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1 Introduction 
Some mathematical problems are not decidable. 
This came as a shock to some mathematicians who had hoped that any well-stated 

problem would have a solution ·and that we only need persevere to find that solution. 
Sometimes this attitude has been right. A good example is the famous Last Theorem of 
Fermat that was eventually proved 200 years after Fermat by Andrew Wiles, using all 
the resources of twentieth century mathematics. There are some problems that are 
unlikely to see a solution but we do not know if they are truly undecidable. 

For example, recall the sequence of prime numbers 
2,3,5,7,l l,l3,l 7,19,23,29,31 ,37,41,43, ... 

Each prime number is divisible only by itself and the number 1. 
One can ask whether there are infinitely many prime numbers in the Fibonacci Series 

1, 1,2,3,,5,8, 13,21,34,55,89, 144,289, ... 
The Fibonacci Series has been known since the 1500's and the question of primes in 

that series has surely been investigated since that time. Euclid proved in 500BC that 
there are infinitely many prime numbers, but the same question for the Fibonacci Series 
remains open. Is this an undecideable problem? We do not know, but most 
mathematicians would take the question as a challenge and try to solve it, if they care to 
put their mind to it. 

I can give you a problem that is inherently unsolvable by giving you contradictory 
instructions, but we assume that this avenue is not available to you. We assume that the 
mathematical question and the system in which it is asked is consistent. It will not do to 
ask you for the truth value of the sentence. "This sentence is false." We will refer to 
such unsolvable problems as directly unsolvable problems. But maybe all undecidable 
problems are direct. Could it be? We shall attempt to find out. 

We shall find out that directly undecidable problems may not be so direct. 
They will show us the limitations of our constructions and conceptions. Here is an 

example. 
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1.1 The Hypergame Paradox 

Let's play a game. I call it "hypergame". To play this game, the first player says 
"Let's play hypergame." Then the second player says "Let's play X." where X is the 
name of any game that ends in a finite amount of time. The two players then play one 
round of X just as one usually does play X. For example, first player says "Let's play 
hypergame." and second player says "Let's play tennis.", and then they go out and play 
a round of tennis. 

We will call a game finite if it ends in a finite amount of time whenever it is played. 
As you can see, hypergame is a finite game, since the second player always chooses a 
finite game. But then, according to the rules of hypergame we could have the following 
exchange: A. Let's play hypergame. B. Let's play hypergame. A. Let's play hypergame. 
B. Let's play hypergame .... This is a round of hypergame, using the fact that 
hypergame is a finite game and so can itself be chosen. But this is absurd! We have 
shown a round of hypergame that never ends! If hypergame is a finite game, then 
hypergame is NOT a finite game. What should we do with this paradox? Think about 
this while you read the rest of the paper. 

1.2 The Sorcerer's Apprentice 

We'll mention one more fable - The Sorcerer's Apprentice. This story was made 
famous by a Disney cartoon starring Mickey Mouse as the apprentice. According to the 
Wikipedia [5]: 

"The Sorcerer's Apprentice is the English name of a poem by Goethe, Der 
Zauberldhrling, written in 1797. The poem begins as an old sorcerer departs his 
workshop, leaving his apprentice with chores to perform. Tired of fetching water by 
pail, the apprentice enchants a broom to do the work for him -- using magic he is not yet 
fully trained in. The floor is soon awash with water, and the apprentice realizes that he 
cannot stop the broom because he does not know how. Not knowing how to control the 
enchanted broom, the apprentice splits it in two with an axe, but each of the pieces 
becomes a new broom and takes up a pail and continues fetching water, now at twice 
the speed. When all seems lost, the old sorcerer returns, quickly breaks the spell and 
saves the day. The poem finishes with the old sorcerer's statement that powerful spirits 
should only be called by the master himself." 

The theme of this story haunts the mathematical tale we are about to tell. In our tale 
the sorcerer's apprentice is the machine, or logical formal language that must follow 
only its own rules. Such languages can get stuck and multiply themselves and never 
halt. Perhaps the sorcerer is the mathematician or logician who can understand, and stop 
the runaway machine or at least understand that the machine has gone into an infinite 
loop. But the real sorcerer would always know when the runaway condition was upon 
us and would be able to avert it. Here we prove that a limited machine can never be a 
sorcerer. But then where is the sorcerer? Is there really an oracle who can save us, poor 
apprentices? We do not answer this question here. The question of the existence of the 
sorcerer to whom we may be apprenticed is a central conundrum that is now enfolded 
into second order cybernetics. Second order cybernetics studies observing systems, 
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including those that observe themselves. Are there any such systems? Or do we live in a 
world of apprentices, all with the illusion that they are each autonomous sorcerers. 

2 The Halting Problem 
If you are presented with a specific set of instructions, you may be able to tell if 

following them will go on forever or whether the process will stop. For example, 
consider the following instructions: 

2.1 Golden Calculation Algorithm 

l. Let P = 1. 
2. Replace P by 1 + 1/P. 

3. If the absolute value of p2 - P - 1 is less than 1/1000000 then print the value of P 
and STOP. Otherwise, go to step 2. 

These three instructions form an algorithm to compute the Golden Ratio G, 
G = (1 + Sqrt(S))/2, 

to an accuracy of one millionth. A mathematician with the usual skills can analyse 
this algorithm and show that it will stop. 

On the other hand consider this algorithm. 
1. Go to step 2. 
2. Go to step 1. 
This algorithm does not halt. Anyone or any machine following these instructions 

just shuttles back and forth between step 1 and step 2. 
Now consider the following algorithm. We'll call this one the 

2.2 Collatz Algorithm 

l. Choose a positive integer N. 
2. IfN is even, replace N by N/2. IfN is even go to step 2, otherwise go to step 3. 
3. IfN is odd, replace N by 3N + 1. Go to step 4. 
4. If N = 1, STOP. Otherwise go to step 2. 
Here we assume that if some stated condition is not met, then the operator of the 

algorithm does not perform the instruction. Thus in step 2, if the number N is odd, the 
operator proceeds to step 3. Note the epistemology. An algorithm has an operator, either 
a person or a machine, who follows the instructions exactly. The operator follows 
instructions "to the letter" in the idiom of standard English. 

We can summarize the Collatz Algorithm by: 

Choose a number. 
If it is even, divide it by 2. 
If it is odd, multiply it by 3 and add I. 
Keep doing this until you get the number 1. 

For example you can start with N = 7. 
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Then the process obtained by following the instructions in the Collatz Algorithm goes 
as follows: 

7 
3 X 7 + 1 = 22 3 X 17 + 1 = 52 40/2 = 20 16/2 = 8 
22/2 = 11 52/2 = 26 20/2 = 10 8/2 =4 
3 X 11 + 1 =34 26/2 = 13 10/2=5 4/2 =2 
34/2 = 17 3 X 13 + 1 =40 3 X 5 + 1 = 16 2/2 = 1 

STOP 

This algorithm has been examined experimentally, and it appears to always stop for 
every input N. But no one has found a proof that this algorithm halts for every N We 
just do not know. 

We have algorithms that are known to halt, algorithms that do not halt, and 
algorithms where we do not (yet) know if they halt. 

The halting question is most interesting when the algorithm can have infinitely many 
inputs as in the Collatz Algorithm. Of course there are algorithms with only one input 
that are still worth analyzing. For example consider the following question: Does Pi 
have a consecutive string of one million identical digits? A single program can 
investigate this for us by always getting one more digit of Pi (by a computation) and 
then looking to see if the new digit is part of a string of one million consecutive digits. 
The program will halt if it finds such a string and keep on running otherwise. 

This is similar to a game we have all played: Can I toss a coin and get many 
consecutive heads. I will start tossing and stop as soon as I get a tail. This algorithm 
always halts for a human being tossing a coin, but in principle it does not have to halt! 

Return to the Pi question. If we set a computer to investigating this question, the 
computer will halt if there is a consecutive sequence of a million consecutive digits. But 
if it has not halted for the last 10 years, this means nothing. So we wait and we wait and 
maybe it will never halt. We need a theory to decide it faster, but maybe there is no such 
theory. Some questions can only be answered by investigating them directly. 

3 Is there a Mathematical Oracle? 
If there were a machine that could tell whether any algorithm that you gave it would 

halt, such a machine would be a mathematical oracle of a very high order. It is natural 
for us to ask whether such a wonderful machine could possibly exist! 

We shall see that it is not possible for such a machine to exist if we assume that all 
the algorithms that it is given are written in its own terms. This means that if there were 
an oracle, it would have to be at a different level than all the algorithms that it would 
analyze. 

First I want to show you the core of this proof. I will show that the set of algorithms 
is inexhaustible! If you give me an infinite list of halting algorithms, I will produce a 
new halting algorithm that cannot possibly be on the list. 

To see how to do this, we will need some notation. 
Let 

L = {At, A2, A3, ... } 
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be an infinite list of halting algorithms. We assume that each Ak is an algorithm that 
halts whenever you give it one of the numbers 1,2,3, 4, .... 

We let Ak(N) denote the behaviour of the algorithm Ak when you give it input N. 
The only thing we officially know about Ak(N) is that this behaviour stops after a finite 
number of steps, because we have assumed that Ak does halt for every input N. 

Now I will tell you a new algorithm M. 
Note that I do not give M a subscript. 
I will show that M cannot be on the list L. 
I call M the "Monkey Wrench" for the list L. 
Here is M's specification. 

3.1 The Monkey Wrench Algorithm 

l. Input N. 
2. Go to the list Land extract the algorithm AN. 

3. Apply AN to N (finding the behaviour AN(N)). 
4. Stop when AN(N) stops. 

Note that the Monkey Wrench always halts no matter what number N you give it, for 
when you give M the number N, M computes AN(N) and we know that AN halts for 
any input to AN and for any N. Thus Monkey Wrench is a halting algorithm and it is 
possible that Monkey Wrench might be on our list L. 

Theorem. The Monkey Wrench M for the list L is not on the list L. 
Proof. Suppose that M = AN for some N. 
For the sake of our argument lets say M = A137. 
So let's see how this would work. 
Suppose we want to find out M(l). The procedure (above) tells us to find At and to 

compute At(l) and this will certainly work out and halt since we have been given At 
all along. 

But now suppose we try M(l37). Then we "Go to the list L and extract the algorithm 
A137." But we have assumed that At37 = M. Therefore when we look at the list and 

find the text for At37 it reads 
TEXT FOR ALGORITHM A137. 
I. Input N. 
2. Go to the list Land extract the algorithm AN. 

3. Apply AN to N (finding the behaviour AN(N)). 
4. Stop when AN(N) stops. 

At37 has this text because we have assumed that At37 = M. The text is the text for M. 
We are supposed to apply A137(137). So we use the input N = 137. Step 2 says "Go 

to the list Land extract algorithm A137." But this is just where we started. So all our 
algorithm can do when asked to find M(l37) is to keep looking up the entry under A137 
again and again. M(l37) does not halt! It has an infinite loop when you give it the input 
N= 137. 
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We have shown that if M = Ak for any specific k, then M(k) will not halt. (There 
was nothing special about 137. We could have used any number at all.) Since M does 
halt for every k, we conclude that Mis not on the list L of halting algorithms. Q.E.D. 

We have proved that there is no such thing as a complete list of all halting 
algorithms. As soon as we produce any infinite list of halting algorithms, we can use 
that very list to make a new algorithm that is not on the list. 

It is this richness in the set of algorithms that makes the halting problem undecidable 
when we restrict the whole situation to a given language, call it Losp. If you work in a 
given language, then it is possible to make a list of all the algorithms in that language 
using a program in the language. That is, there would be a Losp program that will find 
the k-th algorithm if you give the program the number k. This is because we can use 
Losp to recognize when some list of instructions is a grammatically valid program in 
Losp. A grammatically correct Losp algorithm does not have to halt, but we would like 
to find all the ones that halt. 

If there were some way to decide whether or not each algorithm on that list of all 
algorithms halted, we could make a smaller list of exactly those algorithms (in Losp) 
that halt. If the method for deciding whether an algorithm halts were itself a program in 
the language, then we would find that we could write down the Monkey Wrench 
algorithm in the language as well. This would lead immediately to a contradiction, since 
the Monkey Wrench would produce a halting algorithm not on the purportedly complete 
list. I will give a few more details below. 

How do we know that the Monkey Wrench could be written in the given 
programming language (Losp)? Well if the program D that decides whether an 
algorithm halts is written in Losp, then we can write the text for M as follows. 

3.2 The Monkey Wrench for Losp 

1. Input N. 
2. Form an empty list L. 
3. List the next algorithm in Losp. 
If no algorithms have been listed, list the first algorithm in Losp. 
4. Test the algorithm A just produced using D. 
If A passes the halting test, place it on the list. 
If A passes and is the N-th algorithm on the list, then go to 5. Otherwise go to 3. 
5. Run A(N). 

This more technical specification of the Monkey Wrench M does that same thing that 
our old one did. It runs the N-th halting algorithm with the number N as input. By our 
previous argument, we know that M cannot be on the supposedly complete list of 
halting algorithms in Losp. This is a the contradiction inherent in assuming that it is 
possible to decide the halting problem in Losp with a Losp algorithm. We cannot get 
Losp to decide the halting problem about its own algorithms. 

4 Comment on the U ndecidability of the Halting Problem 

The logic of our argument about the halting problem is essentially the same as the 
following. A set X is well-founded if X has no infinite descending chains of 
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membership. Note that a set that is a member of itself cannot be well-founded. The 
simplest example would (formally) be 

S = {S}. 
We then have 

S = {S} = {{S}} = {{{S}}} = ... 
forming an infinite chain of members. S is a member of itself, so S is a member of a 
member of itself, so S is a member of a member of a member of itself and so on ad 
infinitum. 

In the domain of concepts there are collections that are members of themselves. For 
example the collection of ideas is itself an idea. No set that is a member of itself is well­
founded. 

Theorem. Any set of well founded sets is incomplete. In particular, if W is a set of 
well founded sets, then W is itself well-founded and W is not a member of itself. 

Proof. Any set W of well-founded sets is itself well founded. For if we look for a 
descending chain of membership in W, we shall have to choose a member of Wand look 
there. But that member is well- founded and so all chains of membership in that element 
terminate. W cannot be a member of itself, for then W would have an infinite 
descending chain of membership. Q.E.D. 

This Theorem tells us that the collection of all well-founded sets cannot be a set. For 
if AW is the collection of all well-founded sets, and AW is itself a set, then we know 
that AW is well-founded, but then since AW is ALL well-founded sets, we should have 
AW a member of itself. This leads to a contradiction. This is sometimes called the 
Well-Founded Set Paradox. It is usually solved by declaring that the collection of all 
well-founded sets is not itself a set. This result about well-founded sets has just the 
same logical structure as our discussion of the hypergame paradox in the introduction to 
the paper. In that paradox we defined hypergame as a kind of collection of all finite 
games. But hypergame as a game then becomes a finite game. The problem is that we 
cannot make hypergame one of the games that hypergame uses without falling down the 
rabbit hole. The structure of the paradox is the same. But for games it seems very 
strange to have to declare hypergame not quite a game. The pattern of this argument 
about the incompleteness of well-formed sets is the same as our construction of the 
Monkey Wrench algorithm W. Halting is analogous to being well-founded. 

5 Commentary 
We imagined a big, general-purpose computer that can run all sorts of algorithms in a 

single language in which it is programmed. Then we asked whether there is a program 
for this machine that can take any algorithm written in the machine's language and 
compute, in a finite amount of time, whether or not that algorithm will always halt. We 
showed that this cannot be done. Restricting ourselves to the one machine and its single 
language, there is no general solution to the halting problem. 

It is interesting to note that the oracles in religion and mythology are usually 
imagined to have some special source of knowledge not available to the ones who come 
to question them. The oracle of myth and legend has some special inside knowledge that 
lets her solve the problems. Perhaps such oracles exist! 
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5.1 Commentary by Parabel and Cookie 

Parabel. Well Cookie, do you buy this argument about oracles and lists and Losp 
and so on? 

Cookie. Parabel, I am glad you asked. There is something really funny about that 
argument Kauffman gave in the second section of this text. 

Parabel. What do you mean Cookie? 
Cookie. Well look here. He had a list of good useful algorithms, and then he made a 

new algorithm M so that M(N) is the result of evaluating the Nth algorithm at the 
number N. This is a rather nutty way to use all the known algorithms to do a 
computation. So Parabel, then he tries to put the algorithm on the list. Maybe M = AN 
for some N and this leads to a completely empty situation when Kauffman tries to 
evaluate M(N) under the assumption that M = AN. Trying to compute AN(N) makes 
the thing spin its wheels and we end up in an infinite loop! 

Parabel. This is like trying to figure out who you are. I try to see who is Parabel and 
my mind says, why you are Parabel! That is not helpful!! Why should self-identity have 
anything to do with finding clever ways to study algorithms? 

Cookie. It is rather astonishing how hollow and how significant is this ability to self­
refer that we all take for granted. I could just sit here and spin: 

"I am myself, tis I you see, I am I am I am I ... ". 
But curiously, I don't do that any more than two real players of hypergame would go 

on forever choosing hypergame. But when you make very strict rules for the algorithms 
to follow, then they behave like the automatic brooms in the sorcerer's apprentice and 
just keep multiplying nonsense. 

Parabel. It is our freedom of speech that allows us to exit the infinite loop. 
Cookie. Well Parabel, it seems that Kauffman is telling us that we had better be 

careful if we are only going to speak in one language. I am suspicious of this, after all I 
like to stay in English but I make up lots of new words and letters. Why just the other 
day, I made up the upside down A and the backwards E. And I make up the best new 
words all the time. Slithy, Outgrabe, Relicious, Wrench Monkey and so on. Everytime I 
do some new mathematics I make up at least ten new symbols and twenty new terms. 
My colleagues just love this! They immediately start chanting "Off with her head! Off 
with her head!" and I just know they are encouraging me to keep up the good work with 
my head and brain. So what is all this fuss about the limitations of using only one 
language? 

Parabel. Kauffman first showed that algorithms are inexhaustible by this loopy 
argument. Then he said suppose you have to program the whole thing in one language. 
Then you get a contradiction. He showed that there was no way to decide on halting if 
we were restricted to use a single language. I think this is encouraging. We could 
restrict our algorithms to a single language and then use lots of fancy languages to 
analyze them! 

Cookie. Well good luck to you there. By the way, I was thinking about another way 
to analyze the halting problem that goes straight back to Turing. You should look at (4]. 
He does it in a poem. Let me give you a flavor of it. 
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"Well, the truth is that P cannot possibly be, 
because if you wrote it and gave it to me, 
I could use it to set up a logical bind 
that would shatter your reason and scramble your mind." [4] 

Here P is that oracular algorithm that would decide the halting problem. Pullum has a 
poem that contains the proof. His proof is a rendition of the original proof of Alan 
Turing in 1936 [6]. Maybe we need a poem that goes beyond the proof! 
Do you think you could make a super-machine that would decide about all the 
algorithms we can write in Losp. It would have to be very intelligent. It would have to 
decide about problems like the Collatz problem in Section 2. It would be a super­
mathematician! I think we are all agreed that such algorithms are very unlikely to exist. 
But we will have a lot of difficulty proving that they do not exist if we give them 
complete freedom of language. 
Parabel. But freedom of language is our right and so we have to admit that the real 
question for the decidablity of the halting problem or the question of mathematical 
incompleteness is still wide open. Can all well-stated mathematical problems be solved? 
It may be that they can be solved in systems of thought unknown, unseen and unmet by 
us as of yet. I am going to show you a poem that was found in Kauffinan's papers from 
long ago. 

Pattern by Louis H. Kauffman 

Pattern reigns supreme 
To see and govern all the world 
And regulate the flowing stream 

Of conscious thought 
And perception's dream 

It blends and fades and reappears 
To form meaningfrom wondrous fears 

To ea tivate in human awe 

Written 1962. First ublished in 2 a e xi.) 
A symmetry with not a flaw 
It turns a graceful pirouette 

And cries again in places as of yet 
Unheard, unseen, unthought or met. 

Its cadences repeat and ring 
To echo to a cosmic beat 

And find in this polyphony 
The arded source o the discrete. 

Cookie. In chasing after the oracle that would solve all problems we are chasing 
after the principle of creation herself. All the ancient myths of oracles and myths of 
limitation as well apply here. It is good for us to join the quest and we must respect 
always the present but mutable limitations at each stage of the journey. 

Parabel. It is that guarded source of the discrete that we have been analyzing in this 
paper. Kauffman is showing us the strange and simple structure that guards our 
knowledge and leads us onwards to new forms and new patterns in the endless round. I 
think we should think about the way our thoughts do swirl about themselves when we 
look for an answer. 

Cookie. We seem to know when to stop in certain circumstances. In fact there is a 
notion of imaginary value due to George Spencer-Brown [l, Chapter 11] where this is 
understood to be a place in a circuit of distinction-operators where a value remains 
marked during a process of transition, only to turn off at the end of the process. The 
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mark that shuts itself off at the end of the process is regarded as an imaginary value. 
This mark acts to ensure that the circuit as a whole does not go into an infinite loop. The 
remarkable (and inevitable) property of this imaginary value is that it comes about 
through a part of the circuit that is seen to be an observer for the rest of the circuit's 
behaviour. But if you were to look at the structure of the circuit as a whole, you might 
be quite unable to tell that the circuit was observing itself in this way. You would just 
see a lot of operators in a circular interconnection. 

Parabel. Are you suggesting that this advent of imaginary values in the behaviour of 
distinction operators is analogous to the way our brain and nervous systems are 
interconnected? 

Cookie. Certainly I am suggesting this. We have evolved self-observing networks 
acting with imaginary values, that we call awareness, that can catch the system and shift 
it in directions away from infinite oscillations. It is of course only a speculation that this 
is the function of awareness. But I do believe that form follows function, and so we will 
find that everything that happens with us has its purpose. 

Parabel. You could compare this use of imaginary values with the model for 
observation in quantum mechanics. There, an observation momentarily stops the 
dynamics of the Schrodinger equation's evolution. Then the Schrodinger evolution starts 
up immediately, but a macroscopic and repeatable mark has been registered for the 
observer to notice. The usual distinction between the micro and macro levels in a 
system can be understood differently from this point of view. The macro levels are 
those places where a value or values have become relatively fixed. 

Cookie. These remarks of yours about quantum mechanics should be pursued. You 
are suggesting that there is nothing special about the "consciousness of the observer" 
that collapses the wavefunction, but rather that the system as a whole has built in self­
observations that generate imaginary values as we have just discussed. 

Parabel. We will have to formalize this in terms of a quantum version of networks 
of distinctions. This will give us something to do when we return to the void! 

Cookie. It just occurred to me that if we could see into the future, then there would 
be no problem at all with the halting question! 

Parabel. Oh no! Not that again. Do you really believe it? 
Cookie. Sure. I would just look forward into the full infinite future and see if the 

algorithm would ever stop. 
Parabel. Well then you would be a very special oracle, but you would not be a Losp 

program. 
Cookie. Sure. But who cares about Losp programs, I just want the answers. 
Parabel. Yes. I know you do, but there is something about this going on in our work. 

Take hypergame. It seems that we took hypergame to be a game before we found out 
that it was not a proper game. So we tried to make hypergame move into its own future. 

Cookie. Now you're cooking! That is just what I mean. We use algorithms that 
anticipate a future. We do. We do. When I got married, I said "I do." and that 
determined my future by anticipating it in the present. When I make a contract at the 
bank for a loan it is my present action that creates the future existence of the loan. We 
anticipate our own actions and create our futures in the process. What we do is a 
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function of our future state. There is no fixed world out there where these algorithms 
either halt or do not halt. This is a fantasy! 

Parabel. You should remember that you are nothing but a text on this page and stop 
getting such fancy ideas. But there is something right here. In order to forbid the set of 
all sets, you and I had to conceive of them. And having conceived of them, they exist, 
and so we did not really forbid them, we just made the Club Rules for dealing gently 
with them in the face of the logicians. Hypergame is a game whatever you say. But this 
business about the future and anticipating the future in terms of itself, I think we had 
better read those papers of Dubois and see how relevant his structures are to this 
discussion. [3]. The present need not be just a function of the past. It can be a function 
of both the future and the past. The present is a handshake or agreement of the future 
and the past. 

Cookie. Lets get back to particulars, I would like to see how you think about circuits 
the have signal transmission and feedback. Then future and past are in a mutual 
interlock. We can represent such a system by using a version of [ 1] where the basic 
circuit element looks like this: 

a ------► -;i 
Here I am using the Spencer-Brown mark to indicate an inversion of value. The 

right-angle bracket is the mark, and when it surrounds the value a, it denotes the 
inversion of that value. The inversion of the marked state is the unmarked state. The 
inversion of the unmarked is the marked state. The dark vertical bar also denotes a mark 
as inverter. It is indicated in this fashion so that a mark (inverter) can be part of a larger 
network of interactions. The individual mark makes a distinction between its inside and 
its outside. Here that distinction is between the lines that go into the mark on the left 
and the lines that leave the mark on the right. Lines that enter the mark on the left can 
carry different signals, but all the lines that leave the mark on the right carry the same 
signal. Each individual mark in a network makes a distinction between input and output, 
and inverts the input to form the output. 

Parabel. But wait a moment! I remember Spencer-Brown talking about this subject 
and he said that when he was making these designs there was a worry that the 
transistors in these inverters could act bi-directionally and so the arrow you describe 
could also go the other way! 

Cookie. Well, you are right about that. And it is a subtle matter to design circuits that 
will work no matter what is the direction of the inversion. So I have decided for this 
discussion to impose the extra ordering condition so that we do not have to worry about 
this very important subtle point! I hope that is ok with you. 

Parabel. I think you may be throwing out the baby with the bathwater when you do 
this, but ok. 

Cookie. Allright then. Let us use a dark circle to denote the marked state and a white 
circle to denote the unmarked state. 
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• marked state 

0 unmarked state 

el=o 
a=• 
00=0 o•=• ••=• These equations indicate how the states interact. 

•o 
Then we can have an always oscillating system like the following reentering mark. 

0 
A marked signal transmits an unmarked signal as it goes through the inverter. This 

system will oscillate. It is the paradigm of a non-halting algorithm. It is literally an 
infinite loop. 

Parabel. More generally, we can consider a collection of inputs to the inverter, and a 
collection of outputs. Balance at the given inverter will mean that each output is the 
inversion of the juxtaposition of the inputs. This is illustrated below for three inputs 
a,b,c and one output. 

: :)i 
C 

► o= abc I 

The reentering mark can be construed as a circuit in which an inverter feeds back its 
output directly to the input. The result of such an interconnection is an oscillation 
between the initial state and its inversion. Such an interpretation assumes that there is a 
time delay between the production of the output and the processing of the input. If there 
is no time delay, then we are in a state of eternal change. The inputs are combine 
according to the rules for the marked and unmarked signals. Thus if a,b or c are marked 
then the output is unmarked. For example: 

~71 ► O 
0 

8)1 ... 
0 

It is possible to have a circuit that does not oscillate. If we connect two of the inverting 
marks through one another then we get a circuit with a double-negation that has two 
balanced states as shown below. 
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This is form of a basic memory element. The balanced states are halted conditions 
for circuit. 

A more diabolical setting would be to have both sides simultaneously unmarked. 
The resulting state of the memory is then the unstable configuration shown below. 

~ 
Each mark in the memory is unbalanced. The first mark to transmit a marked state 

will win the race and propel the memory into one of its two stable states. If it is possible 
for both marks to "fire" at once, we would arrive at the other unstable state where both 
sides are marked. In physical practice (with transistors) this simultaneity will not 
happen, and the above unstable state will fall to one or the other of the two stable states, 
just as it does in our transition model where one mark reacts faster than the other. 

Parabel. It is this diabolical indeterminate state that I think is a precursor, or 
possibly a KEY to quantum computing. You see this state could be regarded as just 
oscillating very fast between both sides marked and both sides unmarked at some 
quantum level. And the slightest observation will flip it into one of the two balanced 
states for the memory. It is very much like a qubit in the realm of quantum computing. 
We'll have to discuss this in our next collision of texts. You do remember, Cookie, that 
we are only texts. 

Cookie. As far as I am concerned, we are imaginary discussants and imaginary 
discussants are texts. Anyway, in practice, unstable memory conditions such as the 
above can occur, and it is interesting to see how to design a circuit that will transit to 
only one of the two possibilities. Consider the circuit below. 

a N= aIM I 
M= aNl 

I=NM I 
In this circuit we have eliminated the arrows that indicate direction of signals through 

the inverters and have used the convention that signals travel through each inverter 
from left to right. This suffices to fix all other directed lines. The memory consisting of 
M and N has an input a, and there is one more mark in the circuit labeled I. If a is 
marked, then N and M are unmarked, forcing I to be marked. This is a stable condition 
of the circuit so long as a is held in the marked state. 
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a= 7 --•=--...-:::..._....,--
If now, we let a change to the unmarked state, then the circuit becomes unbalanced at 

M only, since I continues to put out a marked state. 

(now ummrked) 

a=O ---"""'---.r----
unbalanced here 

a= 0---"""'-----

In the diagram above, we show how the change of a to the unmarked state gives rise 
to a transition of M to the marked state (1) and that this forces a transition of I to the 
unmarked state (2). The resulting circuit is balanced and the transition to this state of the 
memory is determinate. 

The addition of the mark I to the circuit enabled the determinate transition. In fact, I 
acts as an observer of M and N who feeds back the inversion of the or of M and N to 
the input to N. The result is that I is marked at the point of transition, holding the state 
at N in balance. For any choice of time delays, this condition of I can be arbitrarily 
small, but significant in forcing the transition. 

We see that a circuit can be construed as a self-observing system, and that this 
condition of self-observation can radically influence its behaviour. The way the circuit 
behaves in the relation of I and N can be said to be an imaginary value. In terms of 
circuit design, we can use such imaginary values to influence the structure of the design 
and make otherwise indeterminate circuits determinate. We say that a pair of markers in 
a circuit has an imaginary value if there are transient states at one marker that influence 
the transition behaviour of the other marker. Just so the marker at N is held first by I and 
then after N changes to the marked state it is held by N and I is released to the 
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unmarked state. The sequence of these events is structural and independent of the time 
delays in any application. 

Self-observation can occur in a circuit without such transient states. 
The circuit below is an example. It is a modulator in the sense of Spencer-Brown. That 
is a given frequency waveform input at a results in an output waveform of one-half the 
frequency at b. 

Kauffman discovered this circuit in 1978 when studying Laws of Form. It is similar 
to circuits in Chapter 11 of Laws of Form, and it accomplishes the modulation without 
using any imaginary values using only six markers. Spencer-Brown gives an example in 
Chapter 11 of a modulator with six markers that uses imaginary values. The reader will 
enjoy making the comparison. 

To see how this circuit operates, I have illustrated one stable state and one transition 
below. In showing the transition, I have only shown the end result. The reader will find 
that this is an example of a determinate transition. 

Note also that in the next transition, the value of b will not change. There is a four­
fold cyclic pattern in the transitions, with b changing every other time . 

a • 

0 

a 0 
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Modulators like this one are the building blocks for circuits that count and are often 
called flip-flops in the engineering literature. There is much more to say about this 
circuit structure and its relationships with computer design, information and 
cybernetics, but we shall stop here, only to note that this is an aspect of Laws of Form 
that goes far beyond traditional Boolean algebra, and is well-worth studying and 
working with as a research subject. 

Parabel. To summarize this last part of our conversation, we have seen that 
modulators, built by circular interconnection of inverting operators (the process behind 
a distinction that is the distinction) can create counting circuits and hence universal 
Turing machines. I am sure that they can do much more, but it is very significant that 
they can do even this. They are a realm of reflexive recursive structure, just on the 
border of paradox that are contained away from paradox and non-halting conditions by 
self-observation and corresponding imaginary values in the circuit transition. All our 
arguments about the unsolvability of the halting problem in specific languages still 
apply to the Turing machines one might build from these modulators. But this 
construction gives one pause. The boundary is now shifted from sequential logic 
underlying the analysis of machines and languages to recursive, reflexive and self­
referential structures that are in fact the primary support for all our attempts at the 
clarity of sequential and Boolean thought. Does the halting problem remain unsolvable 
at this more fundamental level? 

Cookie. You have me spinning now. 
Parabel. That is good. Maybe you can enter a quantum state. It is time to say 

goodbye. 
Cookie. Goodbye. 
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