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Abstract

A mathematical deduction of formulas generating the exact and complete pattern of
prime numbers vs. composite numbers, was presented in the treatment by Johansen
(2010a). We recapitulate some key points from this treatise. Then we explain how said
pattern, which also has a geometric anchoring and representation, is established in the
maximum sense of a pattern, manifesting from a certain disclosed number generator. It
is also demonstrated how this maximum pattern can be represented as an achieved
computational expression and translation. Finally, it is discussed in what regards the
prime numbering system can be interpreted as anticipatory from the mathematical and
computational expressions of this system.

Keywords: number theory, distribution of primes, pattern in primes, Johansen
Revolving Prime Number Code, computational anticipating systems.

I think completely new ideas are required to solve the next huge mathematical enigma.
It is the question whether there exists a pattern for when the prime numbers appear.
John Terrence Tate (2010)

1 Introduction

We recapitulate several key points from the treatise Johansen (2010a) in some detail
in order to specify and discuss implications of these mathematical results with regard to
pattern interpretation, computation and anticipatory systems. This treatment applies a
certain geometrical interpretation of the natural numbers, where these numbers appear
as joint products of 5- and 3-multiples located at specified positions in a revolving
chamber.

Numbers without factors 2, 3 or 5 appear at eight such positions, and any prime number
larger than 5 manifests at one of these eight positions after a specified amount of
rotations of the chamber. Our approach determines the sets of rotations constituting
primes at the respective eight positions, as the complements of the sets of rotations
constituting composite numbers at the respective eight positions. These sets of rotations
constituting composite numbers are exhibited from a basic 8x8-matrix of the mutual
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products originating from the eight prime numbers located at the eight positions in the
original chamber. This 8x8-matrix generates all composite numbers located at the eight
positions in strict rotation re§ularities of the chamber. These regularities are expressed
in relation to the multiple 11 as an anchoring reference point. Rotations generating all
composite numbers located at same position in the chamber are expressed as a set of
eight related series. The total set of composite numbers located at the eight positions is
exposed as eight such sets of eight series, and with each of the series completely
characterized by four simple variables when compared to a reference series anchored in
11. This represents a complete exposition of composite numbers generated by a quite
simple mathematical structure. Indirectly this also represents a complete exposition of
all prime numbers as the union of the eight complement sets for these eight non-prime
sets of eight series. By this an exact and a complete patfern of composite numbers, as
well as of prime numbers, is deduced and exhibited from a certain exposed number
generator.

Johansen (2012) offers some short presentation of previous mathematical research
leading in direction towards discovery of an exact as well as complete pattern of prime
numbers vs. composite numbers.

2 Revolving Generation of Complete and Exact Pattern of Composite
Numbers vs. Prime Numbers

We start out from a rewrite of natural numbers as combined mulitiples of the numbers
5and 3:

(1) N=mS5 +n3; m>0,n>0

Obviously, this split code 5:3 can be performed to cover any sequence of integers by
simply lowering the bottom values of m and n.

The profound significance of the split code 5:3 in Nature's code (Rowlands) is
acknowledged and argued in the pioneering, monumental work of Peter Rowlands
(2007), and also with some stated connection (Rowlands 2007: 530, 550) to the initial
contribution by Johansen (2006). (Recently, reinforcement of said significance has been
established from the group representation of the results of Johansen (2010a), achieved
by Strand (2011). Even more recently, the significance of the split code 5:3 has become
further supported and qualified from results presented in the treatise of Johansen (2011),
especially due to the revealed algorithm for Fibonacci-Pascal distribution of Zeckendorf
summands, which generates "the basic law of cybernetics, informatics and synergetics
for complex systems" (Ignatyev 2006; cf. also Johansen 2010b).
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From (1) we construct the following matrix:
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Figure 1: The Revolving Chamber © Stein E. Johansen

There exist three possibilities to make a cut in the matrix in such a way that every
number shows up only once. We denote these three bands of numbers by means of
colour terms:

1) The Blue Band, corresponding to the five upper rows.

2) The Red Band, corresponding to the three left columns.

3) The Violet Band, corresponding to a double diagonal field unfolding from first six
columns of The Blue Band, or from first ten rows of The Red Band.

There can not be any prime numbers in the row for n=5, nor in the columns that are
multiples of m=3. Ignoring these rows and columns (illustrated by the black grid in fig.
1), prime candidates can only appear in the remaining "chambers" of the bands. Further,
prime candidates can only appear at spots in the chambers where odd numbers are
located (illustrated with the colours blue, red and violet, respectively). We notice that
these spots are distributed in a zigzag pattern inside each chamber, and that this pattern
alternates with its mirror pattern when progressing horizontally or vertically along a
band. In the present context we will only study The Blue Band.

We apply the notion ‘original chamber’ to denote the location of the first eight prime
numbers in The Blue Band, not situated at black frames, at the (upper) left segment of
fig. 1, i.e. the eight primes from 11 to 37. This original chamber is divided into its left
(sub-)chamber, primes 11,13,17,19; and its right (sub-)chamber, primes 23,29,31,37.
Then we imagine this left chamber revolving in 3D around the black vertical axis made
up of the numbers 18,21,24,27,30. After half a rotation the four positions of the primes
in the left chamber will cover the four positions of their respective enantimorphs in the
right chamber, i.e. as 13 onto 23, 11 onto 31, 19 onto 29, and 17 onto 37. After a whole
rotation, the four positions of the primes in the /eft chamber will cover the four positions
of the corresponding numbers in the /eft (sub-)chamber of the second chamber in The
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Blue Band, the chamber to the right of the original chamber, i.e. as 13 onto 43, 11 onto
41, 19 onto 49, and 17 onto 47. After a whole rotation of the four positions of the
primes in the right (original) (sub-)chamber, these positions will cover the four
positions of the corresponding numbers in the right (sub-)chamber of the second
chamber in The Blue Band, i.e. as 23 onto 53, 31 onto 61, 29 onto 59, and 37 onto 67.
Hence, taken together, after a whole rotation of the eight positions of the primes in the
original chamber, these eight positions will cover the eight positions of the
corresponding numbers in the second chamber, and each of these last eight numbers is
determined as the number at the corresponding position in the original chamber, added
with 30. Obviously, after multiple rotations of the original chamber, the number in the
arrival chamber is determined as the number at the corresponding position in the
original chamber, added with the same multiple of 30. Also obviously, any odd number
in the blue band is determined uniquely and can be written uniquely as the
corresponding position in the original chamber, undergoing a certain multiple of whole
rotations, which corresponds to the original number being added with the same multiple
of 30. Hence, the eight positions of primes in the original chamber determine uniquely
and exhaustively all odd numbers in chambers of The Blue Band when undergoing all
possible integer multiples of whole rotations, which is equivalent to each of the original
eight numbers being added with all corresponding integer multiples of 30.

To easily get a picture of the underlying prime number generator, we first imagine
all remaining odd (blue) numbers in The Blue Band as being prime numbers. This is the
case for the first two chambers of The Blue Band. However, in the third chamber, which
can be imagined as constituted from the first (whole) rotation of the left, first chamber,
the number 49, i.e. 7x7, shows up as the first anomaly not being any prime number.
Analogous anomalies will be the case for all powers of 7, as well as for all "clean
multiples" of 7 (meaning those having a factor in a preceding chamber) located in
chambers further to the right on The Blue Band. 7 is the only lower number outside and
before our matrix, which acts as a "bullet" and "shoots out" odd numbers in The Blue
Band, removing their prime number candidature. For example, the number 77 is shot
out from the prime number universe in chamber no. 5 after two rotations of chamber no.
1, being a multiple of the bullets 7 and 11. Prime numbers from the first chamber will
deliver the same "ammunition" when exposed for sufficient rotations to manifest
multiples made up as internal products of these prime numbers. Such multiples occur at
corresponding "arrival spots" in upcoming chambers after further rotations. For
example, the number of 143 is shot out from the prime number universe in chamber no.
10 after four rotations of chamber no. 2, being a multiple of the factor "bullets" 11 and
13. Quite obviously, all multiples of primes will expose the same pattern of shooting
out corresponding prime number candidates occurring in proceeding chambers, without
regard to the number of rotations of chamber no. 1 or no. 2 manifesting the prime factor
bullets of the multiple. Hence, the over-all process of shooting out prime candidates can
be imagined as successive out-shooting during consecutive rotation of chambers no. 1
and 2, due to more and more multiples from prime bullets, located in preceding
chambers, becoming manifest along with further chamber rotations. This elimination
process of prime candidates is obviously exhaustive. All prime candidates which are not
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shot out from the multiples of prime bullets occurring at preceding chambers Ahave to be
primes. Therefore, a complete mathematical description of this successive out-shooting
of prime candidates will automatically ad negativo implicate also a complete,
successive description of the generation of prime numbers. Here the prime numbers
appear as the numbers remaining in chambers of The Blue Band affer the shoot-out
procedure has passed through the chamber where the prime candidate is located.

The model of fig.1, as well as the general procedure of shooting out prime
candidates, was presented in Johansen (2006: 127-9). The deduction of complete
formulas to perform the out-shooting, according to this approach, in order to generate
prime numbers exactly and completely was presented in Johansen (2010a). Here we will
recapitulate some crucial steps, notions and figures from this deduction.

We apply the following notation of the blue (odd) numbers' positions inside a chamber,
using their positions inside the first two chambers as illustration:

Left chamber: a;: position of 13; a,: position of 11; as: position of 19; as: position of 17.
Right chamber: b;: position of 23; b,: position of 31; bs: position of 29; bs: position of
37.

Number position

Left chamber Right chamber
a3 az a3 ay by b2 bs b
Start: 13 11 19 17 23 31 29 37
Step
1 13- 5(13) 11- 3(11)
17- 3(17) 13-11(19)
23-17(23) 29-27(29)
37-45(37) 31-31(31)
2 13- 7(17) 19-14(23) 11— 4(13) 29-25(31) 23-21(29)
37-50(41)  17-10(19) 31-37(37)
3 19-18(29) 23-23(31) 17-12(23) 11- 5(17)
31-42 (41) 29-35(37) 37-52(43) 13- 7(19)
4 17-16(29) 23-28(37) 19-19(31) 11- 6(19)
31-44(43) 29-35(41) 13- 3(23)
37-57(4T)
5 11- 8(23) 13-12(29)
19-231{37) 17-17(31)
23-31(48) 29-41 (43)
37-60(49) 31-48(4T)
€ 13-13(31) 37-65(53) 11-10(29) 17-20(37)
29-£5(47) 31-50(49) 139-25(41)
23-32(43)
7 11-11 (31} 31-54(53) 13-15(37) 17-22(41)
29-47 (49) 37-72(59) 23-35(47) 19-26(43)
8 17-24(43) 11-13(37) 13-17(41) 31-60(59) 29-50(53)
23-37(49) 19-25(4T) 37-74(61)

Figure 2: The basic 8x8-matrix of the non-primes generator in the revolving chamber
© Stein E. Johansen
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Then, all blue numbers in The Blue Band can be written as one of these positions
combined with a specific number of rotations. As an example, 71 can be written as
[2,a;], meaning that 71 emerges at the position a; after 2 rotations of the original (left)
chamber. Accordingly, 67 will be written as [1,bs], etc.

Fig. 2 describes the basic distributive structure of positions (illustrated as
columns) in the chambers, manifesting from the specific numbers of rotations
(illustrated in red) of the eight initial position numbers (illustrated in bold black) of the
original chamber (i.e. chamber no.1, the left, and chamber no.2, the right, taken
together), where these rotations correspond to stepwise multiplications of the respective
original position numbers with progressively larger multiplicators (illustrated in blue).
The succession of multiplications goes as follows, taking as example 11 as
multiplicand:

Table 1: MULTIPLICATOR VS. PRODUCT - POSITION - ROTATIONS

1. row: the multiplicand number itself. 11x11 at b, after 3 rotations

2. row: the closest blue number larger than itself. ~ 11x13 at b after 4 rotations

3. row: the 2. closest number larger than itself. 11x17 at by after 5 rotations

4. row: the 3. 9 11x19 at bs after 6 rotations

5. row: the 4. o 11x23 at a; after 8 rotations

6. row: the 5. L 11x29 at a3 after 10 rotations

7. row: the 6. " 11x31 at a; after 11 rotations

8. row: the 7. " 11x37 at a4 after 13 rotations

9. row: the 8. 2 11x(11430) at b, after (3+11) rotations
10.row: the 9. 4 11x(13+30) at b; after (4+11) rotations
11.row: thel0. z 11x(17+30) at b, after (5+11) rotations

As an example we can look at the number in the box [8,bs] that manifests at position
bs, i.e. the same position as 29 in the original chamber, after the original number 31 is
multiplied with the multiplicator 59 which is situated at the 8. row, i.e. 7 steps after the
number 31 itself acts as multiplicator on itself. This box is reached after 60 rotations of
the original chamber.

For each of the eight different position numbers in the original chamber, the position
of the multiplicand’s product in the 9. row (i.e. after 8 steps of the succession) is
identical with the original position, the position of the multiplicand’s product in the 10.
row (i.e. after 8+1 steps of the succession) is identical with the original position, etc.

This means that with respect to position, the 8 sequence of positions characteristic
for the products progressing in steps from the original position for the smallest
considered product of the respective multiplicands, just repeats in 8 steps cycles along
with increasing additions of 30s to the multiplicator. (From now on we denote the
number of such 30-additions with the symbol m.)
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With regard to the number of rotations, we always have that after 8 steps the number
of rotations added to the rotations in the product in row 1, required to manifest the
product for the same multiplicand in 9. row, is identical to the size of the multiplicand.
Thus, as an example, for the multiplicand 11, the product in 9. row is reached as the 3
added rotations of its initial product in row 1, added with 11 new rotations, which gives
14 rotations. And the same must be the case with respect to the added numbers of
rotations stepping from 2. row to 10., from 3. row to 11. row, etc.

The same homology with respect to position and rotations occur for additions of 30s
to the multiplicand (denoted with the symbol 7).

Thus, all thinkable products (besides the trivial products of 2, 3 and 5, and the not so
trivial products of 7) can be written uniquely as the square of one of the multiplicands
located in the original chamber, successively added with increases in m and increases in
n. Any of these products arrives in one of the 64 boxes of fig. 2, after a specified
number of rotations, completely determined by the position and number of rotations of
the initial squared product, and the sizes of m and n. If we, as an example, consider
products arriving in box [3, bs], the non-primes entering this box from the total //-path,
are given by the set:

(3) (11+n30) [(17+n30) +m30]
alternatively expressed as:
(3b) 37 + 30[5+ n(11+17) +m11 +n30(n+m)]

Non-primes entering this box from the total /3-path, are given by the set:
(4) (13+n30) [(19+n30) +m30]

alternatively expressed as:

(4b) 37 + 30[7+ n(13+19) +m13 +n30(n+m)]

Products generated from the multiplicand 7 constitutes a special case that is covered
by being represented by n=-1 in analogous expressions for boxes reached from the total
37-path. With regard to positions the path from 7 is identical to the path from 37; thus
the two paths only differ with respect to the number of rotations. 37 is chosen instead of
7 as an original position number due to completing the original chamber in fig. 1 with a
symmetrical structure between left and right chamber.

The expressions for the 64 boxes of products, developed in analogy to (3) and (4),
can be rewritten as additives of rotations compared to the rotations of products arriving
in box [1, b;] as an anchoring box suitable as a general reference. We rewrite this
reference box to box (11,11) which denotes all products arriving in the same position in
fig. 2 from successive increases of m and n to the initial product 11x11 arriving in this
box.

Horizontally, at the top of fig. 3, we list in succession the factors in the original
chamber, acting as multiplicands in the 64 basic products represented in fig. 2.
Vertically, to the left of fig. 3, we list in succession the numbers acting as multiplicators
in the 64 basic products represented in fig. 2. Hence, all the 64 basic products, and all
the clusters of non-primes generated from each of them, are also represented in fig. 3.
The amount of rotations for the initial product in each box (i.e. for m=0 and n=0) is
displayed in red in fig. 3, and the position number where products arrive (i.e. the
columns of fig. 2) is displayed in black to the right of these numbers in red. Hence, fig.
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3 displays the 64 boxes of products distributed among these 8 position numbers where
the respective boxes arrive, as specified expressions of n- and m-additives of rotations
compared to the reference box (11,11).

1 13 17 19 23 28 3 37

11 0n
33

132n  2n+2{m+n)
4-23 519

17 6n  Bn+2{m+n} Bn+6{m+n)
537 71 g-19

19 8 8n+2(m+n} Bn+6({m+n} 8n+B8(m+n)
£-29 7-37 10-23 11-31

23 12n  12n+2(m+n) 12n+6{m+n) 12n+8{m+n) 12n+12{m+n)

813 926 12-31 1417 17-18
29 18n  18n+2(m+n) 18n+6(m+n) 18n+8(m+n) 18n+12{m+n) 18n+18{m+n)
1019 1217 1813 18-11 2137 273
31 20n  20n+2(m+n) 20n+6(m+n) 20n+8{m+n) 20n+12(m+n) 20n+18{m+n) 20n+20(m+n)
11-11 13413 1717 1818 2323 23-28 3131
37 26n  26n+2(m+n) 26n+B(m+n) 26n+8{m+n) 26n+12(m+n} 26n+18{m+n) 26n+20({m+n) 26n+26(m+n)
1317 1531 20-289 2313 281 3823 3737 4519
41 30n+2{m+n) 30n+6(m+n) 30n+8{m+n} 30n+12{m+n} 30n+18(m+n) 30n+20{m+n} 30n+26(m+n}
1723 22-37 25-29 3113 3819 42-11 5017
43 32n+8{m+n} 32n+8{m+n) 3I2n+12(m+n) 32n+18{m+n) 32n+20{m+n} 32n+26(m+n)
241 256-37 32-29 4147 4413 52-31
47 36n+8{m+n) 36n+12{m+n) 36n+18{m+n) 36n+20(m+n) 36n+26(m+n)
23-23 35-31 4513 4817 57-29
49 38n+12{m+n) 38n+18({m+n} 38n+20(m+n} 38n+26{m+n}
3717 47-11 50-19 50-13
53 42n+18{m+n) 42n+20{m+n) 42n+28{m+n)
50-37 5423 £5-11
» 48n+20{m+nj 48n+26(m+n)
§0-29 72-23
61 50n+25(m+n)
74-37

Rotations for the platform for the additives; the reference box (11.11) 1s:
3+ 1la+ 11{mn} + n30{m+n)

Figure 3: The 8x8 universal matrix of (11,11)-related additives of rotations for
complete generation of non-primes © Stein E. Johansen

246




The different amounts of rotations making up the complete set of products arriving in
the reference box (11,11) can be displayed as the following series:

3+ 0+
3= 1+
3*‘- F+ 1
3+ 3+ 2
3+ 4= 3+1
3+ 3+ 4+2
3+ 6r 5+3+1
3+ T+ 6+4+2
3+ g+ 7+5+3+1
3~ 9+ 8+6+4+2
3+ 10+ 9+7+5+3+1
3+ 11+ 10+8+6+4+2

n 0 12 348

Colour coding:

30°s

11%s

1's

Figure 4: Make-up of the set of rotations for non-prime box (11,11) at position
number 31 in the revolving chamber © Stein E. Johansen

In fig. 4 the position of each number signifies a unique product. As an example:
The amount of rotations represented by the black 4 at the row with blue 9 in the figure,
is:
(5) 3+ 11x9 + 30(8+6+4) = 642

The natural number corresponding to this place in the revolving chamber after this
amount of rotations:
(6) 642x30 + 31 = 19291

Hence, this black 4 in fig. 4, when interpreted in this manner, is just another way of
writing the number 19291. Since this number is included in fig. 4, it is positioned in box
(11,11) and with necessity a non-prime. Just for confirmation: This black 4 is located in
fig. 5 at the position for the row indicated by the blue number, n+(m+n)=9, and the
diagonal n=3. This gives the factor (11+3x30) from the value of n, and from the value
of m the other factor [(11+3x30) + 3x30], i.e. the product 101x191 which is 19291.

The pattern in fig. 4 generating all products arriving in box (11,11) is amazingly
simple. The series generating all products arriving in the remaining 63 boxes show to be
modified variations built on the same basic pattern.
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One of these variations is illustrated in fig. 5.

3+ 00
3+4+ 1+1

3+4- 241 + 143
34+ 33 + 7243
3+4+ 4+1 + 343+ 143
3+ 545 + 443 +243
344 6+6 + 543 +3:3 +143
3+4+ T+T + 6+3+4+3 +243
3+4+ §+8 + 743 +53 +33+1+3
344+ 99 + 843 +6+3+4+3+2+43
3+4+ 10+10 + 943+ 7+3 +5+3 +383+1+43
3+4- 11+11 + 10+3 +8+3 + 63 + 43+ 243

Colour coding: 30°s 11’s 2’s 2’s 1’s

|

|

|

|

|

|

|

|

|

} Figure 5: Make-up of the set of rotations for non-prime box (19,13) at position
| number 37 in the revolving chamber © Stein E. Johansen
|
|
|
|
\
|
|
\
|
:
|
|

For the remaining boxes the modifications of the basic pattern exposed by fig. 4
appear only moderately more complex than the modification represented by fig. 5. Each
of the 64 patterns, with corresponding series, can be completely characterized by four
simple variables when compared to the reference series displayed in fig. 4 anchored in
112. The values of these four simple variables for the respective 64 boxes are calculated
and listed in expressions (69) and (73a-g) in Johansen (2010a). By this the expressions
of rotations generating a// composite numbers located at same position in the chamber is
found as a set of eight related series. Hence, the total set of composite numbers located
at the eight positions is exposed as eight such sets of eight series. This represents a
complete exposition of composite numbers generated by a quite simple mathematical
structure. Ad negativo this also represents a complete exposition of all prime numbers as
the union of the eight complement sets for these eight non-prime sets of eight series.

| 3 Informational Discussion of the Exposed Pattern of Prime Numbers
vs. Composite Numbers

: Any aggregate of events or objects (-) shall be said to contain (-) “pattern” if the
| aggregate can be divided in any way by a “slash mark”, such that an observer
| perceiving only what is on one side of the slash mark can guess, with better than
; random success, what is on the other hand of the slash mark. We may say that what is
| on one side of the slash contains information or has meaning about what is on the
| other side. (Bateson 1972: 131)
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Thus, when performing a cut in a constrained appearance of information, the
Bateson criterion for a pattern is that it is possible from the information residing at one
side of the cut to predict some information residing at the other side of the cut with more
than random probability. This can be said to constitute the criterion for a minimal
pattern, in binary opposition to the criterion for a maximal pattern defined from the
criterion of being able to predict with zero randomness all/ information residing at the
other side. In natural science a maximal pattern can be confirmed a posteriori from a
good hypothesis for a natural system, running for a specified and constrained time, but
never a priori. An a priori maximal pattern, not dependent on confirmation from
empirical observation, is only possible from deduction performed by formal science
from axioms in distinction to Aypotheses. In any case the very notion of pattern
presupposes the notion of prediction (whether guessing, or performed with certainty)
which, in its turn, presupposes the notion of anticipation.

2 XX ®XEXE XXX ALETIARXREXIEX XXX NEX
3 S ap g e ISP SRl g Rt apt e e Tag e ¢ RER IR R - R
5 b4 X X X X b4 b4 x X X 5 .4

Total xxxxx0xxx0x0xxx0x0xxx0xxxxx0x0xxxxx0xxx0x0xxx0X0XxXX0OXXRKX
Gap numbers 77 11 13 17 19 23 29 31 377413 A dS 53

Figure 6: What is a pattern?

Trivially, the exact and complete occurrences of the multiples of 2 can be
predicted from the information before a cut after 2x2, and the same holds for the
multiples of 3 as predicted from the information before a cut after 3x2, and for the
multiples of 5 as predicted from the information before a cut after 2x5. Hence, all these
three cases unveil maximal patterns. Also trivially, the exact and complete occurrences
of multiples having 2, 3 or 5 as a factor, can be predicted from the information before
the last cut. Hence, this case also unveils a maximal pattern. Obviously, as illustrated in
fig. 6, such a maximal pattern automatically implies a corresponding prediction of the
exact and complete occurrences of the gaps, i.e. the absent information, in the positive
over-all pattern, by simply performing the switch from the positive pattern to its
negative gestalt. Also obviously, the same must be the case whatever the mathematical
complexity of the positive pattern. Since our deductive exhibition in Johansen (2010a)
represents a prediction of the exact and complete occurrences of composite numbers
after an initial cut, performing the gestalt switch from this positive pattern to the
prediction of the exact and complete occurrences of gaps between composite numbers,
i.e. the prime numbers, must also represent a maximum pattern.

We may illustrate this with an analogy to the keys on a piano:
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Basic 8x8 matrix generating composite numbers

11 13 17 19 23 29 31 37 41 43 47 49 53 59 6t

Dark keys: Basic multiplicands (primes of original chamber)
Dark & light grey keys:  Basic multiplicators

Complete generation of composite numbers,
and by this of prime numbers

Black keys: Prime numbers
White keys: Composite numbers @ Stein E. Johansen & Jon M. Strand

Figure 7: The Piano Analogy

| The cut for contemplating the pattern is represented by the eight prime numbers in
| our original chamber. From these eight number positions, the occurrences of the eight
| basic multiplicators for the respective eight multiplicands are predicted with zero
| randomness. This constitutes the self-referential basic matrix of products displayed in
| fig. 2, from which all other composite numbers are deduced and predicted with zero
| randomness. More precisely, that is when we already presuppose the trivial maximum
| pattern of composite numbers with factors 2, 3 or 5 (easily predicted with zero
| randomness from the original chamber), and treat the multiplicand 7 as a negative
rotation of 37 (which in our analogy may be thought somewhat similar to the little left
finger hitting the key one octave lower from the black key 37). Thus, the exact and
complete occurrences of all composite numbers are predicted with zero randomness
from the cut after the first chamber, and the exact and complete occurrences of non-
trivial composite numbers are predicted with zero randomness from the eight prime
numbers in the original chamber. This may be compared to a pianist touching eight
black keys at the left of the piano with his hands and from there touching all remaining
white keys in succession in one sweeping movement. The keys he does not touch, is
then the totality of black keys after the first eight ones, corresponding to the gaps
representing the prime numbers. By simply performing the gestalt switch, our deduction
of a maximal pattern also represents an exact and complete prediction of all non-trivial
| prime numbers, i.e. a deduction of a maximal pattern of prime numbers from the cut
after the eight prime numbers in the original chamber.
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To our knowledge such a maximal pattern of prime numbers has never previously
been discovered — not to say: deduced — in mathematics. There exist many
computational methods to find prime numbers, but these move to and from and
forwards and backwards between prime numbers and composite numbers. Hence, they
do not establish any cur where prime numbers (or composite numbers) are predicted
independently (to the complementary class of natural numbers; i.e. either composite
numbers or prime numbers, respectively), exactly, completely and irreversibly from one
side of the cut fo the other. Thus, such methods are of course able to find the primes, but
without knowledge or claim of any pattern existing in the primes.

In an interview with the Norwegian newspaper Dagens Neeringsliv, May 25, 2010,
Abel prize winner John Terrence Tate, who "received his prize for researching prime
numbers and whether there is any pattern in how often primes occur", was quoted as
follows (Tate 2010): “I think completely new ideas are required to solve the next huge
mathematical enigma. It is the question whether there exists a pattern for when the
prime numbers appear.” (Our translation from Norwegian: “Jeg tror det ma helt nye
ideer til for 4 lose den neste store matematiske giten, sier han. Den dreier seg om
hvorvidt det fins et menster for nar primtallene dukker opp.”)

The meaning of ‘pattern’ in the last quote is not immediately transparent (and
obviously different from the weaker meaning in the first quote). For example, the well
known Ulam spiral represented a weak pattern for occurences of prime numbers,
confirmed as more than random by observations of whether increasing primes occur at
the spiral trajectory. However, this pattern was evidently far from maximal, and it was
spotted without being established — nor, of course, proven — by any mathematical
deduction, so obviously Tate had a stronger and more maximal pattern in mind.

Our exhibition, presented in the treatment of Johansen (2010a), represented a
deduction of such a pattern a priori, exactly and completely in the maximal sense of a
pattern, and this was achieved from unveiling the number generator of said pattern.

4 Computational Expression of the Exposed Pattern of Prime Numbers
vs. Composite Numbers

From the formulation and structure of the 8x8 series it appeared obvious that this
maximal pattern also was computational. Jon M. Strand (cf. appendix) has expressed
these mathematical series in a data program yielding a successive listing of prime
numbers, whatever the upper limit of natural numbers (presupposing sufficient
computer capacity available). This was achieved by a remarkably simple software
formulation, only employing 29 lines of code as its main part (the "bow" part of the
appendix). When inspecting the program we may notice some creative translation from
the mathematical formulas to the software expressions, indicating that the path from
formulas to algorithms, and — in general — from mathematics to informatics, may require
a creative "interfacing" to discover adequate and convenient algorithms to express the
formulas. In any case the present software obviously represents the deduced formulas in
a 1:1-manner, which also have been confirmed by all running trials. Thus, whether the
Johansen Revolving Prime Number Code, as exhibited in Johansen (2010a), is
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expressed as mathematical formulas vs. as translated to software algorithms, does not
make any difference with respect to the fact that both expressions represent a maximal
pattern.

S Discussion of the Exposed Pattern as Anticipating Prime Numbering
System

As noted by Dubois, "the word program, comes from 'pro-gram' meaning 'to write
before' by anticipation", whether as plans, as inserts or as parts, into mechanisms or
organisms (Dubois 2010: 23). Leaving out possible implementations of the prime
numbering system, understood as the Johansen Revolving Prime Number Code, into
mechanisms or organisms of natural systems, it is evident that this prime numbering
system involves anticipation both with respect to mathematical (possibility) space and
with respect to computational (Turing machine) space.

With respect to the distinction between exo-anticipation, "made by a system about
external systems", vs. endo-anticipation, "built by a system or embedded in a system
about its own behaviour" (Dubois 2008: 30), the prime numbering system seems most
adequately classified as a system of endo-anticipation. Here, the system's "upper"
algorithm of "saying no”, in analogy to Dubois' Libet-inspired interpretation of free will
(Dubois 2008: 28f) and to Dubois' interpretation of theorems building in mathematics
(Dubois 2008: 30f), may be interpreted as the 8x8 series disqualifying a natural number
as a prime number. If so, the prime numbers manifest as those natural numbers that are
not overruled by this upper "no". Then, different from the systems of free will and of
theorems building, in the case of the prime numbering system the meta-algorithm of this
upper "saying no" has been exposed and deduced in completed detail by our treatment.

We notice that the basic 8x8 matrix generator of fig. 2 here functions as some kind
of template for where these "saying no" occur. While the template is preserved during
the unfoldment of the prime numbering system, the "imprinted" locations from the
template as interpreted in the revolving structure of fig. 1 become continuously
rewritten during the rotations of the original chamber. At the same time the template as
such appeared as a certain coding from the peculiar 5:3 structuring of natural numbers
represented by fig. 1. Despite the Turing machine computational attribute of the prime
numbering system, as demonstrated in the appendix, and the according performance as
artificial anticipator in the sense of Dubois (2010: 20f), this may also indicate some
interesting similarities between the prime numbering system and rnatural anticipators
(cf. Dubois 2010: 18f) as DNA.

The prime numbering system seems also somewhat ambiguous with respect to the
distinction, established by Dubois (2000), between strong anticipation and weak
anticipation. In one sense, the anticipation may be said to be weak insofar as the
template of fig. 2 represents a model forecasting later events (imprinted locations of
composite numbers); in another sense the anticipation may be said to be sfrong insofar
as these events are built by and embedded in the 8x8 sets of series (as illustrated by the
series of fig. 4).
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It may be fruitful to work out these relatings in more concise and qualified detail,
including with respect to the mathematical reformulations of the prime numbering
system as i) group representation, and as ii) lifted to genonumber representation, both
representations achieved in Strand (2011) and first presented by Strand (2010). The
same might also be the case for the ontologically deeper (but not yet successfully
deduced) maximum pattern coined Fibonacci neighbour generation of primes, surfacing
from the Fibonacci numbering system for re-establishment of number theory and related
geometry (Johansen 2011).

6 Conclusions

The presented generation of an exact as well as complete pattern of prime numbers
vs. composite numbers, has been argued to represent a pattern in the maximal sense.
Further, this pattern has been proven to be computational, represented by software
uniquely generating prime numbers in their correct succession. Also, it has been argued
that this computational prime numbering pattern, besides acting as artificial anticipator
also may connect to natural anticipators, when being interpreted as a general meta-
algorithm to implement the “saying no” algorithm suggested from Libet’s experiments
and related to Dubois’ informational theory of free will.
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Appendix

The following program, written in Matlab, was developed as confirming illustration
of the correctness of the deduction of the 8x8 series generating non-primes vs. primes
exactly and completely. The program expresses the formulas of the 8x§ series and lists
from there the prime numbers in succession. In all tests against data bases of prime
numbers the numbers generated by the program showed identical to the prime numbers
listed in the data bases. The first of these control checks was performed Oct 22, 2010,
covering the first 10 million natural numbers. Later control checks performed from
rewrites of the program in JSP and Python showed the same identity, the program
generating all prime numbers and only them up to the chosen upper limits. We denote
this initial software expression of Johansen Revolving Prime Number Code as Johansen
Revolver - Strand Algorithm, abbreviated to JR-SA.
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function[p] = prime (N)
if rem(N,2)==0

N=N-1;
end
if rem(N, 3)==0

N=N-2;
end
if rem(N,5)==

N=N-2;
end

rotmaks=round ( (N-34) /30) ;
if N<20

rotmaks=0;
end
starttall=N-rotmaks*30;

grunntall=[11 13 17 19 23 29 31 37];
P=[O:1:rotmaks;O:l:rotmaks;O:l:rotmaks;O:1:rotmaks;0:l:rotmaks;Ozl:rot
maks;0:1l:rotmaks;0:1:rotmaks];

for I=1:8
if starttall<grunntall(I)
P(I,rotmaks+1l)=-1;
end
end

base=[2 2 2 20410 227 12 6.4 422 6 18; 2 2 2.4 4'4 26 2; 2-6 12
18476 P2 2 422 - 2-277°8 2, %42 24 2;50. 818 2062 2 12; 6 2
2 6 8 6 47;
ihitial=[1"4 6 0 =1 2.39; .01 5=-11 429y 1 39562 -1"07%6;"11'1
1092 310 0 33912 10 =2y 0-133.524519; 011
20 nd 3~ 1]
adding=[2.5:7 1 4 1 48207 1-2.3"3 8 9.3 ls 8.7+ 4 Ld. 1gd
132 9; 1124 14 7 1111; 1 51055117 1; 6060001 3
1:3 4 3 4 6];
first=[7 18 28 11 5 42 24 47; 8 16 44 4 13 23 .31 45; 12 17 41 48 14
13375591 7 ALy 11953950, 451028735 171129 154" 67.7619 20 132753 256
292 3791 .27 '31.12. 2 15 35 5.7 .21-37 22 .26 50 6]:
for I=1:8
for J=1:8
w=0;
var=0;
r=0;
while (w==0)
r=first (I,J)+1l*var+base(I,J)*initial (I,J) *var;
n=var-1;
if (r>rotmaks)
w=1;
=-1;

3y 0 0-0

12 2; 1

else
P(I,r+l)=-1;

end

while (n>0);
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r=r+30*n+base (I, J) *adding (I, J);
if (r>rotmaks)

n=-1;
else
P(I,r+l)=-1;
n=n-2;
end
end
var=var+l;
end
J=J+1;
‘ end
I=I+1;
‘ end
p(l,1)=2;
p(zl 1):3;
‘ p(3,1)=5;
p(4: 1)=7;
J=5;
‘ for I=1l:rotmaks+1l
for J=1:8
if P(J,I)==~1
else
p(j,1l)=grunntall (J)+30*P(J,I);
j=j+1;
end
J=J+1;
end
I=I+1;
end

‘ © Jon Martinsen Strand and Stein E. Johansen
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