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Abstract
Rose-Hindmarsh model is a simple and typical system for describing neuronal firing
activities. This paper studies its chaotic firing phenomena, identification of unstable
periodic orbits and chaos control in certain parameter regime. Firstly, inegular firing
behaviors of the model are proved to be chaotic by numerically calculating the
attractor's Lyapunov exponents and fractal dimension. Secondly, low order unstable
periodic orbits embedded in the chaotic attractor are identified by simply analyzing
interspike interval time series in their return maps. Finally, chaotic firings are stabilized
to the period one and period two firing pattems respectively by delayed feedback control.
Our preliminary work shows that the method of identification of unstable periodic orbits
combined with delayed feedback control can effectively suppress irregular chaotic
firings for the model. The technique presented in this paper is in accordance with those
features of neuronal systems and may be a simple and actuated scheme for controlling
chaotic firings ofreal neurons in physiological conditions.
Keywords: Rose-Hindmarsh model, chaotic firings, interspike interval, time series,
delayed feedback control

I Introduction

Rose-Hindmarsh (RH) model is a simple and typical system for describing neuronal
firing activities (Hindmarsh and Rose, 1984). It will exhibit abundant nonlinear
phenomena such as bifurcation and chaos, when parameters of the system are varied.
Thus it has aroused much interest in literatures recently. However, the problem of
controlling chaotic firings for the system still remains unexplored.
Because chaotic firings are complicated, traditional control methods can not be applied
to them directly. Ott, Grebogi and York (Ott et al, 1990) (OGY) have suggested an
efficient method of chaos control that can eliminate chaos in 1990. Since then, the
studies on chaos control have lead to more extending interests. Taking OGY method as
starting point, many new revised methods are induced. At the same time, many new
chaos control methods are brought out and applied also. The chaos control techniques
are applied in different systems, and good results are obtained. Taking bio-medical
engineering for example, Garfinkel et al. applies PPF (Proportional Perturbation
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Feedback) chaos control method in cardiac chaos control firstly (Garfinkel et al,
1992), then, Schiff et al. applies OGY chaos control method on controlling chaos in
brain (Schiff et al, 1994). The chaos control methods win important studying values in
the field of bio-medical engineering.
The paper is organized as follows: we will briefly introduce RH model in Section 2.
Chaotic firing behaviors of the model will be investigated in Section 3. The
identification of unstable periodic orbits and chaos control will be given in Section 4
and 5 respectively. Discussions and Conclusions will be drawn in the last two parts
respectively.

2 Rose-Hindmarsh Model

The model is presented to describe neuronal firings by Rose and Hindmarsh. It is
govemed by the following three dimensional nonlinear differential equations:

d x l d t = y - a x 3  + b x 2  + I - z

d y f d t  = c - d x ' - y

dzf dt = r(s(x - xr) - z)

in which x represents the membrane potential. y is the recovery variable. z is an
adaptation current. r, a, b, c, d, s, x1 are constants. 1 is the applied current. This typical
model has received great interests because of its simple form. Recently, Holden and Fan
studied the nonlinear dynamic behaviors of this model under different parameters. They
found the conditions and forms for this system to be bifurcation and chaotic firings and
explained their mechanism (Holden and Fan, 1992).

3 Chaotic Firings

In order to investigate the irregular firings of RH model, fourth order Runge-Kutta
method is applied to integrate equations (l) with the time step 0.05. The parameters are
set as followsz a:1.0, b:3.0, c--1.0, d=5.0, xt:-L.6, I:3.1, r:0.014. After jumping off
transient process, the output time history of variable x and the projection of strange
attractor in x-z phase plane are shown in Fig.l (aXb). At this time, it can be seen that the
neuronal firing pattern is inegular. Results of numerical calculating the system's
Lyapunov exponents are given below (Logarithm takes 2 as base) (Wolf et al, 1985):
1r=0.0120469>0, ).2=-0.0000600373"0, h=-12.72806<0. From the fact that the

first Lyapunov exponent ,i, is larger than zero, we can conclude that the inegular firing

activities of this neuron is chaotic. According to the Kaplan-Yorke hypothesis (Kaplan
and Yorke, 1979), we can get the dimension for the attractor:

DL =2+0.0l2Ùoî%r.rrrr'=2.000946. Since it is a fraction, the athactor in phase plane

is a strange one.
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Fig.l (a): The output time curve of chaotic firings for variable x. The horizontal
coordinate is integral steps. The vertical coordinate is amplitude. (b): Strange atfactor in
x-z phase plane. The horizontal coordinate is x. The vertical coordinate is z

4Interspike Interval Time Series and Unstable Periodic Obits

Because the neuronal firing behaviors have an all-or-none property, the information
conduction is just related to the time intervals of action potential trains. As a result,
recording and processing the data formed by continuous pulses is an important technical
means in monitoring variations of neuronal firing activities in experiments. Here our
numerical process of obtaining time series from the RH model resembles to that of real
physiological experiments. First, we record the time beings of occurrence of action
potentials, t t ' t2, . . ., according to the output of membrane potential x. Then, we calculate
their time intervals between two adjacent pulses, Lt,=t,,r-r,, which are called
interspike intervals (ISD. At last, the ISI data are arranged according to their sequences.
Substantially, the process of obtaining actional potential trains matches with the
Poincare section method which is widely used in the numerical investigation of
nonlinear dynamical systems (Gong et al, 1998).
As shown in Fig.2(a), a smooth cwve is obtained by plotting the first retum map from
the ISI time series of chaotic firings. This indicates that the inegular firings are indeed
determined by a deterministic frrnction rather than a stochastic process. Because the
smooth curve has only one maximum, it is called one hump map. It must be noted that
although one hump map is simple in its form, it is the most convincing evidence to
judge the existence of deterministic chaos. To our knowledge, it is also the simplest
form of chaos ever recorded in real neuronal firings in electrophysiological conditions
(Xu et aI, 1997). Numerical analysis shows that the largest Lyapunov exponent of the
ISI time series determined by the one hump map is (Logarithm takes e as base) (Gong,
1998)2,"- =0.2639 >0.It is larger than zero which also indicates that at this time the
inegular firing activities of the neuron is chaotic.
Since infinite unstable periodic orbits make up a chaotic attractor's frame, and chaos is
mainly determined by low order unstable periodic orbits and their neighboring points,
we should first determine the desired periodic orbits in order to control irregular chaotic
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firings. In fact, one can get the periodic orbits with ease by just analyzing the ISI time
series. As shown in Fig.2(a), curve 1 intersects with 45-degree line at point A. It is just

the period one orbit with a period of 4L65.In Fig.2(b), curve 2 intersects 45-degree line
at point B and point C. They are just the period two orbits. Their values arc 17.4 and
48.55 respectively, so the period is the sum of these two,i.e.,65.95.

Fig.2 (a): Curvel is chaotic firings ISI map. The horizontal coordinate is ISI', the
vertical coordinate is ISIn*r Curve I intersects 45-degree line at point A, it is period-
one orbit. (b): Curve 2 is chaotic firings ISI map. The horizontal coordinate is ISI'. the
vertical coordinate is ISIn*z Curve 2 intersects 45-degree line at point B and point C,
they are period-two orbits

5 Delayed Feedback Chaos Control

After the presentation of the famous OGY method, many chaos control techniques such
as the adaptive control, the resonant parametric pertrubation, the entrainment control
and the migration control are brought forward. Every control method has its own
advantages, but it is also constrained for its disadvantages. In 1992, Pyragas presented
two methods for controlling continuous dynamical systems (Pyragas, 1992). Both
methods are based on the construction of special form of a time-continuous perturbation,
which does not change the form of the desired unstable periodic orbits (UPOs), but
under certain conditions can stabilize UPOs. Of these two control methods, the delayed
feedback control method is particularly convenient for experimental applications. It can
be canied out by a simple analogue technique. The feedback is self-controlled and the
method does not require an analysis of the system, so it is more practical than the OGY
method for experimental realizations.
From eq. 1, one can see that for the RH model, state variable x is the membrane
potential which can be recorded in physiological experiments. Variable 1 is the
stimulating current which can be applied and adjusted from outside. Here we try to
control neuronal chaotic firings by adopting delayed feedback control.
Because x is a measurable variable of the system output, the controlled perturbation F(r)
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is applied to the first equation of system (l). The equations added with F(r) is showed as
eq.2t

dxfdt = y-ax3 +bx2 + I  -z+ F(t)

d y f d t = c - d x ' - y

dzf dt = r(s(x - x) - z)

Here, F(t) is defined in eq. 3:

F(t) = Kfx(t - t) - x(t)l= KD(t)

Here, r is a delay time. K is an adjustable weight of the perturbation. If this time
coincides with the period of the ith UPO r:Zi then the perturbation becomes zero for
solution of system (l) conesponding to the uPo x(t-r)--x(t). This means that
perturbation in the form (3) does not change the solûion of system (l) conesponding to
theithuPo.
To achieve the stabilization of the desired UPo, two parameters r and K should be
adjusted in experiment.
According to the previous analysis, the period-one and period-two orbits are controlled
respectively. For the period-one orbit, select parameter K:0.48, r =41.65. For period-
two orbit K:0.66, r :65.95. The controlled output figures in time domain, excluding the
transient process, are shown as Fig.3(a)(b). In order to display the controlled effects
more manifestly, the ISI map after controlling the period-one orbits is shown as point D
(indicated by dense color) in Fig.a(a). The point D is just dropped on the point of
intersection between curve I and 45-degree line. This illustrates that the controlled
perturbation has not change the quality of neuronal firings themselves. After the period-
two orbit being controlled, the variable process of ISI map from chaotic firings to
periodic firings is shown as Fig.a(b). The controlling starts at 100000 steps. The chaotic
firings distinctly disappear.

(2)

(3)

0 5000 10000
(a)

5000 10000
(b)

Fig.3 (a): After period-one orbit being controlled, variable.r output figure in time
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domain. (b): After period-two being controlled, variable x output figure in time domain.
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Fig.4(a): After period-one orbit being controlled, the ISI map. The horizontal coordinate
is ISI'. The vertical coordinate is ISIn+r Point D is dropped on the point of intersection
between curve I and 45-degree line. (b): After period-two orbit being controlled, the
variable process of ISI map from chaotic firings to period-two orbit. The horizontal
coordinate is steps, coordinate value multiply 100000. The vertical coordinate is ISI.

6 Discussions

In summary, we numerically prove that the inegular firings of the RH model in certain
parameter regime is chaotic. The unstable periodic orbits embedded in the chaotic
attractor are identified by analyzing the ISI time series.
The irregular firing behaviors ofthe neuronal system are stabilized to the period one and
period two firing pattems respectively by delayed feedback control. Our scheme for
identifring unstable periodic orbits and controlling chaos is in accordance with those
features of neuronal systems. It seems very simple in principle and prone to realize in
experiment.
First, adopting ISI map can exactly identifr the desired controlled periodic orbits. After
adopting delayed feedback signal and adjusting the feedback weight properly, RH
neuronal chaotic firings can be controlled very well.
Secondly, because the selected output variable is measurable in reality and the
perturbation can be import into system in some way, the method can be realized in real
experiment. If adopting analogue signal to control the system, only a simple delay line is
required. If adopting digital signal, DSP (Digital Signal Processor) can easily realize it.
Finally, it should be pointed out that during the process of coding and conducting
information, noise is not only unavoidable but also widely exits for real neurons. Now
its possible positive effect called stochastic resonance is receiving great attentions
(Wiesenfeld and Moss,1995; Gong et al,l998). But noise will bring much difficulty in
identifing periodic orbits from ISI data directly measured in experiments. However,
recent studies show that with a simple nonlinear noise reduction technique, one can

(a)
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effectively dispart and exclude noise components from chaotic signals by preprocessing
noisy experimental ISI data (Gong et al,l999). Thus, it can be expected to identiff
periodic orbits from experimental ISI data with accwacy.

7 Conclusions

This paper studies the chaotic firings phenomena and delayed feedback control approach
of Rose-Hindmarsh model, which is a simple and typical system for describing neuronal
firings activities. It is validated by numerical calculation that the low order unstable
periodic orbits emmbedded in the chaotic attractor of this model can be identified by
analyzing interspike interval time series in their return map and the chaotic firings can
be stabilized by properly applying delayed feedback control approach. The scheme
presented in this paper is simple in principle and can be further realized to analyze and
control chaotic firings ofreal neurons in physiological conditions.
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