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Abstract

This paper presents an integrated Bayesian solution to the problem of object location es-
timation, object recognition and sensor action planning under uncertainty. The emphasis
is on finding the best next sensing action.

The method uses elementary notions from Bayesian decision theory. The best action
is found as the one that optimises the expected value of a utility function, which is
the logarithm of the volume of the uncertainty ellipsoid around the estimate of a target
position.

An example shows that this method is capable of controlling the sensing actions of an
ultrasonic sensor mounted on a robot, where the target is to accurately position a drill
on a cylinder before drilling a hole.

The presented algorithm is easy to apply and computationally tractable.

Keywords: sensor planning, uncertainty, Bayesian decision theory, ultrasonic sensing,
teleoperation.

1 Introduction

Finding a good viewpoint is a problem of everyday life. If you are uncertain as to where
you are in a large forest, you will purposefully look for information. However, deciding
where to look and how much effort to spend to get more certainty on your situation is a
nontrivial problem: an action which you think will yield a lot of information may be very
expensive, and drive you further away from your goal, whereas less informative actions
may divert you a lot less from what you assume is the right track ...

This paper solves a similar problem in an industrial environment: given our current
incomplete and uncertain knowledge on the identity and location of objects, and given
a set of noisy sensors, the problem is to develop an intelligent sensing behaviour that
reduces the uncertainty on the goal as fast as possible. If the task is e.g. to drill a hole
in a workpiece with a well-defined tolerance, then the goal is the drill position on the
workpiece.
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Figure 1: A nuclear work cell. Operations in such a cell are very similar to what happens in
a ordinary factory workshop, except that work cannot be done hands-on due to radiation.
The operator is looking through a lead glass window into the cell. The cell shown here is
equipped with traditional mechanical master-slave manipulators.

We propose an entirely Bayesian decision-theoretic solution to this problem, which
finds, at each time step, the next action that minimises the expected value of a utility
function. This utility function relies on a measure of uncertainty (or conversely, a measure
of information), equal to the volume of the uncertainty ellipsoid of the covariance matrix.
The sensing behaviour can be influenced by adding extra terms to this utility function,
e.g. expressing risk, elapsed time, etc.

This solution establishes sensing strategies which people usually agree upon as being
acceptable. We do not claim to have the unique optimal strategy, which does not exist.
However, we do claim that we have a simple strategy which is computationally tractable,
and which can be integrated easily with Bayesian algorithms for object location and
recognition, as will be shown.

This paper first puts the active sensing problem in the context of our application,
Section 2. Section 3 gives a flavour of the research being done in the field of sensor
viewpoint planning. Section 4 then outlines our approach to sensor planning, and briefly
reviews our previous work on Bayesian object location and recognition, necessary for
understanding the remainder of this paper. Section 5 presents our decision theoretic
approach to solving the viewpoint planning problem. Section 6 illustrates this with some
examples.

2 Towards a Decision-Support for the Location and Recognition
of Objects in a Nuclear Environment

The goal of this work is to automate some parts of teleoperated tasks for which accurate
geometric information is important, such as assembly, cutting, grasping or drilling. This
work concentrates on applications in high radiation fields in which human intervention is
impossible, conditions which frequently occur in nuclear work cells, as shown Fig. 1, or in
future fusion reactors.

Under these extreme radiation conditions, the choice of sensors becomes very critical
(Decréton 1995): The most robust sensors are those with simple transducers and remote
electronics, such as optical detectors, some ultrasonic sensors, some types of force sensors
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Figure 2: Robust radiation-resistant sensors. The left figure shows a robot equipped with
an ultrasonic sensor and an infra-red optical detector. The ultrasonic sensor measures the
distance to a surface. The infra-red sensor returns an output voltage which is a function
of the intensity of the reflected light, and is used to detect edges. The white probe (right
figure) is used to explore the environment by touch, very much like the visually impaired.
A force sensor measures the forces on this probe in six dimensions (three forces, three
moments)

etc., Fig. 2. In contrast to this, the performance of more complex sensors such as CCD
cameras. degrades quickly.

These robust sensors however return only local measurements, such as the distance to
a point on a surface, in contrast to cameras which return a huge amount of information
in one shot, of which usually however only a small amount is relevant. Image processing
requires immense computing power mainly to throw away irrelevant data. In contrast to
this, the data of local sensors is necessarily more sparse and very precious. Therefore, our
approach is exactly the opposite: to purposefully gather information so as to maximise
the information content of each measurement. This approach is often referred to as active
sensing (Bajcsy 1988).

Local data is, for a human operator, far more difficult to interpret than the data of
more anthropomorphic sensors such as cameras. Therefore, it is our aim to construct a
decision aid for the human operator, that assists him in estimating the position of objects
from the sensor data, in recognising objects, and in planning the next measurement. The
methods proposed in this paper are the core of such an operator support.

Note that, although our work is driven by nuclear applications, obviously the develop-
ments are also useful to every other application domain where sensor data is not available
for free. In addition, local sensors can also be useful in non-hazardous domains due to
space or weight limitations: these small sensors can be added to every tool, or even the
tool itself can be effectively used a a measurement probe. This opens new perspectives for
sensor-based robotics, as one of the major criticisms up to now is the lack of robustness
of sophisticated sensors.
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3 Relation to Previous Work in Action Planning

The problem of finding the best action has been solved in many ways and for many
purposes.

Many have studied the problem of planning the optimal trajectory for a mobile robot,
from start to finish, in order to reach a certain goal state, see e.g. (Barraquand and Ferbach
1995; Bouilly, Siméon, and Alami 1995; Erdmann 1995; Page and Sanderson 1995). Others
prefer to plan only one action or one time step ahead, see e.g. (Das, Beni, and Hackwood
1992; Kristensen 1995). This approach only maximises the reward of the next action, at
the expense of the risk that the total reward of all future actions may be lower than for
another action. Despite this, we prefer to look only one step ahead for various reasons.
First, optimisation from start to finish is often computationally intractable (Barraquand
and Ferbach 1995). Second, a fairly accurate model of the environment is needed to
compute a useful action plan. Unfortunately, our task is exactly to model (part of) this
environment. In this case, the action plan should be recalculated each time the model is
updated. In addition, computing the action plan beforehand is not useful if the world is
dynamic.

Uncertainty can be described with error bounds, see e.g. (Erdmann 1995; Page and
Sanderson 1995) or with probability density functions (PDF), see e.g. (Barraquand and
Ferbach 1995; Borghi and Caglioti 1995; Das, Beni, and Hackwood 1992; Whaite and
Ferrie 1997; Kristensen 1995). In both cases, finding the best strategy amounts to playing
a game, where the opponent is Nature. If Nature's behaviour can be described with a
PDF, finding the optimal strategy reduces to an optimal control problem (LaValle 1995).
If uncertainty is described by sets, calculations become more difficult as the dimension
of the problem increases, see (Hager, Engelson, and Atiya 1993) for a discussion. In
addition, stochastic methods usually give better point estimates, while the set based
estimation methods are better at calculating bounds on the solution.

There can be uncertainty on the state of the world, on the dynamics of the robot
system and on the measurement of the sensing system. (Bouilly, Siméon, and Alami
1995) assume that the world is known exactly. Many authors implicitly assume a quite
accurate world model, as discussed above. The presented solution can handle the most
general case.

Most of the solutions in literature only deal with situations in which there are a discrete
number of world states and a discrete number of actions, see e.g. (Kristensen 1995). Our
approach can handle discrete sets of continuous states, and a discrete set of continuous
actions.

The presented approach to action planning is most closely related to the methods
proposed by (Borghi and Caglioti 1995; Whaite and Ferrie 1997; Kristensen 1995). These
solutions (i) can cope with uncertainty in the environment, the sensor and the dynamics
of the positioning device, (ii) look only one step ahead. As in (Borghi and Caglioti 1995;
Whaite and Ferrie 1997; Subrahmonia, Cooper, and Keren 1996), we use the determi-
nant of the covariance matrix as a measure for the information in our utility function.
At present we do not yet consider other costs in the utility function. See e.g. (Cook,
Gmytrasiewicz, and Holder 1996) for an application with a more complex utility function.
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4 Our Approach to Object Location and Recognition

This section briefly reviews the solution we adopted for locating and recognising objects.
For more details, the reader is referred to (De Geeter et al. 1996; De Geeter et al. 1997;
De Geeter et al. 1997).

Sensor measurements contain two sources of uncertainty: (i) uncertainty on the mea-
surement value (usually called sensor noise) and (ii) uncertainty or ambiguity on the
origin of the measurement. i.e. uncertainty as to from which feature from which object
the measurement originates. The Kalman filter (KF), Section 4.1 deals with the sensor
‘noise, while the multiple hypothesis tree (MHT), Section 4.2 deals with the ambiguity.

4.1 Object Location: the Smoothly Constrained Kalman Filter

This section only briefly reviews the Kalman filter (KF), to fix notations. For more details
on the KF, the reader is referred to (Bar-Shalom and Li 1993; Gelb 1974; Kalman 1960;
Sorenson 1985).

The task of the estimator is to calculate the position of an object together with its
variance, given the measurement, and given a hypothesis on the origin of the measurement.
A KF is a linear stochastic weighted recursive least squares estimator, which is perfectly
suited for this task if all equations are linear. Unfortunately, nonlinearities can prevent
the estimate from converging to the true value. In our application, objects are described
as a collection of simple geometrical features, such as planes or cylindrical surfaces, with
constraints defining their relative position. The state of an object is uniquely described
by a vector x, called the state vector. A constraint is any relation that exists between
state variables of x, such as the distance between the two planes of a cylinder. The SCKF
is an evolution of the classic KF, able to integrate nonlinear constraints into the estimate,
while avoiding to corrupt the estimate with an important bias due to linearisation errors
(De Geeter et al. 1997; De Geeter et al. 1996).

Input to the KF on time step i is (i) the KF estimate &;_; calculated on the previous
time step, together with its covariance matrix P;_;, and (ii) the new measurement z;
with the measurement equation

z=H;xz + p,, (1)

where H; is the measurement matriz, and p; is zero-mean normally distributed white
noise N(0, R).

H; and p; are defined by the chosen sensing action a;. this dependency is not explicitly
shown in oder not to overload notations. Is is however through this dependency that the
sensing planning strategy can influence the result of the estimator.

Output from the KF is (i) the new estimate &;, P;, (ii) the innovation v; with variance
S;, calculated as follows:

v, = z;—- H&; ,, (2)
S; = Ri+HP,,HT, (3)
K; = P,_,HTS;!, (4)
z;, = .+ Kw;, (5)
P, = I-K:H,)P:,, (6)

where K; is the Kalman gain matrix.
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Figure 3: Definition of the MHT. The two top levels are respectively a level with only one
root node, and a level containing a list of object models relevant to the current task, here
only a cylinder and a box. Every node on one (regular) level corresponds to a hypothesis
about the origin of a particular measurement (i.e. the object feature corresponding to the
measurement). This feature is shaded in grey.

4.2 Object Recognition: The Bayesian multiple hypothesis tree

The multiple hypothesis tree (MHT) keeps track of different local scene models, each
corresponding to a set of hypotheses on measurement-feature associations, until there is
sufficient evidence to discard some of them.

The MHT is defined as follows, Fig. 3. The top level consists only of a (dummy)
root node. Immediately below is an exhaustive list of all object models relevant to the
current task, in this case only a cylinder and a box. Only one of these models corresponds
to the object present in the real scene. Each regular level in the MHT corresponds to
one measurement. Each node on a level corresponds to a hypothesis about the origin
of this measurement (i.e. the object feature corresponding to the measurement). This
feature is shaded in grey in Fig. 3. Each node contains an estimate of the location of the
assumed object. The set of leaf nodes corresponds to the set of hypotheses currently under
consideration. A path from a particular leaf node to the top node of the tree describes the
set of hypotheses underlying the estimate of the leaf node, i.e. the history of an estimate,
going back in time as one goes up in the tree.

This paper concentrates on problems in which the object to locate is known to be
one out of a list of object models, so each level in the MHT contains exactly one correct
hypothesis.

This tree is pruned by checking the residual error of the estimate corresponding to each
leaf node. This residual error is equal to the Summed Normalised Innovation Squared
(SNIS) (De Geeter et al. 1997), defined as follows:

i
B P e Y P8y (7)
k=1

which is x2-distributed with 3%_, I degrees of freedom (dof), where I, is the number of
statistically independent measurements in vector z;. Note that oSN can be calculated
from o$N5, and v; and S; ' which are calculated by the KF.

The probability p; of each leaf node j being the correct one is simply proportional to the

probability of the value of o5 according to its x2-distribution, with a normalisation to

make sure that the probabilities on one level of the tree sum to 1, as the list is exhaustive.
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Table 1: The decision table contains the utility v;; of an action a; if the world is in state
S]'.

5 Decision Making Under Uncertainty

The MHT summarises at each time step the current knowledge on the state of the world,
and hence serves as the basis for planning sensing actions.

Section 5.1 first explains the decision-theoretic approach for the simple classic case
where a choice has to be made from a discrete set of actions, and the world can only
be in a discrete set of states. Section 5.2 then extends this method to the case corre-
sponding to the lowest level of the MHT: the choice from a discrete set of continuously
parametrised actions, where the state of the world can be any of a discrete set of contin-
uously parametrised states.

5.1 . Finite Set of Actions, Finite Set of States

A choice must be made from a set of actions A = {ay,as,...an}, but the desirability
of each of these actions depends on “the state of nature”, which is a value from the set
S = {s1,82,...,5,}. The states in S are mutually exclusive and the set S is exhaustive
for the current decision making problem. Here we assume that the decision maker has
available a probability distribution P = {p;,ps,... ,pn} over the set S, describing the
probability of each possible state of nature actually being the true one.

Each action-state pair (a;, s;) has a consequence or outcome. We assume here that
the preference of the decision maker for each of these outcomes is expressed by a utility
function. Then, the decision problem can-be summarised as in table 1. For action a;, the
expected utility ua; = p1uji + pauje + ... + Prljn.

We define as the “best” action the one that maximises the expected utility, or a* =
max,; ua;. Other decision criteria than the maximum utility exist. see (Duncan Luce and
Raiffa 1957) for a discussion.

5.2 Finite Set of Continuously Parametrised Actions, Finite Set of Continu-
ously Parametrised States

In this case, a choice must be made from a discrete set of continuously parametrised actions
A = {a,(v1),a2(v2), . ..am(vm)}, where v; is a vector of continuously varying parameters.
The type and number of these parameters may differ over the actions. The state is one
out of a finite set of continuously parametrised states S = {s1(x1), s2(x2),. .., sn(Ta)},
where z; is a vector of continuously varying parameters. The type and number of these
parameters may differ over the states. Again, we assume that a probability distribution
P is available over the set S, P = {p1,p2,... ,pn}. In addition, we assume that a PDF
pzj(x;) over the parameter x; of each state s;(z;) is available.

Again, several definitions of “best” action are possible. We consider as best action
a*(v*) = max,; (maxvj uaj), ie. first, for each type of action a;, the parameters v}
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are determined which maximise the expected utility, and second, this action a*(v*) from
a;(v}) is selected which has the maximum expected utility.

5.3 Utility Function

Our objective here is to reduce as fast as possible the uncertainty on a goal location, e.g.
the position where to drill the hole. In the most general case, this goal position x9 is
not identical to the estimated state x, but is calculated from it with a transformation #:
9 = t(x). The dimension of vector =9 is smaller then or equal to the dimension of = (or
x is usually a non-minimal state description of the goal position?!).

A measure for the uncertainty on the goal location is the volume of the 1-o uncertainty
ellipsoid of the PDF. The uncertainty ellipsoid is defined by the covariance matrix of the
PDF of the goal location as follows.

The estimated goal location &7 and its covariance are calculated from the state estimate:

T = (&), (8)

P! = 4 Pit7, (9)
where ¢; = % 4. is the Jacobian of transformation ¢. The singular value decomposition
of P; is given by Bors

P, =U,DUT , (10)

where D; is a diagonal matrix of the singular values, and U; is a rotation matrix. The
square root of a singular value corresponds to the length of a principal axis, while the
orientation of these principal axes is given by U;. The volume of the ellipsoid is given by
det(/lsf), which is also equal to the product of the singular values of ﬁ,g

We then define the utility of an action ua; as the logarithm of the expected value of
the volume of the uncertainty ellipsoid on the next time step:

ua; = log det(P7,,) , (11)
which is a function of the action: expanding expression (11) with Egs. (9,6,4), yields:

ua; = logdet(t; PiyitT), -
log det (¢;(I — ﬁ1HzT (R: = HiﬁiHiT)_l H’)T)'t’T) ' (13)

Now, the Jacobian H; depends on (i) the type of action, (ii) the parameters of this
action, (iii) the state hypothesis. This dependency is exploited here. Note that. if the
measurement equation is linear, H; is independent of the state estimate, and hence the
complete sensing strategy can be planned beforehand!

5.4 Discussion

This type of utility function is well-known in literature on optimal experiment design
for system identification, see e.g. (Goodwin and Payne 1977; Mehra 1974; Zarrop 1979).
There, the utility or cost criterion is usually written as logdet M, where M is the

!Note that the description of an object as a collection of features is already a non-minimal state
description for the object, as explained in Section 4.1, and illustrated in Section 6.1
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Fisher Information Matrix, which is the inverse of the covariance matrix for Gaussian
' distributions. This cost criterion leads to the so-called D-optimality. Other frequently
| used cost criteria based on the Fisher Information Matrix are trace(W M ™!) leading to
‘ L-optimality, where W is a symmetric nonnegative definite weighting matrix, A, (M ™)
leading to E-optimality, where X is an eigenvalue of M %
These are some interesting properties of a D-optimal design:

‘ o The optimum is invariant to transformations with non-singular Jacobians. With
these transformations, the location of the minimum does not change (its value how-
ever does change). An example is a scaling transformation. An transformation for
which the minimum is not invariant is e.g. the transformation ¢ from state space to
the lower-dimensional goal space. E.g. the examples of Section 6.3.1 and 6.3.2 have
a different goal, which gives rise to a different sensing strategy.

o All units in the utility function are consistent. This is merely a rephrasing of the
previous property: if the units are consistent, a change of scale multiplies every term
by the same scalar, and hence the minimum is invariant to this transformation. This
is not the case with L- and E-optimal designs.

o This utility function does establish a preference for ‘poorly observed’ directions, de-
spite the fact that reducing a singular value corresponding to a well observed direc-
tion has exactly the same effect on the volume of the ellipsoid as the same operation
in poorly observed direction. Although the latter is true, this is not what hap-
pens, since the desired behaviour is obtained in combination with a Kalman filter.
An observation applied to a poorly observed direction has a much larger effect on
the volume of the ellipsoid as the same observation in a direction which has been
observed many times before. Hence the former action is preferred by the utility
function, which is the behaviour we are interested in.

o The solution may correspond to a local minimum. This is not too big a problem,
since this concerns only one observation in the sequence of observations. Further
investigation is needed to verify if this occurs frequently. Anyhow, the solution
corresponding to this local minimum will probably still be better than a random
sensing strategy.

e The state covariance matriz being singular is no problem. The utility function
evaluates the determinant of the covariance matrix of the goal locatwn and not of
the state estimate. Even though in our examples Pis singular, P’ is not. In other
words, & does not need to be a minimal state description of the object, while x4
does need to be a minimal description of the goal.

e It is not clear whether the measurements thus planned can be considered as statis-
tically independent. This statistical independence among observations is a basic
assumption of the KF. Here, we assume that this is true. However, one could object
that each measurement location is determined using information from all previous
ones (summarised in the KF estimate), and hence cannot be independent . ..

e It is not clear what the effect is of linearisation errors on the “optimality” of the
actions. It should however be clear that the optimality of the KF does not depend on
the optimality of the planned actions. (Whaite and Ferrie 1997) limits the search for
new viewpoints to a small region around the current viewpoint to limit linearisation
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Figure 4: Ezample: drilling a hole in the centre of the top plane of a cylinder.

errors, which only is true if the surfaces to explore are sufficiently smooth (which
is the case as objects are modelled using super-quadratics). Only in this case, the
new chunks of information presented to the KF remain small, and the new estimate
will remain close to the old estimate. However, there is no reason to have the
same limitation here, as object surfaces can have edges where measurements vary
dramatically; hence, even small changes in the position of the sensor can give rise
to large variations in the measurement.

6 Results

Suppose the task is to drill a hole in the top plane of a bounded cylinder, Fig. 4. Measure-
ments are taken with the ultrasonic sensor, Fig. 2. Section 6.1 first details the model of
this cylinder. Section 6.2 shows how the measurement equation for the ultrasonic sensor
is derived. Finally, Section 6.3 shows a planned sensing strategy for this example.

6.1 Object Model

The cylinder is modelled as a collection of two unbounded planes and one unbounded
cylinder.

The parametrisation of a plane, recommended for optimal numerical stability (An-
thony, Anthony, Cox, and Forbes 1991) is given by:

(U.a(a,8) (x—z,)—d=0. (14)

(U, x.) defines the locating frame of the plane in some reference frame, where x. is the
origin and U. the rotation matrix of the frame relative to the reference frame. |d| is the
distance of the plane to x.. a(a,3) is the orientation vector of the normal on the plane
relative to the locating frame (which should be close to the z-axis of the locating frame
for optimal stability), given by

cos(f) 0 sin(B8) 1 0 0 0
a = 0 1 0 0 cos(a) —sin(a) 0], (15)
| —sin(f) 0 cos(B) 0 sin(a) cos(a) 1
[ cos(a) sin(B)
= —sin(a) ) (16)
| cos(a) cos(B)
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Figure 5: Relative position of the locating frames of the three features (the depicted
position of the cylinder relative to these frames corresponds to & equal to a 10 x 1 zero
vector).

or vector a is obtained by rotating a unit vector along the z-axis, first by an angle
around the z-axis, and then by an angle 5 around the old y-axis.
Thus, the state of the plane in the locating frame (U, x.) is described by x =
T
[ a B d ] .
The recommended parametrisation of a cylinder is given by :

(z — . — U.y) x Ueala, B)| =70 =0 (17)

Again, (U.,x.) defines the locating frame of the cylinder in some reference frame, and
a(a, () is the orientation vector of the centre line of the cylinder relative to the locating
frame (which should be close to the z-axis of the locating frame for optimal stability),
defined by Egs. (16), and r is the radius of the cylinder. @ is a point satistying a¥z, = 0.
If a is close to (0,0,1), this can be made explicit as

£
Ty = n ; (18)
(=a1€§ — agn) /as

Thus, the state of the cylinder in the locating frame (U, x.) is described by & =

EXEEIR

Hence, the complete state description of the bounded cylinder is the 10 x 1 vector

wz[ac Be & M au By di ay B2 dy ]T- (19)

Since a cylinder has only 5 dof (rotation around the axis is ambiguous) and x is 10-
dimensional, 5 constraints exist between the 3 primitives: 4 linear constraints specifying
that the plane normals and the centre line are parallel, and 1 nonlinear constraint speci-
fying the distance between both planes. If the relative position of the locating frames is
as shown in Fig. 5, then the 4 linear constraints are

Qe — ag 0, (20)
Bet+B = 0, (21)
ap—ay = 0, (22)
pr+0 = 0. (23)
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Figure 6: Measurement with an ultrasonic sensor on a planar surface.

The SCKF applies these linear constraints only once as perfect observations.

The distance [ between the two planes is calculated as the distance between plane
2 and a point on plane 1. It is important to note that this distance has a sign, and is
positive in the direction of the normal on plane 2. A point p on plane 1 is given by:

P=2xq +ad; . (24)

Substituting p in the equation of plane 2 yields the constraint relation c(ay, 81, dy, g, B2, dy) =

0:
ag(a:cl — T2 + aldl) B d2 —-1=0. (25)

The Jacobian Ve of this constraint is given by:

vem[& 8 & & & &] ()
Calculation of these partial derivatives is a straightforward but tedious job. Again, the
SCKF applies this constraint as a normal observation (replace H; by Ve; in the KF
egs.), but now smoothly to avoid a bias on the estimate due to linearisation errors: the
SCKF applies this constraint as a set of linearised constraints, of which the variance is
artificially increased; The application of these linearised constraints is interlaced with
“normal” measurements, until a stop criterion is satisfied (De Geeter et al. 1997).

6.2 Measurement Equations

The distance measured by the ultrasonic (US) sensor is calculated as the intersection of
the line-of-sight of the sensor and the surface, e.g. plane 2, Fig. 6.2.

The line-of-sight is determined by the position of the robot, and does not need to
be estimated. Therefore, the numerical stability of this equation is not important. The
following parametrisation is chosen for this line:

r=xys+ayst, (27)

where xyg is the position of the US sensor, ayg is a unit vector in the direction of the
line-of-sight of the US sensor, and hence, ¢ is the distance on the line between « and zyg.

Thus, the scalar measurement z = h(aa, B2, ds) is equal to the value of t at the inter-
section point of the line and the plane. Substituting the expression for the line-of-sight,
Eq. (27), in the equation of the plane, Eq. (14), and expliciting for ¢ yields:

t= (d2 +al (x, - :cUs)) / (agaus) . (28)
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The Jacobian VH is calculated as follows:

b B (29)

where again the calculation of the partial derivatives is tedious but straightforward.
The equation for an US measurement plane 1 and on the cylinder surface can be found
in a similar way.

6.3 A Planned Sensing Strategy

This section compares two examples: in the first, the goal is to drill a hole in the top
plane, and in the second, the goal is simply to find the centre point of the top plane. The
difference is that in the second example, the orientation of the top plane is not important.

Both sensing strategies are generated under the same conditions. The initial estimate
is :

43
& = [0101000001000] (30)
P, = diag( 0.03 0.03 0.01 0.01 0.1 0.1 0.3 001 0.01 0.01) (31)

The standard deviation of the noise on the US distance measurement is equal to .01m.
The cylinder has a radius of 1m and a length of 2m.

In these simulations, the MHT consists of only one node on each level (i.e. the
measurement-feature correspondence is known), which makes the figures more easy to
interpret.

6.3.1 Example 1: Drilling a Hole in the Top Plane

In this example, both the position of the centre point of the top plane and the orien-
tation of the normal of the top plane are important. Hence the goal is described by

xd= |29 yI 29 a% (Y T. The first three rows of transformation ¢ are found by first
calculating the intersection between the top plane and the centre line of the cylinder, and
second, calculating the Jacobian of this transformation. The last two rows simply state
that a? = ay and B9 = S,.

Figure 7 shows the expected value of the change in the utility caused by an action,
on the different primitives of the cylinder, for the first 5 time steps. This utility gain is
calculated as

Aua;(v;)ip1 = ua; (V;)iz1 — Ui , (32)

where u; is the current value of the utility function, ua;(v;)i41 is the predicted value of
the utility on the next time step, given action a;(v;), calculated as in equation 13. The
optimum in this case is at the minimum of this difference (or at the largest absolute
value).

The resulting measurements are as follows, Fig. 7:

Measurement 1: The SCKF did not yet apply any constraints, and hence the 3 primitives
behave completely independent. Therefore, the utility function is zero over the whole
bottom plane. The best measurement is somewhere on the top edge of the cylinder
surface (the choice is arbitrary since the utility is equal for all points on this top
edge).
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Figure 7: Drilling a hole in the centre of the top plane. The expected value of the change
in utility, eq. (32), for a measurement on (from left to right), the unfolded cylinder surface,
the top plane and the bottom plane, for measurements (from top to bottom) 1 to 5.
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Figure 8: Finding the position of the centre point of the top plane. The expected value
of the change in utility, eq. (32). for a measurement on (from left to right), the unfolded
cylinder surface, the top plane and the bottom plane, for measurements (from top to
bottom) 1 and 2.

Measurement 2: The effect of this measurement is clearly visible: it is not interesting to
go back to the same point again. The best measurement is again on the top edge of
the plane, but now 90 degrees shifted relative to the first measurement. Note that
now, due to the application of the constraints, the utility on the bottom plane is no
longer zerc: the cylinder now behaves as a rigid body.

Measurement 3: on the bottom edge of the cylinder.
Measurement 4: on the bottom edge of the cylinder.

Measurement 5: on the edge of the top plane. Note that the utility gain on the cylinder
surface is now about an order of magnitude smaller than the utility gain on the top
plane.

6.3.2 Example 2: Finding the Position of the Centre Point of the Top Plane

Now, the goal is ¢ = | 29 y? 29 ]T. The Jacobian of the transformation ¢ is found
in a similar way as above. Fig. 8 shows the first two measurements thus planned. The
most important difference is the dip in the utility function of the top plane, around the
centre point. This is because the orientation of the plane is not important. Still, the first
measurement is taken on the top edge of the cylinder surface, since this is the only way
to determine z9 and y9.

7 Conclusion

This paper presents an integrated Bayesian solution to the problem of object location
estimation, object recognition and planning sensor actions under uncertainty. The em-
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phasis is on the sensor planning, which uses elementary notions from statistical decision
theory.

The optimal action is found as the action that optimises the expected value of a
utility function, which is the logarithm of the volume of the uncertainty ellipsoid around
the estimate of a target position. This method can deal with any type of target, any type
of action (continuously parametrised, a discrete set or a combination of both), and any
type of state (again, continuously parametrised, a discrete set or a combination of both).

The presented algorithm is easy to apply and computationally tractable, partly due to
the Gaussian assumptions and to the one-step planning horizon. However, we believe that
the limitations introduced by these assumptions are far less important than the capability
of on-line planning, simplicity, and integration with the previously developed methods for
estimation, resolution of the measurement-feature correspondence and object recognition.
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