
A Transformation Mechanism
between Sensory Data and Logical Formulas
for Anticipatory Reasoning-Reacting Systems

Yuichi Goto and Jingde Cheng
Department of Information and Computer Sciences, Saitama University

Saitama,338-8570, Japan
{gotoh, cheng}@aise.ics.saitama-u.ac.jp

Abstract
Anticipatory reasoning-reacting systems (ARRSs) were proposed as a new generation of
reactive systems. Prediction and decision-making are important facilities of ARRSs. For
the facilities, a prediction method and a decision-making method with forward reasoning
based on strong relevant logic systems are proposed. On the other hand, practical reactive
systems generally get sensory data and own internal status as character strings, but not
as logical formulas . To implement facilities of prediction and decision-making based on
the proposed methods, a transformation mechanism between observed data and logical
formulas is demanded, but such a mechanism has not been proposed until now. This paper
presents a transformation mechanism observed data and logical formulas for ARRSs.
The mechanism can be applied to any computing anticipatory systems with logic-based
reasoning.
Keywords : Anticipatory reasoning-reacting systems, Forward reasoning, Formal logic
system, Data transformation.

1 Introduction

The concept of an anticipatory system first proposed by Rosen in 1980s [32]. Rosen con­
sidered that "an anticipatory system is one in which present change of state depends upon
future circumstance, rather than merely on the present or past" and defined an anticipatory
system as "a system containing a predictive model of itself and/or its environment, which
allows it to change state at an instant in accord with the model's prediction to a latter
instant." Dubois proposed the anticipatory system as a computing system, i.e., computing
anticipatory system [13, 14].

On the other hand, from the viewpoints of software reliability engineering and infor­
mation security engineering, what we need is really useful systems with anticipatorily
predictive capability to take anticipation for forestalling disasters and attacks rather than
the philosophical definition and intention of an anticipatory system. To develop antici­
patory systems useful in the real world, Cheng proposed a new type of reactive systems,
named "Anticipatory Reasoning-Reacting Systems," [1] as a certain class of computing
anticipatory systems.

43
International Journal of Computing Anticipatory Systems, Volume 28, 2014

Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-930396-17-2

Anticipatory reasoning-reacting systems (ARRSs) were proposed as a new generation
of reactive systems with high reliability and high security such that an ARRS predicts
possible failures and attacks by detecting their omens and anticipatory reasoning about
failures and attacks based on logic systems, empirical knowledge and detected omens,
informs its users about possible failures and attacks, and performs some operations to
defend the system from possible failures and attacks anticipatorily by itself. In other
words, an ARRS is a reactive system with facility of prediction and decision-making.

Prediction and decision-making are important facilities of ARRSs. For the facilities, a
prediction method and a decision-making method with forward reasoning based on strong
relevant logic systems are proposed [2, 3, 6, 7, 19, 20]. The proposed methods deal with
already known empirical theorems and hypotheses, and observed facts represented as
logical formulas. However, practical reactive systems generally get sensory data and own
internal status as character strings, but not as logical formulas. To deal with observed sen­
sory data and internal status in the proposed methods, it is necessary to interpret what fact
the data shows and to transform the fact into a logical formula. To implement facilities of
prediction and decision-making based on the proposed methods, a transformation mech­
anism between observed data and logical formulas is demanded, but such a mechanism
has not been proposed until now.

Because many current reactive systems store observed sensory data and own internal
status into relational database systems in the systems, if the transformation mechanism
is compatible with relational database systems generally used, developers of ARRSs can
implement ARRSs more easily.

This paper presents a transformation mechanism from observed sensory data and own
internal status to logical formulas for ARRSs. The paper gives a requirement analysis for
the transformation mechanism, proposes a design of a transformation mechanism with
relational database management systems, and discusses its implementation issues. By
using the proposed transformation mechanism, developers of ARRSs can modify existing
reactive systems into ARRSs more easily. Moreover, the mechanism can be applied to
any computing anticipatory systems with logic-based reasoning.

2 Anticipatory Reasoning-Reacting Systems

2.1 Logic-based Forward Reasoning on ARRS

Anticipation is the action of taking into possession of some thing or things beforehand,
or acting in advance so as preclude the action of another. It is a notion must relate to
two parties such that the party taking anticipation acts in advance of a proper time earlier
than the time when another party acts. To implement the facility of anticipation, we can
naturally find following issues: how to predict future event or events, and how to take
next actions. For the facilities, a prediction method and a decision-making method with
forward reasoning based on strong relevant logic systems are proposed [2, 3, 6, 7, 19, 20].

Reasoning is the process of drawing new conclusions from given premises, which

44

are already known facts or previously assumed hypotheses (Note that how to define the
notion of 'new' formally and satisfactorily is still a difficult open problem until now).
In general, a reasoning consists of a number of arguments (or inferences) in some order.
An argument is a set of statements (or declarative sentences) of which one statement is
intended as the conclusion, and one or more statements, called 'premises,' are intended
to provide some evidence for the conclusion. An argument is a conclusion standing in
relation to its supporting evidence. In an argument, a claim is being made that there is
some sort of evidential relation between its premises and its conclusion: the conclusion is
supposed to follow from the premises, or equivalently, the premises are supposed to entail
the conclusion. Therefore, the correctness of an argument is a matter of the connection
between its premises and its conclusion, and concerns the strength of the relation between
them (Note that the correctness of an argument depends neither on whether the premises
are really true or not, nor on whether the conclusion is really true or not). Thus, there are
some fundamental questions: What is the criterion by which one can decide whether the
conclusion of an argument or a reasoning really does follow from its premises or not? Is
there the only one criterion, or are there many criteria? If there are many criteria, what are
the intrinsic differences between them? It is logic that deals with the validity of argument
and reasoning in general.

A logically valid reasoning is a reasoning such that its arguments are justified based
on some logical validity criterion provided by a logic system in order to obtain correct
conclusions (Note that here the term 'correct' does not necessarily mean 'true'). Today,
there are so many different logic systems motivated by various philosophical considera­
tions. As a result, a reasoning may be valid on one logical validity criterion but invalid on
another.

In general, a formal logic system L consists of a formal language, called the object
language and denoted by F(L), which is the set of all well-formed formulas of L, and a
logical consequence relation, denoted by meta-linguistic symbol r-i, such that P ~ F(L)
and c E F(L), P f-i c means that within the frame work of L, c is valid conclusion of
premises P, i.e., c validly follows from P. For a formal logic system (F(L), f-i), a logical
theorem t is a formula of L such that q, f-i t where q, is empty set. We use Th(L) to
denote the set of all logical theorems of L. Th(L) is completely determined by the logical
consequence relation f-i. According to the representation of the logical consequence
relation of a logic, the logic can be represented as a Hilbert style formal system, a Gentzen
natural deduction system, a Gentzen sequent calculus system, or other type of formal
system.

Let (F(L), f-i) be a formal logic system and P ~ F(L) be a non-empty set of sentences
(i.e. closed well-formed formulas) . A formal theory with premises P based on L, called a
L-theory with premises P and denoted by Ti(P), is defined as Ti(P) =df Th(L) UTh'L(P),
and Th'L(P) =df {etlP f-i et and et t/. Th(L)} where Th(L) and Th'L(P) are called the
logical part and the empirical part of the formal theory, respectively, and any element of
Th'L(P) is called an empirical theorem of the formal theory. Figure 1 shows the relation­
ship among F(L), Th(L), Th'L(P), and Ti(P).

45

F(L)

1i. (P)

0

Fig. 1: L-theory with premises P

Automated reasoning is concerned with the execution of computer programs that as­
sist in solving problems requiring reasoning. By adopting a suitable formal logic system
for a target domain, we can do logically valid reasoning and get unknown or undecidable
facts/hypotheses from empirical theorems that are well-known theories in a target domain.
To do such logically valid reasoning automatically, a mechanism of automated reasoning
is demanded. A forward reasoning engine is a computer program to automatically draw
new conclusions by repeatedly applying inference rules to given premises and obtained
conclusions until some previously specified conditions are satisfied. A facility to do rea­
soning automatically can be implemented by such forward reasoning engines and logic
systems that are suitable for a target domain.

2.2 Overview of ARRS

A method using anticipatory reasoning based on temporal relevant logics or 3D spatio­
temporal relevant logics was proposed (2, 6]. Prediction is the action to make some future
events known in advance, especially on the basis of special knowledge. It is a notion must
relate to point of time to be considered as the reference time. For any prediction, both the
predicted thing and its truth must be unknown before the completion of that prediction.
An anticipatory reasoning is a reasoning to draw new, previously unknown and/or unrec­
ognized conclusions about some future event or events whose occurrence and truth are
uncertain at the point of time when the reasoning is being performed [2]. To represent,
specify, verify and reason about various objects in the real world and relationships among
them in the future, any ARRS needs a right fundamental logic system to provide a cri­
terion of logical validity for anticipatory reasoning as well as formal representation and
specification language. Temporal relevant logics and 3D spatio-temporal relevant logics
are hopeful candidates of such right fundamental logic systems for ARRSs (2, 6] . Further­
more, to perform anticipatory reasoning automatically, an anticipatory reasoning engine
was proposed and its prototype was implemented (7, 15, 25]. An anticipatory reasoning
engine is a forward reasoning engine to perform anticipatory reasoning based on temporal

46

relevant logics or 3D spatio-temporal relevant logics.
On the other hand, a decision-making method with reasoning about actions was pro­

posed [19, 20, 21]. An action in a computing anticipatory system is a deed performed
by the system such that, as a result of its functioning, a certain change of state occurs in
the system. To take next actions, at first, a computing anticipatory system enumerates all
actions that the system can perform in a predicted future situation as candidates of next
actions, and then, the system chooses appropriate actions as next actions to defend the
system from possible failures and attacks. The decision-making method uses reasoning
about actions to enumerate candidates of next actions. Reasoning about actions in a com­
puting anticipatory system is the process to draw new conclusions about actions in the
system from some given premises, which are already known facts or previously assumed
hypotheses concerning states of the system and its external environment [20]. Deontic
relevant logics and temporal deontic relevant logics are adopted as hopeful candidates of
right fundamental logic systems for reasoning about actions [3, 19, 20]. Furthermore, to
perform reasoning about actions automatically, an action reasoning engine was proposed
and its prototype was implemented [19, 20]. Like the anticipatory reasoning engine, an
action reasoning engine is a forward reasoning engine to perform reasoning about actions
based on deontic relevant logics or temporal deontic relevant logics.

In anticipatory reasoning and reasoning about actions, logical theorems of a logic
system are used as acceptable theories in any target domain while observed data, i.e.,
sensory data and internal status of an ARRS, theories in a certain target domain that the
ARRS deal with, and predicted events or candidates of next actions are used as empirical
theorems. Empirical theorems that represent theories in a target domain can be classified
into three kinds. First one is a set of empirical theorems that represent static relationship
among recognized objects in a target domain and static features of each object. An object
in a target domain is an entity that can cause to change behavior of an ARRS directly. We
named a set of explicitly known such empirical theorems a world model. Second one is a
set of empirical theorems that represent mechanisms of occurrences of events and cause­
and-effect relationships among occurrences of events. An event is a change of relationship
among objects or a change of status of each object. We named a set of explicitly known
such empirical theorems a predictive model. Third one is a set of empirical theorems
that represent behaviors of objects, i.e., which object reacts to which event and how the
object reacts. We named a set of explicitly known such empirical theorems a behavior
model. According to figurel, in anticipatory reasoning, temporal relevant logics or 3D
spatio-temporal relevant logics is used as a logic system L; observed data, a world model
and a predictive model of a target domain are used as premises P; predicted events are
included in Th'i(P) - P. Similarly, in reasoning about actions, deontic relevant logics
and temporal deontic relevant logics is used as a logic system L; observed data, predicted
events, a world model and a behavior model of a target domain are used as premises P;
candidates of next actions are included in Th'i(P) - P.

An architecture of an ARRS was proposed [16]. Figure 2 shows the architecture of an
ARRS. An ARRS is a persistent computing system [4] . A persistent computing system

47

(Antcipatory Reasoning-Reacting System \

~ ~ G !
.~J~.~/~~ ~!
! ::.: __ ---~·t···~::·::·.·::-:::-::·.ij·::·::·.·~ ---~'. .. ~·:::·::·_·::·:::·:ij:·:::·::~ ... ~'. ... ____) I
!Fe Fe FC•••Fc FC•••FC I
i ... _ ____ ,,.,.........................)

External Environment

Fig. 2: An architecture of an anticipatory reasoning-reacting system

can be constructed by a group of control components that are independent of systems,
a group of functional components (FCs) that carry out special tasks of the system, and
soft system buses (SSBs). Control components may include a central controller/scheduler
(C/S), a central measurer (Me), a central recorder (Ree), a central monitor (Mo), and an
central informant (lnf). A central controller/scheduler orders and controls all components
to carry out some operations with a high priority. A central measurer measures current
status of the system, and stores measured data into a central recorder. A central recorder
stores data observed by a central measurer, and provides them to a central monitor and
a central controller/scheduler. A central monitor monitors the behavior of the whole of
the system, and reports unexpected behavior or troubles to a central informant. A cen­
tral informant receives such reports from a central monitor, and informs the reports to
operators of the system. A soft system bus is simply a communication channel with the
facilities of data/instruction transmission and preservation to connect components in a
component-based system. It may consist of some data-instruction stations (St's), which
have the facility of data/instruction preservation, connected sequentially by transmission
channels, both of which are implemented by software techniques, such that over the chan­
nels data/instructions can flow among data-instruction stations, and a component tapping
to a data-instruction station can send data/instructions to and receive data/instructions
from the data-instruction station. SSBs are used for connecting all components such that
all data/instructions are sent to target components only through the SSBs and there is no
direct interaction that does not invoke the SSBs between any two components.

Functional components of an ARRS are classified into two kinds of components; ones
are common components in all ARRSs and others are application-dependent components.
In figure2, an application-dependent component is represented as "FC." The common

48

components are a predictor (Pr), a decision-maker (DM), a logical theorem database
(LTDB), and an empirical theorem database (ETDB). A predictor does anticipatory rea­
soning for deducing future events by using a forward reasoning engine, and chooses non­
trivial predicted events according to selection rules given by developers of the ARRS.
Then, it sends the predicted events to a decision-maker. The predictor takes observed
data, a world model, and predictive model as input. The decision-maker does reason­
ing about actions for deducing candidates of next actions by using a forward reasoning
engine, and chooses next actions from the candidate according to selection rules given
by developers of the ARRS. Then, it sends next actions as instructions to application­
dependent components related with the next actions. The decision-maker takes observed
data, the predicted events sent from the predictor, a world model, and behavior model
as input. A logical theorem database stores logic theorems of logic systems underlying
anticipatory reasoning or reasoning about actions. An empirical theorem database stores
observed data, empirical theorems of a world model, a predictive model, and a behavior
model, and empirical theorems deduced by the predictor or the decision-maker.

PCS-core components are control components and soft system buses. They are com­
mon in all persistent computing systems. ARRS-core components are a predictor, a
decision-maker, a logical theorem database, and an empirical theorem database. They
are common components in all ARRSs, but not in all persistent computing systems. One
of our ultimate goals is to provide PCS-core and ARRS-core components as a develop­
ment framework of ARRSs to their developers.

3 Requirement Analysis for transformation mechanisms

To implement facilities of prediction and decision-making based by using forward rea­
soning engine, any ARRS should have a mechanism to transform sensory data and logical
formulas. FreeEnCal [5] is a forward reasoning engine with general-purpose, and is a
hopeful candidate for a forward reasoning engine in a predictor and a decision-maker.
It can interpret specifications written in the formal language such that any user can use
the formal language to describe and represent formulas and inference rules for deductive,
inductive, and abductive reasoning. It also can reason out all or a part of logical theorem
schemata of a logic system under the control conditions attached to the reasoning task
specified by users, and all or a part of empirical theorems of a formal theory and facts
under the control conditions attached to the reasoning task specified by users. FreeEnCal
can deal with only logical formulas. However, practical reactive systems generally get
sensory data and own internal status as character strings. To implement facilities of pre­
diction and decision-making based by using forward reasoning engine like FreeEnCal, a
transformation mechanism between observed data and logical formulas is demanded.

The requirements the mechanism should satisfy are as follows.
Rl: The transformation mechanism should be event-driven. An ARRS is a kind of

reactive systems. ARRSs should react to sensory data that come from its outside environ­
ment. In addition, ARRSs should react to changes of its internal status, too. To react to

49

the sensory data or the changes, ARRSs should do prediction and decision-making. By
the way, in any information system, such the sensory data or the changes are represented
as character strings. Therefore, it is necessary to transform the character strings into logic
formulas when sensory data and/or changes of internal status occur.

R2: The transfonnation mechanism should be compatible with relational database
management systems. Many current reactive systems use relational database management
systems, such as IBM DB2 [18], Oracle database [27], MySQL [26], PostgreSQL [30),
etc, to construct a database managing sensory data and own internal status in the systems.
To implement ARRSs more easily, the transformation mechanism should be compatible
with such relational database management systems.

R3: The transfonnation mechanism should generate logical fonnulas according to
transfonnation rules given by developers of an ARRS. Kinds of sensory data or internal
status observed in a system are different from each ARRS. Although kinds of observed
data are same, how to use the observed data may be different from each ARRS. Kinds
of logical formulas and how to make them are different if interpretation of observed
data are different. Moreover, only developers of each ARRS can know those things.
Hence, the transformation mechanism should provide environment to input transforma­
tion rules which are sets of procedures to generate logical formulas from observed data,
and it should be able to do the transformation according to the rules.

R4 The transformation mechanism should revise already deduced empirical theorems.
When a new logical formula is generated from new observed data, the logical formula may
conflict with an already deduced/generated empirical theorem. In that case, it is necessary
to reduce the empirical theorem which conflicts with the new logical formula and other
empirical theorems that deduced from the empirical theorem.

RS The transformation mechanism should be implemented as ARRS-core components.
Because facilities of prediction and decision-making with forward reasoning engine are
common facilities among all of ARRSs, any ARRS should have such mechanism.

4 A Transformation Mechanism

Figure 3 shows a design of a transformation mechanism. The transformation mechanism
does transformation from sensory data or changes of its internal status to logical formulas
when instructions to create, update, and delete data are sent to a database that manages
already observed data in an ARRS. Before running an ARRS, its developers or operators
store transformation rules into the mechanism. After running the ARRS, when the ARRS
gets some sensory data or changes of internal status, it stores those observed data into the
relational database (RDB), i.e., 'create data', replaces already stored observed data with
the new one, i.e., 'update data', or deletes already stored data that are inconsistent with the
new one, i.e., 'delete data'. Note that RDB is constructed on a relational database man­
agement systems. At that point of time, a filter takes the instruction for RDB from outside
of the translation mechanism. And then, it sends the instructions to RDB, and calls a
generator. The generator does transformation according to the given transformation rules.

50

1.create,
update,
delete

..
• Translation Mechanism •

3. call
Truth maintenance

system
: 8 . provide

6. gene.ate

Filter
~_.:::."l....__r-~~ ,~-~

'. Maintener
i~-~

Predictor

Decision
maker

• d. •sto•r~ • • • • • • • • • • • • • • • • • 9. store

Translation
rules

D Component LJ Database Q Data - Control flow

Fig. 3: Control flow of a transformation mechanism

It retrieves observed data already stored in RDB, then it judges whether retrieval results
can satisfy each transformation rule or not. If satisfy, the generator generates logical
formulas according the transformation rule. The generated logical formulas are sent to
a maintainer. The maintainer checks whether there are contradictional formulas against
the generated logical formulas in a empirical theorem database (ETDB) where ETDB is
explained at section 2.2. When the contradictional formulas exist, the maintainer tries to
keep consistency of set of empirical theorems in ETDB. If the contradictional formulas
are already stored observed data, the maintainer replaces contradictional formulas and
delete all empirical theorems deduced from the contradictional formulas autonomously.
If the contradictional formulas are empirical theorems belonging to a world, a predictive,
or a behavior model, the maintainer enumerates all empirical theorems deduced from the
contradictional formulas, and informs operators of the ARRS the occurrence of contra­
diction and enumerated empirical theorems. If the contradictional formulas are empirical
theorems deduced from already stored observed data and/or empirical theorems belong­
ing to the models, the maintainer enumerates all empirical theorems deduced from the
contradictional formulas and all formulas that occur in derived paths of the contradic­
tional formulas, and informs operators of the ARRS the occurrence of contradiction and
enumerated empirical theorems. The reason why the maintainer should change its opera­
tion depending on kinds of contradictional formulas is that how to repair inconsistency of
a set of managed empirical theorems in ETDB depends on purpose of each ARRS. ETDB
provides empirical theorems if the predictor or the decision-maker requires them. ETDB
also gets empirical theorems deduced by the predictor or the decision-maker.

The mechanism satisfies all of requirements defined in section 3. To satisfy Rl, the
mechanism has a filter. Events that triggers prediction and decision-making are to create,
update, and delete data on a database in an ARRS so that the mechanism makes the filter
monitor the instruction for the database. To satisfy R2 and R3, the mechanism uses rela­
tional database management system to construct a database that stores observed data, and
facility to generate logical formulas is designed as a generator, which is an independent

51

component from the relational database management system. To satisfy R4, the mech­
anism has a maintainer. R5 is satisfied because all of component in the mechanism are
independent from a target domain of any ARRS. Moreover, the mechanism is indepen­
dent from FreeEnCal so that it can be used with any logic-based reasoning engine. We
will discuss how to implement the generator and maintainer in next section.

The proposed mechanism is a kind of active database systems. Active database sys­
tems are systems that can respond automatically to events that are taking place either
inside or outside the database system itself [29). To realized the reactive behavior, most
active database systems use rules that have up to three components; an event, a condition,
and an action. The event part of a rule describes a happening to which the rule may be
able to respond. The condition part of the rule examines the context in which the event has
taken place. The action describes the task to be carried out by the rule if the relevant event
has taken place and the condition has evaluated to true. Such a rule with three compo­
nents is known as an event-condition-action or ECA-rule [29). Coming the instructions to
a database in an ARRS can be regarded as events. Generating logical formulas according
to transformation rules can be regards as reactive behavior to the events. Transformation
rules can be regarded as ECA-rules. Hence, the transformation mechanism is an active
database system for ARRSs.

The proposed mechanism is not a deductive database system. Deductive database sys­
tems are database management systems whose query language and (usually) storage struc­
ture are designed around a logical model of data [31). In deductive database systems, we
can use most of facilities that logic programming languages like Prolog provide. The pur­
pose of proposed mechanism is to generate logical formulas. Deductive database systems
can list up atomic logical formulas (first order predicate) that satisfied rules (conditions)
given by its users, but cannot generate logical formulas except Horn-clause style. The pro­
posed mechanism has to generate logical formulas represented as not only Horn-clause
style, but also other forms. On the other hand, most of deductive database systems are
implemented as one database management system, but not a system that wraps existing
relational database systems. We do not adopt already existing relational database manage­
ment systems to construct a database in an ARRS if we adopt deductive database system
as a part of transformation mechanism. Moreover, in ARRSs, the facility of reasoning is
provided by forward reasoning engine in a predictor and a decision-maker. Therefore, fa­
cilities which logic programming languages provide are over-spec for the transformation
mechanism.

5 Implementation Issues

To implement such proposed mechanism, there are implementation issues as follows.
How does the generator deal with many kinds of relational database management sys­
tems? How does the generator provide an environment that developers or operators of an
ARRS can describe transformation rules easily? How does the maintainer keep consis­
tency of empirical theorems in ETDB?

52

The generator should deal with many kinds of relational database management sys­
tems because of satisfying R2 in section 3. One of difficulties of dealing with many kinds
of relational database management systems is dialects of SQL among them. Schemata of
a database that stores observed data in an ARRS may be different from other ARRS. Be­
cause only developers of the ARRS can know the schemata, they should describe queries
to the database in transformation rules. For developers of ARRSs, representation of trans­
formation rules should be unified while they use any kinds of relational database man­
agement systems. If SQL is used for description of transformation rules, it is difficult to
satisfy the above requirement. By the way, object-relational mapping is a mechanism that
conversion of data held in objects to a form that can be stored in a relational database
and vice versa [28]. By using object-relational mapping, developers of ARRSs can write
transformation rules by using object-oriented programming language without considering
the differences among dialects of SQL.

The generator should provide an environment that developers of an ARRS can de­
scribe transformation rules easily. If developers of ARRSs use an object-oriented pro­
gramming language with object-relational mapping mechanism to describe the transfor­
mation rules, we can consider that the generator provides an environment to describe the
transformation rules in unified way. However, to describe transformation rules, object­
oriented programming languages are too much of expressive power. Such expressive
power causes software bugs and/or vulnerabilities. Moreover, it is difficult or cost con­
suming for the developers to program procedures of generating logical formulas. A trans­
formation rule can be regarded as a constraint to find records, which satisfy conditions
given by developers of ARRSs, from tables or views of a relational database. Under
the consideration, constraint logic programming can be used for a technique to describe
transformation rules easily. Constraint logic programming languages are logic program­
ming languages in which unification is replaced by constraint solving in various domains
[8]. Constraints are special predicates whose satisfiability can be established for various
domains using efficient algorithms (e.g., inequalities and disequalities). Unification can
be viewed as a particular type of constraint that tests equality in the domain of trees. If
a transformation rule consists of only constraints without procedures to generate logical
formulas, cost to describe the rule becomes low.

The maintainer should keep consistency of empirical theorems in ETDB. The system
that provides a facility to keep consistency of set of logical formulas is called as a truth
maintenance system [10]. We can expect that results of studies for truth maintenance
systems (TMSs) are able to be used for implementing the maintainer. However, we cannot
adopt traditional TMSs as mechanism of the maintainer directly. Some traditional TMSs
[11, 12, 22, 23, 24, 33] cannot deal with family of strong relevant logics, i.e., temporal
relevant logics, 3D spatio-temporal relevant logics, deontic relevant logics, and temporal
deontic relevant logics, because those TMSs require a certain logic system underlying the
mechanism to keep consistency of managed logical formulas, e.g., classical mathematical
logic or its conservative extensions, or logic systems dealing with uncertainty. Other
traditional TMSs [9, 10] can deal with the family of strong relevant logics, but the TMSs

53

are not optimized for dealing with them. Therefore, a TMS dealing with the family of
strong relevant logic is demanded. We have proposed and been developing such TMS
[17].

6 Concluding Remarks

This paper has presented a requirement analysis of transformation mechanisms from sen­
sory data to logical formulas, shown a design of the mechanism, and investigated im­
plementation issues of the proposed mechanism. The mechanism is independent from
a target domain of any ARRS, and the forward reasoning engine we are developing, so
the mechanism can be applied to any computing anticipatory systems with logic-based
reasoning.

Some future works are implementing a prototype of the proposed mechanism and
verifying usefulness of the mechanism by some case studies.

References

[1] Cheng, J.: Anticipatory Reasoning-Reacting Systems. Proc. International Confer­
ence on Systems, Development and Self-organization (2002) 161- 165

[2] Cheng, J.: Temporal Relevant Logic as the Logical Basis of Anticipatory Reasoning­
Reacting Systems. In Dubois, D. M., ed.: Computing Anticipatory Systems:
CASYS - Sixth International Conference. AIP Conference Proceedings 718. The
American Institute of Physics (2004) 362-375

[3] Cheng, J.: Temporal Deontic Relevant Logic as the Logical Basis for Decision
Making Based on Anticipatory Reasoning. Proc. 2006 IEEE Annual International
Conference on Systems, Man, and Cybernetics. The IEEE Systems, Man, and Cy­
bernetics Society (2006) 1036-1041

[4] Cheng, J., Shang, F.: Persistent Computing Systems as an Infrastructure of Comput­
ing Anticipatory Systems. International Journal of Computing Anticipatory Systems
18 (2006) 61-74

[5] Cheng, J., Nara, S., Goto, Y.: FreeEnCal: A Forward Reasoning Engine with
General-Purpose. In Apolloni, B., Howlett, R. J., Jain, L. C., eds.: Knowledge­
Based Intelligent Information and Engineering Systems, 11th International Confer­
ence, KES 2007, XVII Italian Workshop on Neural Networks, Vietri sul Mare, Italy,
September 12-14, 2007, Proceedings, Part II. Volume 4693 of Lecture Notes in Ar­
tificial Intelligence. Springer-Verlag (2007) 444-452

[6] Cheng, J., Goto, Y., Kitajima, N.: Anticipatory Reasoning about Mobile Objects
in Anticipatory Reasoning-Reacting Systems. In Dubois, D. M., ed.: Computing
Anticipatory Systems: CASYS - Eighth International Conference. AIP Conference
Proceedings 1051 . The American Institute of Physics (2008) 244-254

54

[7] Cheng, J.: Adaptive Prediction by Anticipatory Reasoning Based on Temporal Rele­
vant Logic. Proc. 8th International Conference on Hybrid Intelligent Systems. IEEE
Computer Society Press (2008) 410-416

[8] Cohen, J.: Logic Programming and Constraint Logic Programming. ACM Comput­
ing Surveys 28:1 (1996) 257-259

[9] de Kleer, J.: An Assumption-based TMS. Artificial Intelligence 28:2 (1986) 127-
162

[10] Doyle, J.: A Truth Maintenance System. Artificial Intelligence 12:3 (1979) 231-272
[11] Dubois, D., Lang, J., Prade, H.: Handling Uncertain Knowledge in an ATMS Using

Possibilistic Logic. Proc. ECAI Workshop Truth Maintenance System (1990) 87-
106

[12) Dubois, D., Berre, D. L., Prade, H., Sabbadin, R.: Using Possibilistic Logic for
Modeling Qualitative Decision: ATMS-based Algorithms. Fundamenta Informati­
cae 37:1-2 (1999) 1-30

[13] Dubois, D. M.: Computing Anticipatory Systems with Incursion and Hyperincur­
sion. In Dubois, D. M., ed.: Computing Anticipatory Systems: CASYS - First
International Conference. AIP Conference Proceedings 437. The American Institute
of Physics (1998) 3-29

[14] Dubois, D. M.: Introduction to Computing Anticipatory Systems. International
Journal of Computing Anticipatory Systems 2 (1998) 3-14

[15] Goto, Y., Nara, S., Cheng, J.: Efficient Anticipatory Reasoning for Anticipatory
Systems with Requirements of High Reliability and High Security. International
Journal of Computing Anticipatory Systems 14 (2004) 156-171

[16] Goto, Y., Kuboniwa, R., Cheng, J.: Development and Maintenance Environment
for Anticipatory Reasoning-Reacting Systems. International Journal of Computing
Anticipatory Systems 24 (2008) 61-72

[17] Goto, Y., Cheng, J.: A Truth Maintenance System for Epistemic Programming
Environment. Proc. 8th International Conference on Semantics, Knowledge and
Grid. IEEE Computer Society Press (2012) 1-8

[18) IBM: DB2 Database Software. http://www-Ol.ibm.com/software/
data/db2/, accessed at (2012)

[19] Kitajima, N., Nara, S., Goto, Y., Cheng, J.: Fast Qualitative Reasoning about Ac­
tions for Computing Anticipatory Systems. Proc. 3rd International Conference on
Availability, Reliability and Security. IEEE Computer Society Press (2008) 171-178

[20) Kitajima, N., Nara, S., Goto, Y., Cheng, J.: A Deontic Relevant Logic Approach to
Reasoning about Actions in Computing Anticipatory Systems. International Journal
of Computing Anticipatory Systems 20 (2008) 177-190

[21) Kitajima, N., Goto, Y., Cheng, J.: Development of a Decision-Maker in an An­
ticipatory Reasoning-Reacting System for Terminal Radar Control. In Corchado,
E., Wu, X., Oja, E., eds.: Hybrid Artificial Intelligence Systems, 4th International
Conference, HAIS09, Salamanca, Spain, June 10-12, Proceedings. Volume 5572 of
Lecture Notes in Artificial Intelligence. Springer-Verlag (2009) 68-76

55

[22] McAllester, D. A.: An Outlook on Truth Maintenance. AI Memos 551 (1980)
[23] McDermott, D.: A General Framework for Reason Maintenance. Artificial Intelli­

gence 50:3 (1991) 289-329
[24] Monai, F. F., Chehire, T.: Possibilistic Assumption based Truth Maintenance Sys­

tem, Validation in a Data Fusion Application. Proc. 8th international conference
on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc (1992)
83-91

[25] Nara, S., Shang, F., Omi, T., Goto, Y., Cheng, J.: An Anticipatory Reasoning Engine
for Anticipatory Reasoning-Reacting Systems. International Journal of Computing
Anticipatory Systems 18 (2006) 225-234

[26] Oracle: MySQL. http://www. mysql. corn/, accessed at (2012)
[27] Oracle: Oracle Database. http://www. oracle. corn/us/products/

database/ overview/ index. html, accessed at (2012)
[28] Oxford University Press: A Dictionary of Computing, Sixth Edition. Oxford Uni­

versity Press (2008)
[29] Paton, N. W, Diaz, 0.: Active Database Systems. ACM Computing Surveys 31:1

(1999) 63-103
[30] PostgreSQL Global Development Group:

postgresql. org/, accessed at (2012)
PostgreSQL. http://www.

[31] Ramakrishnan, R., Ullman, J. D.: A Survey of Deductive Database Systems. The
Journal of Logic Programming 23:2 (1995) 125-149

[32] Rosen, R.: Anticipatory Systems - Philosophical, Mathematical and Methodological
Foundations. Pergamon Press (1985)

[33] Shen, Q., Zhao, R.: A Credibilistic Approach to Assumption-Based Truth Mainte­
nance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans 41:1 (2011) 85-96

56

	Casus_v28_pp43-56_Goto

