between individuals' and whole flocks' movement. In a 
previous study, our model (metric-topological interaction model) succeeded in 
explaining "scale-free correlation." In this study, the MTI model shows the self-similarity 
of internal fluctuations and I if fluctuation. We also show that these critical fluctuations in 
MTI flocks lead to flock dividing. From these results, we discuss the possibility of 
internal fluctuations that contribute to smooth movement as a whole flock, despite having 
the risk of collapsing itself. 
Keywords: Scale-free correlation; Self-organized Criticality; Collective Behavior; Parts 
and Whole; Flocking Model 

1 Introduction 

It is important to understand a living system in the context of the relation between 
"parts and whole". A living system makes itself by itself and maintains its systemic 
property by using its parts. Obviously, we distinguish between "a system" and "making a 
system" as distinct concepts. A "system", revealing its own entity, has to be distinguished 
from other systems. On the other hand, "making a system" is very different from "a 
system"; the notion of "making a system" implies a process of individualizing a system. 
Obvious individuality of a system is lost in "making a system". "Making a system" has an 
upper level of the logical status for "system". Thus, to understand a living system, an 
interface between "system" and "making a system" must be constructed. 

Autopoiesis proposed by Maturana and Varela is an important concept to comprehend 
a living system (Maturana and Varela, 1972, 1980, 1992; Varela, 1979). They define 
autopoiesis as the interplay between "a system" and "making a system". As we discussed 
previously, "a system" and "making a system" are logically different concepts. If we try 
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to implement the interaction between "a system" and "making a system", it is inevitable 
that we undertake a mixture of logically different things. Varela (Varela, 1979), in his 
earlier research, tried to overcome this problem by constructing a one-to-one 
correspondence between "a system" and "making a system". Self-organized criticality 
(SOC) is another example of the interface between parts and whole. Bak and other 
researchers showed examples of systems that are spontaneously headed to a critical state 
(Alstr0m and Stassinopoulos, 1995; Bak and Sneppen, 1993; Bak et al., 1987; 
Stassinopoulos and Bak, 1995). This critical state emerges through local interactions 
(parts) and global estimations (whole) (Bak and Sneppen, 1993). However, the question 
of how we should construct the interface between parts and whole is still an open 
problem. 

Collective behavior would be a good example to consider the relationship between 
parts and whole (Vicsek et al., 1995; Vicsek, 2001). Although there is no obvious central 
control such as a brain in the aggregation, we can acknowledge that the aggregation 
moves as though it has one body or one mind (Couzin et al., 2002; Gregoire et al., 2003). 
In fact, birds flocking, fish schooling and other collective phenomena are sometimes 
discussed in the context of self-organization (Sumpter, 2006, 2010). Global properties 
emerge only from local interactions of each individual. However, what is the interface 
between the global phenomena and local units? To understand collective phenomena, we 
must construct the interface between parts and whole. Some flocking models are 
proposed, but they fail to explain the empirical data that we discuss in the next paragraph. 

Recently, a more accurate analysis of flocking behavior can be achieved than was 
formerly possible (Ballerini et al., 2008a,b; Cavagna et al., 2010). Cavagna et al. 
measured velocity fluctuations ofreal birds (a precise definition will be discussed later) 
and found that the range of the spatial correlation does not have a constant value, but it 
scales with the linear size of the flock (Cavagna et al., 2010). The size of correlation 
domain is obviously larger than the interaction range of each bird. Birds share more 
information than they can interact. Cavagna and others called this phenomenon 
"scale-free correlation". This is a very suggestive result because scale-free correlation 
indicates that a flock cannot divide into independent subparts. If one individual in a flock 
changes his direction, its influence would spread to all individuals. 
Scale-free correlation suggests that a flock is constituted by the sum of its parts. We 
consider that scale-free correlation is the appropriate phenomenon for the interface 
between parts and whole of a flock. Cavagna et al. (2010) suggested that a large 
correlated domain in a flock is the effective perception range of one individual, making 
it easier to react to external perturbations such as predator attacks. Here, we point out 
that the mixture of parts and whole occurs because the perception of one individual 
connects to the group perception of his effective perception range. Therefore, we can 
discuss a flock as a living system if a model exists to implement scale-free correlation. 

In a previous study, we proposed a flocking model called the "metric-topological 
interaction (MTI, in short) model" (Niizato and Gunji, 2010). We showed that the MTI 
model could explain scale-free correlation, and we obtained data in agreement with the 
empirical result of Cavagna et al. This is an important result that succeeds in explaining 
scale-free correlation because Cavagna's study only shows scale-free correlation in still 
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images of real flocks . The MTI model has the potential to explain how fluctuations, 
which emerge as scale-free correlation in flocks, are used and formed dynamically in the 
flock. In this paper, we will assert that the probability of fluctuations in flocks may play a 
role in the interface between unit decisions (parts) and the flocking movement (whole) by 
using the MTI model. Fluctuations in flocks have properties of self-similarity. We also 
suggest that well-structured fluctuations lead to a flock dividing itself. The oscillation of 
the absolute value of fluctuation vectors in the MTI model shows well tuning between 
order and disorder, which is called liffluctuation. A fluctuation in an MTI flock always 
maintains its state on the boundary between order and disorder and positively contributes 
to flock movement. 

2 Result 

2.1 Metric-Topological Interaction (MTI) Model 

First, we argue a conceptual sketch of our model. The details of our model and its 
parameters have been previously reported (Niizato and Gunji, 2010). The MTI model is 
constructed from two different methods of interaction for each agent: a metric interaction 
and a topological interaction. The agent switches between the metric interaction and the 
topological interaction. It cannot use both of them simultaneously. If one agent uses the 
metric interaction, it must not use the topological interaction. 

The concept of a metric interaction is based on the self-propelled particle system, 
proposed by Vicsek et al (1995). Each agent has an interaction radius. If there are agents 
within this radius, the agent aligns its direction. This interaction range is determined by 
metric information only. Thus, this interaction is called a "metric interaction". Couzin et 
al (2002) added two more layers to the alignment zone (agents adopt the same direction as 
those that are close by): an attraction zone (agents move away from very nearby 
neighbors) and a repulsion zone (agents avoid becoming isolated). We follow Couzin' s 
interaction method when we use "metric interaction". 

On the other hand, recent field studies (Ballerini et al., 2008a,b) reveal that the 
interaction of each bird is not metric, but topological. Topological interaction means that 
each bird can interact with its nearest seven neighbors, regardless of distance. 

The MTI model is a hybrid model of metric and topological interactions. Under 
various conditions, each agent of the MTI model switches between metric and 
topological interactions. The switching condition is determined by the state (agent's 
direction) of the agent's neighbors. To control switching, we set the threshold parameter. 
For instance, when an agent uses the metric interaction, it always randomly selects two 
agents within his interaction range and compares the difference in direction between 
these selected neighbors. If this difference of direction is greater than the threshold 
parameter, then this agent uses the topological interaction for the next step. On the other 
hand, when an agent uses the topological interaction, the agent takes the average of his 
neighbors' directions within his interaction domain and computes the difference of 
directions between its direction and this average direction. If this difference is smaller 
than the threshold parameter, this agent uses the metric interaction for the next step. This 
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switching property comes from each agent comparing the "sameness" of its direction 
with that of its neighbors. In this sense, using the topological interaction means that an 
agent tries to behave in the same way as its neighbors. On the other hand, using the metric 
interaction means that an agent has recognized that its direction is the same as that of its 
neighbors Thus, it always checks whether it and its neighbors have the same directions. 
The threshold parameter controls the timing of switching between the metric and the 
topological interaction for each agent. 

Remarkably, this model never requires any external noise. Despite the lack of noise, 
an agent under the MTI model shows noisy behavior. By switching between two 
interactions, the interaction range of each agent becomes different. This difference in 
neighborhood drives each agent to switch its neighborhood more. As a result, a flock 
operating under the MTI model can change its direction abruptly (Niizato and Gunji, 
2010). In the following sections, we analyze flocking phenomena using the MTI model. 

2.2 Renormalization of the Fluctuations 

The scale-free correlation suggests that high correlation domains of fluctuations 
always exist in flocks. Additionally, the range of the correlation domains is not dependent 
on flock size. In other words, the larger the size of correlation domains, the larger the 
flock size is. In a previous study, we showed that the MTI model succeeded in explaining 
the scale-free correlation in two- and three-dimensional simulations. From our 
simulation, there are always two highly correlated domains in the flocks. 

A self-similarity, or fractal, is considered to be an important property when 
discussing the relation between parts and whole. The self-similarity suggests that a part of 
the structure contains the information about the whole structure. Therefore, it can 
sometimes be considered as a bridge between parts and whole. If we confirm that 
correlation domains in flock have this kind of self-similarity, it could allow us to suggest 
that the tuning direction that is seemingly random to external observers, has a global 
meaning in flocks and results in large correlation domains such as scale-free correlation. 

To evaluate this idea, we analyzed a flock with the MTI model by using a fluctuation 
vector. The fluctuation vector can be obtained by subtracting the average velocity vector 
from each individual velocity vector. In this section, we only consider the directional 
variance inside the flock. In other words, we only consider the direction of the fluctuation 
relative to the motion of the flock. This discrete information, left or right, is not an 
unnatural definition. Analogously, critical phenomena of a spin glass are constituted from 
up and down spin. In fact, collective phenomena are discussed in the context of statistical 
dynamics. 

Fig. IA, 1B and IC shows an example ofrenormalization for a flock under the MTI 
model. We apply renormalization five times for this flock. Fig. 1 (A) is represented by a 
velocity vector. The number of agents is 300. The size of space is 2000x2000. The Unit 
length of this space is equal to a unit vector of an agent. We take the unit fluctuation 
vector (Fig. lB) and divide this flock into three kinds: solid, broken and dashed arrows. 
Slid one represents the largest correlated sub-domain in the flock. Broken one represents 
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the second largest sub-domain in the flock. Dashed one corresponds to the rest of the 
flock. 

(A) Velocity vector 

TM l&l'g;;st clust!!!' - · 
Thi' s,,cond l;)fgest olus1er •·-·-· 

'fhe rest al me flod-. •• •·•• -

•··--~- ~--·• -· 
........... 

(B) Fluctuations vector 
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(C) Second renormalization of the fluctuation vector 

Figure 1: Successional renormalization for the MTI flock. The number of agents is 
300. The solid arrow's cluster is the largest correlation cluster; the broken arrow's 
cluster is the second largest cluster, and dashed arrow represents the rest of the flock. 
The self-similar structure of correlation domains can be observed. 

We define clusters recursively: An agent belongs to a cluster C, which corresponds 
solid arrow, for example, if it is within a certain radius (80 in our analysis) of any other 
agents belonging to C. We focus on the agents of solid arrow, which are the largest 
cluster, and take the fluctuation vector again, which yields the data in Fig. lC. It can 
confirm that there are large correlation domains inside of the solid arrow's cluster of the 
in Fig. lB. This fact suggests that the sub-flock of the solid arrow's cluster shares 
different directional information, although it seems to have the same information for a 
single renormalization. Repeating this method five times, we can get these high 
coherent fluctuations. Large coherences never vanish until the last renormalization. This 
reveals a nested structure of correlated domains in a flock. Fig. 2 shows a decreasing 
rate of an area of solid arrow's cluster as a function of renormalizations. The flock's 
area is measured by using 25x25 lattices on a moving space of dimension 2000x2000. 
The number of agents is 50, 100, 200, 300, 400 and 500. We selected a non-dividing 
flock and took an average rate of decrease in area, over 1,000 step intervals. The 
horizontal axis represents the number of instances of renormalization. There is the same 
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tendency for all cases to display a rate of decrease of one half from the 1 st to 2nd 

instances of renormalization, which suddenly decreases to 0.35 at upon a 3rd 

renormalization. Tails of the graph increase after the 4th renormalization because the 
relative number of agents becomes large for the last few renormalizations. However, the 
size of the correlation domains is always greater than one third of the correlation 
domain before renormalization. Thus, the scale-free correlation is also applicable to 
correlated sub-flocks. This suggests that there is a self-similar structure of fluctuations 
in flocks. 
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Figure 2: Decreasing rate of flocking as a function of renormalizations. Each shape 
corresponds to the number of agents (50, 100, 200, 300, 400, 500). For the first and 
second renormalizations, the rates of decrease show half the degree of flocking present 
before applying renormalization. For the third and fourth renormalizations, the rate of 
decrease drops to one-third. 

2.3 Fluctuations Induce Split of Flocks 

In the previous section, we observed that flocks in the MTI model show a self-similar 
structure of fluctuations. This self-similarity suggests that directional tuning of each 
agent who tries to adjust its neighborhood results in global correlation domains such as 
scale-free correlation. Perpetual local alignments of each agent seem to behave randomly. 
However, each alignment always connects to the global correlated fluctuation, such as 
scale-free correlation. In this section, we will discuss the functionality of internal 
fluctuations contributing to flocking movements. We observed that MTI flocks showed 
scale-free correlation and that flocks were often divided into two highly correlated parts 
(colored solid and broken arrow' s clusters) as shown in Fig. 1. From many simulations, 
we observed that when flocks of the MTI model divided into two parts, splitting lines of 
flocks were mostly on line between two large correlated areas, which correspond solid 
and broken agents in Fig. 1. In other words, these highly correlated sub-flocks in one 
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flock become individual flocks after the large flock has collapsed. If so, it is possible to 
consider that these correlated sub-flocks in one flock may have a partial impact on 
movements as independent flocks. 

We investigate the contribution of correlated domains to flock dividing. We report 
the timing of flock dividing and take snapshots of the 30 steps before flock division. We 
consider 100 snapshots of MTI flocks. Most of these snapshots show the same pattern as 
Fig. 3. In other words, the division is located between the two correlation domains which 
sizes are two largest domains respectively. These two clusters have the opposite direction 
of one another. 
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Figure 3: The state of fluctuation vectors for 30 steps before the flock divides. 
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Figure 4: The relation between T1 and Tz. T1 is the torque of the largest cluster and T2 is 
the second largest cluster. There is a positive correlation between (0.71) T1 and T2• This 
means that each sub flock rotates the same direction 
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Next, we investigated the torque between two correlated fluctuation vectors. Torque is 
one of the moments in physics that measures the tendency of a force to rotate an object. 
The magnitude of a torque is determined by three quantities, the force applied, the length 
of lever arm that connects an applied force to a basing point, and the angle between two. 
In this case, the force (F) corresponds to an average of an absolute value of fluctuation 
vectors in a cluster of interest. A lever arm length (r) is the distance between the center of 
mass of the whole flock and the cluster of interest. The angle ( 0) is determined 
automatically after these procedures. Then, the torque (7) is 

T= rFsin(0) (1) 

The value of T indicates the strength of turning, and the sign of T indicates the 
direction of rotation. We take a torque for two correlated areas whose sizes are the largest 
and second largest clusters that are indexed 1 and 2. If the signs of T1 and T2 are the same, 
each sub flock rotates in the same direction. Fig. 4 shows the relation between these two 
quantities (T1 and T2) . There is a positive correlation (0.71) between Ti and T2. This 
suggests that the coordinated torques of correlated subparts leads to the flock dividing. 
These subparts become new flocks after flock dividing. This is another aspect of 
scale-free correlation that is not suggested by Cavagna et al. Scale-free correlation in the 
flock suggests that a flock continues to coordinate with these correlated sub domains that 
can be split away. 

2.4 Oscillation of the Strength of Fluctuation 

In this section, we investigate the amplitude of the fluctuation vector inside of flocks. 
Fig. 5 shows how the amplitude of the fluctuation vector oscillates with time. We 
estimate the amplitude of the fluctuation vector as the absolute value of the average of 
fluctuation vectors that belong to the largest correlated domain. For example, these 
members correspond to solid arrow's agents in the Fig. lB. Rate of these members 
always is above 0.35 (data not shown). One-third of agents have the same direction for 
their fluctuation vector. The oscillation shown in Fig. 5 shows how these members tune 
the strength of the fluctuations as a small flock. We compare the oscillation of the 
largest cluster with the second largest cluster, which is constituted by the broken arrow's 
agents in Fig. lB. In the inset of Fig. 5, the gray line corresponds to the oscillation of 
the second largest cluster. The gray line shows the same shape as the black line. As the 
amplitude of the black line increases, the amplitude of the gray line also increases. The 
gray cluster, as we observed in Fig. 1, moves in a direction opposite to the solid arrow's 
cluster. The second largest cluster compensates for the strength of fluctuation of the 
largest cluster. This role-sharing tendency is observed throughout our simulation. 

As we discussed previously, fluctuations in the flock had the potential power to split 
the flock in some cases. Thus, flocks must suppress increases in fluctuation amplitude to 
prevent division. As a result, the absolute value of the fluctuation vector shows temporal 
fluctuations. To investigate this detail, we take the power spectrum of the time series in 
Fig. 5. We define S(j) as a power spectrum for the fluctuating representation in Fig. 5. 
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Figure 5: Oscillation of the average absolute value of fluctuation vector in the largest 
cluster. Inset: the gray line is the oscillation of fluctuation vectors in the second largest 
cluster. Both lines are highly correlated. 

The mathematical expression is; 

(2) 

Fig. 6 shows the power spectrum ofFig. 5. It shows a lifpower law over a wide rage of 
time scales with a ;::;: 1. 5. Emergence of this kind of power law is considered to be the 
characteristic property of critical phenomena such as self-organization criticality (SOC). 
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Figure 6: Power spectrum S(f) for the oscillation in Fig. 5. The graph shows lifpower 
law. 
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This fact is consistent with several interpretations, one of which is the collective 
behavior on critical phenomena. Cavagna and others, who discovered scale-free 
correlation, suggest that some kind of criticality might in fact be present in starling flocks. 
Our simulation showed that it is also observed being criticality on a continuous time 
scale. 

3 Discussion 

Understanding a living system is a very important problem. Autopoiesis and 
self-organized criticality (SOC) provide some answers to these questions. Both 
approaches suggest that interfaces between parts and whole are needed to construct 
models. Autopoiesis intends to overcome this problem by constructing a one-to-one 
correspondence between parts and whole(Varela, 1979). SOC intends to overcome this 
problem by using criticality (Stassinopoulos and Bak, 1995). In this paper, we insisted 
that understanding collective behavior helps to answer this question because agents 
behave as one collective without any central control (Couzin et al., 2002; Sumpter, 2006, 
2010). Collective behavior emerges only through local interactions. In fact, in order to 
explain flocking phenomena, the field naturalist Edmund Selous concluded that 
somehow, a connectivity of individual minds and transference of thoughts must underlie 
such behavior (Couzin, 2008). We could sometimes admit this kind of mind for a set of 
individuals. Therefore, the question of "what is a life?" lies closer to the question of 
"what is a collective behavior?" than we expected. 

We insisted in this study that the phenomenon of scale-free correlation might be a 
bridge between parts and whole. Flocks always contain scale-independent correlated 
subparts that are represented by fluctuation vectors. Each correlated sub-domain provides 
an effective perception for each individual that belongs to the sub domain (Cavagna et al., 
2010). This means that a perception of one individual corresponds to the group 
perception. Cavagna and others, in fact, implied that scale-free correlation (or a criticality 
of flock) might contribute to the fascinating "collective mind" metaphor at a more 
quantity level. We observed that the MTI model satisfied various critical properties such 
as self-similar structure and liffluctuation of the oscillation strength of fluctuations. For 
both cases, flocks in the MTI mode have a certain type of criticality for both extremes, 
such as spatial and temporal aspects. MTI flocks spontaneously direct and keep their 
fluctuations on the critical state for spatial and temporal aspects. These results are very 
consistent with SOC properties (Bak et al., 1987; Bak and Sneppen, 1993; Stassinopoulos 
and Bak, 1995) and support Cavagna's presumption that flocks are on critical states, for 
various aspects. 

Is fulfilling these critical properties sufficient to understand a life or a mind? Critical 
properties are indeed very important for flocks to react more sensibly to external 
perturbations. Flocking behavior may be on the border between order and disorder. This 
interpretation resembles the idea of the edge of chaos as the metaphor for life (Kauffinan 
and Johnsen, 1991; Langton, 1990). However, we consider that scale-free correlation in 
real flocks has a more suggestive aspect than the critical state. We recall that correlated 
domains not only have a role in effective perception that is suggested by Cavagna and 
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others, but also are subparts that have the possibility to behave as an independent flock. 
This possibility was discussed in the section about splitting flocks . Extending an agent's 
perception range increases his ability to respond to external perturbation such as a 
predator attack. There is no benefit for survival, however, if flocks promptly change their 
directions to another side. In a similar way, there is a difference between "a system" and 
"making a system". 

This is a shortcoming of SOC because most SOC models focus on the problem of 
"keeping its critical state" (Arcangelis et al., 2006; Bak, 1997; Carlson and Doyle, 2002). 
In fact, some SOC models are associated with a lack of efficiency of learning, despite 
showing versatility (Alstr0ID and Stassinopoulos, 1995; Stassinopoulos and Bak, 1995). 
In other words, critical fluctuations never assist with efficient learning, although it shows 
criticality. If we want to discuss a living system, we must consider both sides, which are 
"system" and "making a system". "Making a system", in this case, corresponds to "using 
its critical state" to drive its own system. For example, MTI flocks rapidly change 
direction without any external noise (Niizato and Gunji, 2010). Noise is inherent. Each 
internal but scale-invariant fluctuation enables the flock to change direction abruptly. 
This fact suggests that criticality in MTI flocks never sacrifices their mobility as flocks. 
Thus, the MTI model holds both conditions, "system" and "making a system". 

The general concept of "life on the critical state" is broadly embraced by several 
researchers (Arcangelis et al., 2006; Bak, 1997; Cavagna et al., 2010; Kauffinan and 
Johnsen, 1991; Stassinopoulos and Bak, 1995; Tagliazucchi and Chialvo, 2011). It is 
important in flocking cases that the critical state provides high sensibility to external 
perturbations to extend agents' effective perception range. The critical state is also 
observed in MTI flocks for spatial and temporal cases. However, we observed that this 
critical state, which is a correlated sub-domain in this case, also has the potential to split 
the flock's body. Additionally, these correlated subparts behave as individual flocks after 
they split. Furthermore, MTI flocks can change their direction abruptly by using internal 
fluctuations. These facts suggest that internal fluctuations, which are on the critical state, 
contribute to dynamical flocking motion in reducing the risk of collapse. A system that 
utilizes critical fluctuations positively has to be distinguished from a system that 
passively receives critical fluctuations. Flocks maneuver internal fluctuations when they 
act. It is suggested that critical phenomena play an essential role in driving a living 
system. This calls attention to another aspect, which is "how to use criticality for a living 
system". Scale-free correlation in flocks would have both aspects of the role of criticality 
and properly connect "system" with "making a system". 
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