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The author has developed an interactive learning system of polyhedra, based on graph 
operations and simulated elasticity potential method, mainly for educational purpose. In 
this paper, we introduce a learning subsystem of vertex colouring, edge colouring, and 
face colouring, based on minimum spanning tree and degenerated polyhedron. 
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1 Introduction 

Since 2004, we have developed an interactive learning system of polyhedra, mainly 
for educational purpose (1-5). The modelling and forming polyhedra is based on graph 
operations and simulated elasticity potential method. The interaction is promoted by 
internalist anticipation and externalist anticipation (6). By using this system, the user or 
the learner can make and handle various polyhedra, including Platonic solids, 
Archimedean solids [3], Kepler-Poinsot solids [2], fullerenes molecular structures, and 
geodesic dome constructions. 

In this paper, we introduce a learning subsystem of vertex colouring, edge colouring, 
and face colouring, based on minimum spanning tree and degenerated polyhedron. 
Vertex colouring of polyhedral graph itself is trivial in a mathematical sense, and it is 
not novel also in a practical sense. However, visibility and interactivity can be helpful 
for the user to understand intuitively the mathematical structure and the computational 
scheme, by visualizing the process of the calculation, and by allowing the user to 
anticipate the result and to contribute the computation. 

2 Interactive Modelling System of Polyhedra 

In this section, we summarize the system of interactive modelling of polyhedra 
described in [1-5]. It consists of three subsystems: graph input subsystem, wire-frame 
subsystem, and polygon subsystem. In these subsystems, various types of internalist 
anticipation and extemalist anticipation are induced. The system has been developed 
with C++ Builder on MS-Windows XP and MS-Windows 7. 
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2.1 Graph Input Subsystem 

The first step of the modelling of polyhedron is drawing a polyhedral graph 
isomorphic to the anticipated polyhedron. Figure 1 shows a screen shot of graph input 
subsystem, where a graph isomorphic to icosahedron is drawn. In the subsystem, vertex 
addition, vertex deletion, edge addition, and edge deletion are implemented as 
fundamental operations. Some additional utilities are also implemented such as grid 
lines, grid snapping, vertex colouring according to degrees, and so on. The process of 
graph input and interaction in this subsystem are mainly based on intemalist 
anticipation of the learner [6). 
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Figure 1: Screen shot of Graph Input Subsystem. 

2.2 Wire-Frame Subsystem 

After constructing a polyhedral graph the next step is arranging vertices in 3D space 
with virtual springs and Hooke's law. Figure 2 shows a screen shot of wire-frame 
subsystem. Wire-frame polyhedron can be formed by controlling the natural length of 
virtual spring corresponding to binary relations. The diameter of a graph G = ( V, E) is 
defined by ( 1 ), where the length of shortest path from u to v is denoted by length( u, v). 

dmr(G) £ max( length(u, v)) (1) 
u,vEV 
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Figure 2: Screen shot of Wire-frame Subsystem. 

We define following three types of binary relations between vertices. 

. !true (u ,v) EE 
adJacent( u, v) = 1 l h . 

;a se ot erwise 
(2) 

. !true (u, v) r/. EI\ :3w.[(u,w) EE I\ (v,w) EE] 
neighbour( u, v) = 1 l h . 

;a se ot erwise 
(3) 

. l true length( u, v) = dmr( G) 
diameter( u, v) = 

1 
. 

1 alse otherwise 
(4) 

The relation adjacent corresponds to the length of an edge in a 3 dimensional space. 
It has the effect on the regularity of each polygon or face. The relation neighbour 
expresses that the length of path between two vertices is 2, and two vertices are adjacent. 
It has the effect on the regularity of each vertex figure. The relation diameter 
corresponds to the circum-sphere of polyhedron. 

The interaction in the wire-frame subsystem requires the repetition of intemalist 
anticipation and extemalist anticipation of the learner (6). For example, stable 
wireframe corresponding to a polyhedral graph is not unique in a 3D space (Figure 3). 
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Figure 3: Examples of non-unique stable states corresponding to an icosahedral graph. 
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Figure 4: Screen shot of Polygon Subsystem. 

2.3 Polygon subsystem 

After arranging vertices in 3D space, the last step is detecting faces, selecting 
appropriate faces, and rendering the solid. Figure 4 shows a screen shot of polygon 
subsystem. Detecting n-polygon is equivalent to finding simple closed path with length 
n. Some additional utilities such as opening faces, meshed faces are implemented. The 
interaction in the polygon subsystem is based on both of intemalist anticipation and 
extemalist anticipation (Section 2.5). 
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2.4 Graph Operation for Polyhedral Graph 

Three graph operations are defined for polyhedral graphs: vertex splitting, edge 
contraction, and diagonal addition (Figure 5) [4). By these 3 operations, 5 regular 
polyhedra (Platonic solids) and 13 semi-regular polyhedra (Archimedean solids) are 
interconnected as shown in Figure 6. The symbol 8 stands for applying diagonal 
addition to appropriate quadrangular faces. The operator [ m , n] stands for applying 
edge contraction to each edge between two faces of Fm and Fn , where Fn indicates the 
set of faces with n edges. The operator (j stands for applying vertex splitting to every 
vertex. By using these operations, the user can model various anticipated polyhedra 
from one seed polyhedron. 

(a) (b) (c) 

Figure 5: Three Graph Operations. 

(a) Vertex splitting, (b) Edge contraction, and (c) Diagonal addition. 

Figure 6: Relations of 5 Platonic graphs and 13 Archimedean graphs using 3 operations. 
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2.5 Selectability of Vertices Alignments and Polygons. 

Wire-frame of icosahedral graph has 2 symmetric stable states in a 3D space. They 
can be formed by handling virtual elasticity. The upper half of Figure 7 shows the 2 
different states corresponding to icosahedral graph. In the lower left of Figure 7, by 
detecting 20 triangles or 12 pentagons, icosahedron or great dodecahedron is obtained 
respectively. In the lower right of Figure 7, by detecting 12 pentagrams or 20 triangles, 
small stellated dodecahedron or great icosahedron is obtained respectively. Because 
such ambiguities exist, both of internalist and externalist anticipation are required to the 
learner. 
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Figure 7: 2 alignments and 4 uniform polyhedra from icosahedral graph. 

3 Interactive Vertex Colouring 

Vertex colouring of a graph is the assignment of labels to the vertices of the graph so 
that adjacent vertices have different labels [7-9]. The 4-colour theorem proved by Appel 
and Haken in 1977, indicates that every planar graph is 4-colourable. Every polyhedral 
graph is 3-connected planar graph, according to the theorem by Steinitz. Therefore, it is 
also 4-colourable. Consequently, the chromatic number of a polyhedral graph is 2, 3, or 
4. There are various colouring methods, for example, greedy colouring algorithm, 
sequential colouring algorithm, distributed algorithm, decentralized algorithm, and so 
on. Determination of 2-colourability is equivalent to testing bipartiteness, therefore, it is 
computable in linear time. However, in the case of more than 2 colouring, the 
computational complexity is known to be NP-complete, even for 3-colourability [10], 
and 4-colourability [11]. 
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A graph G is k-colourable if and only if G is k-partite. In the case of polyhedral graph, 
k can be 2, 3 or 4. By identifying vertices in each part of k-partite graph, one of line 
segment (}-simplex), triangle (2-simplex), or tetrahedron (3-simplex) is obtained. In this 
paper, we call such a polytope generated from a polyhedron, degenerated polyhedron. 

Figure 8 shows three examples of degenerated polyhedra: snubdodecahedron (to 
tetrahedron), smallrhombicosidodecahedron (to triangle), and greatrhombicosidodeca
hedron (to line segment). 

Figure 8: Examples of degenerated polyhedra. 

The process of interactive vertex colouring is as follows. When the user presses the 
"Degenerate" button, the system tests the chromatic number in the order of 2, 3, and 4 
colourabilities. If the graph is k-colourable, it is partitioned to k-partite graph, and 
degenerated to one of line segment, triangle, or tetrahedron, with animations. At this 
point the learner can anticipate the result of vertex colouring. After the user select 
different colour for each vertex of degenerated polyhedron, when the user presses the 
"Release" button, the polyhedron recovers the original shape with also animations. The 
user or learner can observe how the colours are assigned to the vertices so that adjacent 
vertices have different colours, and also understand unconsciously that k-colourable and 
k-partite are equivalent. Figure 9 shows an example of interactive vertex colouring with 
a time series of screen shots. 
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Figure 9: An example of interactive vertex colouring. 

(c) 

(f) 

(h) 

In this example, a greatrhombicosidodecahedron 1s degenerated to a line segment, 
which means this polyhedral graph is bipartite. 
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4 Conclusion 

In this paper, interactive vertex colouring system for polyhedral graph has been 
presented. It was developed as a subsystem of an interactive learning system of 
polyhedra, based on graph theory. The interaction is promoted by iteration of internalist 
anticipation and externalist anticipation. The learner can not only observe how the 
colours are assigned to the vertices, but also understand unconsciously that the notions 
of k-colourable and k-partite are equivalent. 
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