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Abstract

Here we develop the analysis of resonance mechanism. We show functional connection
between resonance and wave generation. On the other side the echoing horizons exert a
particular resonance over the anticipatory trajectories and may be considered as
stabilizing operators. We indicate the functional association between loops and curl(V)
operators. Loops and curl(V) operators will be considered as resonators to maintain the
coupling between pairs of spaces as between the electric and magnetic spaces. We
observe Fourier transformation which relates the time signal evolution to the
frequencies of their resonators. Consequently there is a link between resonators and
oscillators. Besides resonating aromatic molecules play as light filters and the mirror as
optic resonances between objects and their pictures.

Keywords: Resonances in Matter, Curl(V) Operator, Loops, Pigments, Waves and
Mirror effects.

l lntroduction

This study proposes to explore the surprising world of the resonances, what supports a
lot of physicochemical mechanisms and may also generate our personal attractions for
some specific colours, shapes and domains. Indeed the resonances are the motivators for
many behaviours in various sciences and techniques, from geometry, mechanics to
chemistry. Resonance likely lies hidden in the bottom of our subconscious for colouring
our ideas and our feelings. We let observe that resonances act by means of altemate
v/aves exchanging reactive flows between conjugated resonators. This action plays as
dynamic stabilizing agent and can develop oscillating systems at a well defined
frequency, or resonating frequency, related to the composition of each resonator and to
the structure of the environment where the resonating pair is located. Resonance
between the bodies (A) and (B) will be noticed (Aéà B) which is the chemical
notation. The detection of resonating phenomena sometimes needs an acute sensitive
perception because we may meet these ones on various grades of complexities, in a
large range of matters. Action and Reaction law, basic behaviour very frequent in our
universe, seems the most simple case of resonance effect. The resonances will permit
to discover common characteristics supported by different systems and will simplify the
determination of their evolution. Indeed any equilibrium factor supplies system inertia
what is advantageous for any projection through the future.
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2 Description of Resonance Mechanism

Here, we consider the most usual resonating system composed of a pair of resonators.It
presents a sequence of 2 steps. Each step corresponds to a direction of the power
streaming between both resonators. The resonating frequency (f^) is produced by the
rate of direction inversion. Any resonance systems behave like oscillators (Figs:1-2).

1t'q{Âl

Fig.l: Description of a resonant Device Fig.2: Time Evolutions of Energy
level in each Resonator

Here after we describe the energy variations during each step:
First step what corresponds to an energy flow from the (B) resonator to the (A)
resonator. This is caused by the energy (:W) level drop in (B) whose (W) level is
decreasing and the energy absorption by (A) whose (W) level is increasing. (Fig.2)
Second step what corresponds to an energy flow from (A), the giver, whose (W) level is
decreasing to (B), the receiver, whose (rW) level is increasing.
This sequence of inversed steps acts like a reactive (push- pull) device because the (W)
levels in each resonator oscillate in opposition. (Fig.2). The extreme states in each
resonator remain constant and this causes the dynamic stabilization of the working. In
the most of resonators, the range of (Wrp - Wro.) points out their (V/) storage capacity.

of (A€ à

*---*

1

Table tsehavlour ot (A
Resonator (A) Resonator (B)

First steo (W) Receiver (W) Giver
First steo Increasins fiV) level Decreasine (W) level

End of First step Hiehest (W) level Lowest (W) level
Second step (W) Giver fiV) Receiver

End ofSecond step Lowest fiV) level Hiehest (W) level
Storage capacities c",(A) c.,(B)
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We define some parameters to quantifu the performance of the resonating systems.
They are deduced from the electromagnetic description of the resonance behaviours

Table 2: Resonance Parameters

This resonance composed of 2 steps is a complete resonance. Besides it acts like an
ideal reactive oscillator, without any dissipation, and this is practically impossible to
realize. Therefore we introduce a dissipation elemurt, noted by R which influences the
ATrs value, because

(or.")-1 - oz, :A1R + ;x;"
Where oX": ^C": Channel reactivitY

Unity explanation:
[J] = Joule: energy unity
[!û] : Ohm: impedance unity [W]-'= (Ohm)-': admittance unity

[JMt1 : [V] = Volt: voltage unity

[V/m] : Volt per meter: electric field unity

[rad/s] = Radian per second = angular frequency unity

3 Mathematic Description

tDi +ro,"t11Yg=6
'Where 

Yt = A(ro.rt) : v/ave function
The solution of this differential equation is:

Yt : A exp(itrrot) + B exp(-jtrl*t)l
Relation (4) displays the superposition of a pair of rotations with the same
progressive one and a regressive.
On the Laplace space, (Yt) is represented by a pair of conjugated imaginary points: jrrro

and -jor.", which are the marks of a resonating system without dissipation.

( l )

The circular functions: sin(rrlr"t) and cos(crrot) follow a perfect oscillating evolution and
subsequently are used for the describing of the oscillators or resonâtors. Besides we
know that: Dl(A sin(o'rt) = - A <o." sin(co.'t) (2)
Rel.(2) may also be written , for a generalization, as follows:

(3)

(4)
speed, a

Parameters Effects Unities
Coniugated resonators (Ae àB) DtW(A) = - DIW(B) IJI
Environment Transmittance : ̂ Trs Channelling of $D exchanges IQI''

Couolins flow W(A€àB) tJt
Level variables in resonators

sovernins fl ow direction
ifVA<VB, then W(A€B) lV l :

lK)lfli/2
Grad(V), inside the resonating

device
Indicator of (V) slope [v/m]

Resonance pulsation o* a. = 2nf* lrad/sl
Coupline factor M(A.B) M(A.B) = ^Trn (Ca C") t0t
or^related to (CA,CB) ro^= 1/(Co Cn)"' lradlsl
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Modification for a dissipative system caused by the introduction of an attenuation factor
(a) <1, what corresponds to the following differential equation :

[Dt2 +2co.,crDt +or.2] Yt:0
The new wave function is: Yt: exp(-at) lAexp(iroa) + B expfiroa)]
Where â = c[ (ù6 is the attenuation exponent,
oa: ors(l - a.2\tt2 is the damped pulsation.

(s)
(6)

On the Laplace space, (Yt) is represented by a pair of conjugated complex points, with a
real part (a: cr o,,) and an imaginary one (co6).
a is the mark of a dissipative resonating system.
Dynamical behaviour of resonating systems: the alternate (W) flow between the
conjugated resonators supplies the dynamic stability because the level ranges
(Wup - Wao*n) in each resonator are time invariant.

4 Resonance and Symmetries

To discover a symmetry it is necessary to consider at least, a pair of points or figures,
whose an element may be conjugated to its homologous, in relation to their symmetry
centre. Indeed the symmetric elements play as static resonators because they create a
geometric pair, defined by their symmetry centre which is the generator operator of this
configuration. Besides the pair of symmetric elements may be permuted by means of
simple fansformations, whose partial rotations are the most frequents. (Fig. 3)
Circular symmetries give sets of multiple resonances which are illustrated by the regular
polygons. Indeed the regular polygons with (n) sides are composed by (n) isosceles
triangles which may be permutated around the polygonal centre or the figure centre.
Here there are (n) apices which play as static resonators and their reciprocal resonance
is pointed out by a rotation of a (2n/n) magnitude. These transformations introduce
movements or a kinetic behaviour what produces mobile configurations and converts
the static resonators into dynamic ones. To give a firm base to these considerations we
have to remind Euler's relation:

exp[i(2nln)t] =cos(2nln)t+ j sin(2dn)t (7)
Relation (7) shows the dependence between a rotation: exp[1(2nln)t] and their
orthogonal projections which are oscillating signals: cos(2nln)t and sn(2n/n)t (Fig.  )
This deduction seems important because it establishes that rotating configurations
provide oscillations between the symmetric resonators. Consequently they win a
dynamical behaviour like in each resonance.
It is also usefirl to remind that the foci in conics are generally symmetric points around
the figure centres.
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j l'siu(cot)

Fig.4: Illustration of Euler's relation Fig.3: Hexagonal Symmetry
6 isometric Triansles

5 Resonance Effects

It is advantageous to inventory the various resonance indicators to be able to detect any
resonating behaviour in many technologic applications and scientific phenomena.
The resonating behaviours oft lead to procedure standardization what presents
substantial gain for studying and mastering these actions. A list of the main resonance
effects is noted in the table 3

Table 3: Resonance Effects

*The usual resonances oft play as stabilization factors for system evolutions because the
resonators act as reactive tanks. Resonance behaves as a spring and keeps constant the
levels of extreme states of the conjugated resonators. Therefore resonance introduces
the derivative or integration operators along the time what bridges past, present and
future. Consequently to this effect, the forecast of evolutions will be extrapolated from
the recorded past information. It results that any resonance occulrence may help to
stabilize the anticipatory procedures.
**However there are other resonating phenomena which involve anarchic evolutions of
the intemal states of the system components. Here we meet destroying resonances
which progressively ampliS the oscillations magnitudes and involve whole breakdown
of the structures. These resonance types (= avalanches) heavily damage the system

I Resonators as foci in their system
2 Resonators act as antennae for exchanging flows or waves
J Bidirectional channels or loops between resonator pairs

4 Coniueated points or intersections of topologic configurations
5 Mirror effects or symmetries for permuting the focus roles
6 Resonating frequencies for producing peaks of absorption or emission
7'r Reactive tanks with constant extreme states: stabilizing agent
8** Anarchic amplification of the oscillations: destroying agent
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functions and make then outer use. However these destroying phenomena give a
definitive certain forecast of the future system behaviour because the system nevennore
will work! These destroying effects occur when the periodic forces [F(roo)] present the
resonating system frequency and is noted like [F(ro".) êà System(w',)]

6 Curl (A) as specific Operator of Resonance

The bidirectional linkage between a pair of conjugated resonators, can be transformed
in a pair of mono directional arcs what inserts the resonators in a loop. Any loop may be
considered as the trajectory for a curl or rotation operator applied to a vector,
consequently to Stokes theorem. This consideration bridges the gap between loop,
curl(A) and resonance. The loop brings a geometric support to resonance, the curl(A)
supplies a vector meaning. The curl operator allows a bond between 2 spaces which will
become consequently a pair of conjugated resonators. (Fig.s)
Maxwell relations display a powerful application of inter space resonance due to an
opposite pair ofcurl operators, as shown hereafter.

Curl(H) =J* ev
Curl(E6r): - Dt(B)

Where: (H) is the magnetic field, J is the surface density of electric current
q is an electric charge, v is the velocity ofthis charge
86, is an induced electric field, B the magnetic induction (B: pH)

The Maxwell relations indicate the operational linkages between the electric and
magnetic spaces. This supports the electromagnetic resonance.(Fig. 6) [3]

(8)
(e)

Fig.S: Loop between 2
conjugated Resonators

1a.-]l
[v m-']

Fig. 6: Coupling between electric and
magnetic Spaces

\:

Loop

o
Curlfi
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7 Loops as Resonance Suppliers

From the equivalence between loop and resonance, established in chapter 4, each
sequential accumulation effect through an iteterative operator is similar to a resonance,
decreasing if the loop operator produces a damping or increasing if this operator gives
an amplification. This case of the increasing resonance is very dangerous and can
involve the system explosion or dislocation. Similar to an avalanche.

Fig. 7: Set of harmonic Loops between 2 conjugated Vector Resonators

The geometric expansions are well known cases of loop resonance, where the loop
operator is their multiplication factor (r). When the (r) value is lower than 1, this gives a
decreasing or stable resonance, but when the (r) value is higher than l, it produces an
increasing resonance or divergent resonance (= avalanche). The damped numeric
resonance appears by the sum ofthe successive terms ofthis progression given by the
following formula:

Er (no rk) : no/(l-r) (10)

Where: no is the first term of this progression, (r) is the amplificatory factor befween
two successive terms. (Fig. 8)

Y =X +c X + {G}3 X + {fi}3 X + ...
Y = X {1+ Ek {G}kj

Fig. 8: Series ofrepeated operational Loops

Yx

Lt(cot)

Ln(s)il Curllff'5)

Curltfi"t)

F*welLoop
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The extrapolations, following Taylor's relation, may be also considered like resonance
effects because they may be illustrated by operational loops (Fig. x)

Taylor's relation: g(zo+ Az) = g(zs) + Xo [ ff g(20)]lp I (1  l )
lVhere: g(zs) is a signal located in a phasor, Dp the derivative operator of (p) order.

8 Geometric Resonance in the Conics

These curves, resulting from the planar section of cones may be classified in 2 groups:
the conics with a single branch: circles, ellipses, parabolas and the conic with 2
separated branches: the hyperbolae. [5-6]
Actions of the foci in conics: each conic is shaped by the geometric distribution of its
focal pair. Indeed the foci are the discriminatory pair for selecting each conic type and
consequently the foci play as shape drivers. Where are located the foci in each conic?
For circles: the foci are located in the centres, resulting from a focal absorption by the
centres.
For ellipses: the foci are symmetrical pairs relative to their centre; (Fr Fz) is finite
distance.
For parabolas: one of the foci is flying away to the infinite region, along the symmetry
axis.
For hyperbolae: each focus is located in the concave or internal subspace ofeach branch
with symmetry relative to the centre. The external region is located between the branch
pair.
The pairs of foci play as conjugated resonators. This involves that every emission from
a focus is necessary received by its conjugated one.
In ellipses and parabolas, the curve points act as reflectors or minors, performing the
trajectories between the conjugated foci. These curves are impenetrable and constitute
tight borders between intemal and external subspaces.
On the contrary, the hyperbolas have to be porous to allow a resonance linkage between
the foci located in the concave side ofthe 2 different branches.
At first we will explore the resonance properties of the conics with a single branch.

Circles: the pairs of foci are located in the centres what could provides intemal
resonances inside the centres, if it would be possible to explore and to detect the
communications in the subspace inserted in these centres. The possibility of resonating
centres shows the insertion into a point of cascades of infra universes resulting from a
infra analysis. These very near focus locations point out that it is impossible to
exchange information between the inside points and their external neighbourhoods.
From these affirmations it is possible to deduce that concentric circles are mutually
hermetically sealed because any circle is like a point consequently to a scale
modification. Circle and point periphery play as impenetrable afinours against the wave
transit and these impenetrability phenomena between inside and outside are probably
caused by the isotropy of these forms. Indeed in each circle any internal wave is
reflected to the internal domain. It is similar for any external incidence which is also
reflected to the extemal domain. These circular armours create anti resonatins effects
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between their intemal worlds and their external ones. It is convenient to remind that
circles are special elliptic forms [5-6].

Ellipses: the foci are symmetrically located along the symmetry axis. Here the mirror
effect ofthe periphery is necessary to establish a linkage between the conjugated foci.
(Fig.e)
Parabolas: it is to remind that each parabola derives from an ellipse by a continuous
extension what throws a focus of the pair to the inaccessible asymptotic zone. The
parabolic form is used to link an emitter and a receiver very distanced from each other.
The curve points play as mirrors to focalise the parallel radii to the near focus. (Fig. l0)

Y

.P *ry\
s. c  i : F  

- T Fig. 9: Ellipse with its focal Pair.

Fig.l0: Parabola: its Focus
(F1) related to (F2), very far

The hyperbolic resonance, as already announced, is different because it is necessary to
pass through the 2 branches to join the 2 faci. The emission radius issued from a focus
cut the nearest branch through an emission window, without no deviation to reach the
second branch along the same straight line. It is the first focal vector. At this transit
point the radius penetrates this branch where it is deviated to the receiver focus by a
refracting point. It is the second focal vector. It is obvious that the opposite emission
undergoes the same operations through the branches in the order of their meetings.
From this ballistic optics, we deduce that each point of the branches can play 2 different
roles: emission window from the concave side to the convex side and refractor window
from the convex side to the concave side.
Focal vectors constitute bonds or transmission channels between the 2 hyperbolic
branches, what gives an associative resonance.
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This set ofresonances in conics is supported by pairs ofconjugated foci and is suited by
the curve shapes.
The quadrics such as the spheres, ellipsoids, paraboloids, and hyperboloids exert similar
resonating behaviours in their three-dimension spaces, because they also contain foci
pairs along their axes.
Each focus may be considered like an antenna.

Fig.ll: Hyperbola with a Wave relating its Focal Pair: Fr andFz

9 Intersections between Curves

Each intersection point may belong to a few crossing curyes what induces a few sub
points, each located on each crossing curve. An intersection can play as a few
communication gates or very short channels between these crossing curves at the same
speed.
Each sub point may be considered as a resonator conjugated with the other ones. Each
intersection may be equivalent to a mini resonating sub system. This resonance topic
transforms sets of secant curves into nets of channels for transporting or exchanging
energy flows or travelling \Àiaves.
Vector resonance: sets of secant loops support multi resonance between their common
pair of intersection points. Because each loop performs a resonating behaviour between
each resonator pair, there are 2 different channels when a pair of loops are crossing.
Each crossing loop appears like a resonating channel between their intersection points.
Consequently this pair of crossing loops introduces the vector resonance. To make a
generalization of this procedure, we have to consider (n) crossing loops on the same pair
of points: the intersection points are vector resonators and the (n) loops illustrate the (n)
components of this vector resonance. For noticing this multi loop resonance, we use the
following relations
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2 dimension resonance: y1 +L2 à Resl + Res
Where: Resl works along loop Lr and Res2 along loop L2

(r2)

N dimension resonance Ll + î, L2 ) [Resl (13)

Where: I is an integer parameter with (N) possible values defining N different loops
supported by the loops L1 andLz,with the same intersection points.

Besides À:0 gives the Lr and )" àco gives L2
Loop vector and harmonic phasors:
Because a phasor is a rotating complex plane with a constant angular frequency, when
each loop (L1,) is run at the speed oh, it acts like a (h) harmonic phasor. Besides each
loop can support a curling operator and consequently a set of (N) secant loops at (w6) or
phasor associate a specific (h) vector curling operator.
Here the resonance harmonics are illustrated by loop sets. (Fig.7)

Because (N) harmonic phasors or loops may define (N) frequencies (fi' : 2nolh), these
loops select (N) levels in a discrete Fourier's space. We may consider each secant loop
like a Fourier's component. Fourier's transformation indicates that the oscillator sources
of each evolution are defined by the set of its specific angular frequencies (ron) what
provides the well known following relation:

S(t) = X6 [A1, cos(hcot) + B6sin(hort)] (14)

'Where 
A6 is the projection of S(t) on the (h) even axis and B1 on the (h) odd one.

Fourier's Phasors are orthogonal between each other: indeed each (h) harmonic phasor

is moved by means of a circular operator : expffhrot] : cos(hrot) + j sin(halt)
Besides, it is well known that the cos(kot) and the sin(hrot) form orthogonal series,
because: J cos(à w t) cos(kwt)dt = 0 and J sin(hwt) sin(kwt) dt = O
From such a way, it is established that 2 phasors of different angular frequencies are
orthogonal and cannot exchange energy flows between them. Consequently each
Fourier's phasor keeps its own energy during the time. A phasor can exchange energy
with vibrating space of same frequency as its own. All these deductions synoptically
prove Parseval's relation which asserts that the total power of a signal is equivalent to
the sum of its harmonic powers:

wfs(t)l :llWh(Sh) ( l  s)

10 Curling Operators as Homogeneity Creators in fluid Spaces

Because the cuding operators are developed by circular vectors, they develop
turbulence in any fluid space if these vectors run along their loops with an angular
velocity (oh). This turbulence performs a mixing of the constituents in its domain and
develops a convection mechanism. These kinetic behaviours improve the homogeneity
of the domain. Because the curling operators and loops are illustrating devices of
resonance, we deduce that resonances may develop space fluidic uniformity and
consequently play as space stabilizing agents.
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11 Resonance in linear Operators

Each operator has characteristic directions where it works with maximum intensities
designed as its characteristic values. These directions whose number corresponds to the
operator grade, define the geometric referential of the operator. Relation (16) describes
the transformation exerted by an operator along one of its k characteristic direction:

[ O p ] Q = À r G r (16)

Where G1 is a specific function along this k direction with 11. as associated specific
value. (Fig.12)
This working way contains a resonance specificity which is shown by a maximized
action. The resonating pair is composed of the operator and its specific function.

Fig. 12: Resonating operator with its specific Functions
along the specific Directions in its associated Space

12 Chemical Resonance

In the most matters there are internal vibrations whose frequencies are related to the
molecule architectures. This phenomenon is produced by the thermal energy related to
the temperature. Each molecule acts as a pico oscillator which sometimes can develop
resonance under specific circumstances. These resonance frequencies are also
influenced by the extemal shape and the mass of the considered object. For a reliable
machine working, it is important to know the range of the resonating frequencies and
the ûequencies of functional efforts.
In a lot of specific molecules there are spontaneous resonances. Among these resonating
strucfures, we may consider some aromatic ring structures or benzene derivatives where
the double bonds oscillate permanently on their pairs of successive polygon sides. As
example we choose naphtalene which is composed of an association of 2 beruene
cycles. (Fig.13). [2]
The described structures correspond to 3 extreme configurations of the molecule. These
resonating structures establish very stable molecules because they give a delocalization

axis t

xip
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of electrons, what corresponds to an entropy increase related to the fuzzy electron
location. It is to note that the resonating behaviours improve the acidity and reduce the
basicity of these substances. The chemical resonances act as pico oscillators and
improve the molecule stability. This molecular resonance is produced by the permanent
oscillation of the double liaisons around the benzene hexagons.

{-} **

Fig.13: Resonances in a Naphtalene Molecule

13 Production of coloured Matters

Each matter absorbs a series of light waves and reflects the complementary spectrum.
The colour is given by the reflected wave frequencies, whose lengths are located
between 400 and 800 nm (10-' m). From these assertions, the colours of our
environment result from selective absorptions what are resonating phenomena between
electrons and electromagnetic 'waves. Besides the molecules with alternative
successions of simple and double bonds (: conjugated system) can exert colouring
effects. When the double bonds absorb light wave they reflect in the visible spectrum
and display a colour related to this reflected wave length. Consequently the most
organic chromophores belong to the benzene group because the resonating rings present
conjugated cycles.[2]

14 Electromagnetic Resonan ces

In the electric domain there are conjugate reactive devices: the inductances (cll) and the
capacitances (roC). The perfect resonance is reached when their impedances are equal,
indicated by the relation (8) which also deduces the expression of (f*) (Fig. la)

Xr: cùL = Xc :1rrlC)-l

Or {ù.: (L C)'n à f," : Ql2n) (L C)^''

Besides there are 2 types of connections: series connection where the system impedance
is cancelled :

Z*= i(Xr - Xc) = O

Parallel connection, where the system admittance is cancelled :

Y* = jro^C -jloxl,: j[o,.2CL -l]/ rool-: j[1-1]/crr.L:0

It is to notice that this parallel resonance is the basis ofany electronic oscillator.

(r7>

(18)

(1e)
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(a) Parallel Resonance (b) Series Resonance
Fig. 14: Electromagnetic Resonances

15 Mechanical Resonances

In the mechanical domain the technical resonators are formed by springs and oil
dampers.
The spring working when an axial force (N) is applied is described by the relation (20):

tr1: ko & (20)

Where k p is the rigidity of the spring; & is the length variation of the spring
The oil damper, composed by a piston gliding in a fluid cylinder, plays as a dynamic
damper and due to the action of the force (F)

F = Ba Dt(z) Ql)

Where: Ba is the viscous damping coefficient; Dt(z): time variation of the piston
progression through oil.
To absorb the shocks transmitted to a vehicle from a stony ground, it is useful to
associate a spring and a viscous damper in parallel. (Fig. l5)
Another resonance procedure occurs when a ship undergoes pitching and rolling on a
heavy swell. Here the conjugated resonators are the ship and the rough sea. This
resonance sometimes can follow an avalanche process and leads to the ship break and
its sinking into the sea (Fig 16).

16 Mirror Effects

When a mirror makes appear the picture of an object, it introduces an electromagaetic
copy of the object. In a planar symmetry, the picture is the object after a rotation of (n)
There is a chirality correspondence between this resonating pair (object€ à picture),
like between anght hand and a left one. With a few mirrors it is possible to obtain a
picture series what performs a chain of virtual resonance This optic multiplication of
forms is used for transmission and suiting of information about forms and drawings
because it is easy to ampliff or to reduce forms by means of optical instruments.
(Fig.l7).
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Fig. 15: Vehicle Damper Fig. 16: Resonance between a Ship and the rough Sea
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Fig. 17: Mirror Effect or optic Resonance

16.1 Resonances, echoic Horizons and Forecasts

Previously it was shown that resonance acts as a spring in oscillation between 2
conjugated resonators. From this, it is deduced that each echoic horizon exerts
resonance with any arriving wave and retums a part of the wave energy. This retumed
wave develops a feedback effect between this horizon and the previous one, This echo
plays as a stabilizing action in forecasting by giving information from the future what
partially compensates uncertainty. (Fig. 1 8)

Picù.uc
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17 Mind Resonances

The resonances are deeply inserted in our minds and they direct our ideas, our feelings
and our behaviours. Indeed somebody is attracted by a specific colour or by a defined
shape, without any logic justification. It is also resonance effects which push us to
explore certain domains and to neglect other ones whereas these trends are different for
our neighbours. It seems that our intuitive power is strongly influenced by resonating
phenomena or conversely that infuition may be the garden of our resonating behaviours.
Our mental profile is shaped by a few resonances which form the fundamental net of
our personality and select our abilities.

Fig. 18: Echoic Horizons and Feedback for anticipatory Procedures

18 Resonance and Life Quality

The resonators are wave producers and these waves are carriers of colours (:
electromagnetic ones) and of sounds (mechanical ones). From these behaviours , we can
deduce that resonances develop space communications and consequently act as
information vehicles.
A world without resonance effect would be a dull space because neither colour nor
sound would cross our surroundings. Without resonance, the universe would be darlq
cold and inert, without any communication agent, due to the wave eradication. In this
non resonating world, anybody would be prisoner in his own silent dark sphere without
external exchange. From these considerations we can deduce that resonances play as
necessary factors for our development in every domain.
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I
19 Conclusion

This report presents the main resonances with their locations, actions and consequences.
The resonances are located in various domains and they oft act like oscillators between
a pair of conjugated reactive elements what stabilizes the system evolutions. However
there are also destroying resonances which are designated as avalanches. Molecule
resonances are acting in the bottom of the matter and therefore it is logic that resonance
appears in macro structures. We have underlined the crucial role of loops in resonating
behaviours and curling operators. This functional analogy between loops and harmonic
phasors allows a synoptic interpretation of the Fourier expansion. This transformation
points out the resonating frequencies which involve the shape of the evolution of
systems. We have also shown the relations between resonances and our behaviours.
This study shows the correspondence between resonators, antennae and foci, where they
are defined (in the conical forms). Resonances between echoic horizons and anticipatory
\ilaves bring a stabilizing action for improving the anticipatory procedures.
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