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Abstract We address the excess entropy, which is a measure of complexity for
stationary time series, from the ordinal point of view. We show that the permutation

excess entropy is equal to the mutual information between two adjacent semi-infinite
blocks in the space of orderings for finite-state stationary ergodic Markov processes.

This result may spread a new light on the relationship between complexity and
anticipation.
Keywords : Permutation Entropy, Excess Entropy, Mutual Information, Complex-
ity, Duality

1 Introduction

Recently, it was found that much of the information contained in stationary time
series can be captured by orderings of values, not the values themselves [1]. The
permutation entropy rate which was first introduced in [5, 6] quantifies the average
uncertainty of orderings of values per time unit. This is in contrast to the usual
entropy rate which quantifies the average uncertainty of values per time unit. How-
ever, surprisingly, it is known that the permutation entropy rate is equal to the
entropy rate for finite-state stationary stochastic processes [1, 2]. Similar results for
dynamical systems are also known 12, 3, 6,15, 18].

In our previous work [14], we found a new proof of the equality between the
permutation entropy rate and the entropy rate based on the duality between values
and orderings, which can be seen as a Galois connection [11] (categorical adjunction

[17] for partially ordered sets, however) 'we do not refer to the Galois connection
explicitly in this paper). By making use of the duality we also proved that the
permutation excess entropy is equal to the excess entropy for finite-state stationary
ergodic Markov processes.

The excess entropy has attracted interest from the complex systems community
for decades ï4,7,9, L0, 12,13, 16, 19]. By definition, the excess entropy is the
sum of entropy over-estimates over finite length of words [10]. However, it can
be expressed as the mutual information between the pa^st and future, namely, the
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mutual information between two adjacent semi-infinite blocks of stochastic variables.
Thus, the excess entropy can be interpreted as a measure ofglobal correlation present
in a system.

In this paper, based on the duality between values and orderings, we show that
the permutation excess entropy also admit the mutual information expression in
the space of orderings when the process is finite-state stationary ergodic Markov
one. This result partially justifies the claim that the permutation excess entropy
measures global correlation at the level of orderings of values present in stationary
time series.

This paper is organized as follows. In Section 2, we review the duality between
values and orderings. In Section 3, we explain the permutation excess entropy. In
Section 4, we present a proof of the claim that the permutation excess entropy
has the mutual information expression for finite-state stationary ergodic Markov
processes. In Section 5, we give conclusions.

2 Duality between Values and Ord.erings Explained

Let An - {I,2,. ' . ,n} be a finite alphabet consisting of natural numbers from 1 to
n. We consider An as a totally ordered set ordered by the usual 'less-than-or-equal-

to' relationship.
Wê denote the set of all permutations of length L > I by Sr,. Namely, each

element r € S7 is a bijection on the set of indexes {1,2,... ,L}. For convenience,
we denote each permutation n €. S7 by the string ?r(1) . . .T(L).

F o r  e a c h  w o r d  s ! ; :  s l  .  . - s L : :  ( " r , . ' .  , s r )  €  A ! :  , 4 , x . -  x  A .  o f  l e n g t h
L

L> 1, we define its permutationtype n €. Ey by re.ordering symbols s1,... ,s; iD
increasing order: sf is of type zr if we have s,1a; ( s,(,+r) and r'(e) < r(i * 1) when
sr(r) : sr(z+1) for i : 1,2,"' ,L - 1. For example, r(1)n(2)r(3)zr(4) : 3142 for
sî: 2312 because s3s1s4s2 : 7223.

'We 
introduce the map_ ô : A! -- Sr, that sends each word sf to its unique

permutation type r : ô(ti). This map @ classifies or coarse-grains words of length
,L by the criterion whether they have the same permutation type. In general, /
is many-to-one map. For example, all of 111,112, 122,222 e A?, have the same
permutation type zr € 5a defined by r(1)n(2)zr(3) :123 (identity on {1,2,3}).

Now, we list the properties of the map d which will be used later.

Lemma L For s!,t! e A*,, ë(t!): ô(t!) i,f and only i.f sp I si ë tp
r< jsk<L .

Proof. See Corollary a in [i ].

I t, for all
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L e m m a  2  L e t n > i >  1 .  F i , r z ' €  5 2 , .  A s s u m e t h a t t h e r e i s n o s !  e  A ! - ,  s u c h
tha tQ@!) : r ,  bu t there  er is ts  s !  e  A !  suchtha tÔ( t ! ) :n  (When i :L  we de f ine
At-r : Ao : A). Then,

(i,) there eyists a un'ique s! e A! such that Ô(tl) : n. Moreouer, i'f Ô(t!) : 7T for
t !  e  A ! ,  then there  er ' i s t  c1 , " '  , cL  such tha t  s r *c* :  tn  fo r  k :1 , " '  ,L
a n d 0  1 c * r r r  (  . ' .  I  c - r r . t  I  n  -  i .

(tt) lg-lQr)l: ("*;n), wherelXl denotes the cardi,nali'ty of a set X.

Proof. See Lemma 5 in [14]. (ii) follows from the fact that the number of sequences
ar . . .ûLsat is fy ing0 (  a r  I  a24. . . I  o ,7  Sn- i  i sg ivenby theb inomia lcoef f i c ien t
(L+n-i\ n
\  n * i  , l '

For example, let Q € .S5 be given by r(I)n(2)n(3)r@)r(5) : 24375. We have

d("1) :  zr for sf  : .ers2s3sass:31213 e A!.  Consider t l  : t1t2t3tat5:41325 e AE
and clc2cacacs : 7AlI2. W'e have Ô(t?) : n and t2tafutfis : 72345 : 11233 *
01112: s2s4s3s1.95 * c2c4csc1c5.

As a more thorough illustration of Lemma 2, let us write down how / sends each
word to its permutation type far L :3 and n : \,2.

When n:1, the unique element 111 € AT is mapped to 123 € .Ss.
\Mhen n : 2, rve have

A9 Ô '8 ,
1 I 1
I12
I2 I

2tl
2r2

723
32

312;;v--;;i
222

For example, there is no sf e -Al such that /(sf) : 132 € .5a. On the other
hand, @*1(132) : {121} for $ : /l * .s.. We have ô-r(r23): {111,112,122,222}
for @ : Al * Su. Note that ld-1(123)l : 4: (til;t)

Let us introduce the map F: Er, -- Nt, vrhere N : {1,2,"'} is the set of all
natural numbers, by the following procedure:

(i) given a permutation 7r € S1,, we decompose the sequence r(1) " 'r(L) i*o
mar'imal ascend'ing subsequences. A subsequence ii ' ' ' i j*r of a sequence i'1 ' ' ' i'1
is called a marimal ascend'ing subsequence if it is ascending, namely' i3 (

ij+r4 "' f i i+h, and neither ii-ti ' i" ' i11r nor ij i i*t'"ij+t"+t is ascending.
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( i i )  I f  e r ( 1 ) . . . n ( i r ) ,  î ( h + 1 )  . . . n ( i z ) , . "  , n ( z r . - r * t ) ' . . n ( I ) i s t h e d e c o m p o s i t i o n
of n(1) - - .T(L) into maximal ascending subsequences, then we define the word
sf e N'by

s r ( 1 )  :  " '  :  S a ( t r )  :  l r s z r ( i r * 1 )  :  " '  :  s r ( i z )  : 2 r " ' ,

s r ( i r - r )+ l  :  " '  :  sn$)  :  k '

(iii) We define p(n) : s!.

By construction, we have { " 
p(tr) : ?r when p(n) e A! for all r e .S1.

For example, the decomposition of 15423 € Ss into maximal ascending subse-
quences is 15,4, 23. We obtain tt(tr) : s1s2s3.e455 : 13321 by putting s1s5s4s2s3 :
11233.

The map p, can be seen as the dual to the map d in the following sense:

Theorem 3 Let us put

X : {s! e,+!14-t(n): {s!} for somer e 5r,}, (i)
Y : {tr e Er.llô-'(r)l : 1}. (2)

Then, $ restricted ort. X 'i,s a m,ap into Y, p, restricted on Y i,s û nLap 'into X, and
they forrn a pa'ir of mutually inuerse maps. Furtherrnore, we haue

X : {si e Allfor ang 1 I i I n - 1 there erist ! < j < k < L

such that si : 'i + 1, s1 : 2] (3)

Proof. See Theorem 9 in [1a].

For the map d : Al -- Sa, the duality

ô
X - Y

It

is given by

121 @ 132
er 1 273
ziâ]Hrrt
221 @ 312.

n

(4)
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3 Permutation Excess EntropY

Let S : {,5r,52,..'} be a finite-state stationary stochastic process' where each

stochastic variable ,9r takes its value in An. By stationarity, we mean

Pr{,51 :  s l ,  " '  r  Sr,  :  s l}  :  Pr{^9*+t :  s l , '  "  ,S*+t:  ur}

for any lç,L > 1 and s1, "' ,sL € A,. Hencel we can define the probability of the

occur rence o f  each word  s f  e  A lby  p(s ! ) : :  p (s r " ' s ; )  : :  Pr { ,91  3  s1r ' "  ,SL :
t " \ .

The entropy rate h(S) of a finite-state stationary stochastic process S, which
quantifies the average uncertainty of values per time unit, is defined by

h(s) : -ri* |alsf;, (5)
L-æ L

where H(S!) : 11(Sr, . -. , Sr) : - I4ee ;n!il log2p(sf ). The limit exists for

anv finite.state stationary stochastic process [8].
The permutat,ion entropy rate qtantifies the âveràge uncertainty of orderings of

values per time unit. It is defined by

h.(s) : rim ]a.1sf) (6)
L-æ L

i f  the l imit  exists,  where H"(S!):  f /*(Sr,  " '  ,Sr):  -DnçEzp(n) logrp(n) and

p(n) is the probability that zr is realized in S, namely, p(tr) : D4e6-'1o)p(sf ) for
r € 5 1 .

Theorem 4 For ang finite-state stat'ionary stochast'ic
entropy rate h. (S) er'ists and

à.(s) : h(s).

process S, the permutat'ion

Proof. The proof appealing to ergodic theory is found in [1, 2]. For an alternative
proof based on the duality between values and orderings' see [1,4]. tr

The entropy rate can be seen as a measure of randomness of a finite-state sta-
tionary stochastic process. Meanwhile the excess entropy can be interpreted as a
measure of complexity [12]. More precisely, it measures global correlation present

in a system. The ercess entropy E(S) of a finite-state stationary stochastic process

S is defined by [t0]

E(s) :;ïL (n(si) - h(s)r)

(7)
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if the limit exists. If E(S) exists, then we have [10]
æ

E(s) : I (H(srlsi-') - h(s)) : jgLr(sf' s"1),

where H(YIX) is the conditional entropy of Y given X and /(X;Y) is the mutual
information between X and Y for stochastic variables X and Y.

The permutation excess entropy was introduced in [1a] by imitating the defini
tion of the excess entropy. The permutat'ion ercess entropE E.(S) of a finite-state
stationary stochastic process S is defined by

E.(S) : ;g' (H.(Si) - h.(S)r), (10)

if the limit exists. However, it is unclear what form of correlation the permuta-
tion excess entropy quantifies from this expression. In the following discussion, we
partially resolve this problem. We will show that the equality

E"(s) : ;gL /(d(sf );d(s?l,)) ( 1 1 )

holds for any fini.te-state stat'ionary ergodi,c Markou process S. Recall that the en-
tropy rate and the excess entropy of a finite-state stationary Markov process S are
given by

n
' /^\ ! i1
i ù (S )  : - )  p ,p , i l ogzp t j

, , j :1

and

' \ ê
E(S) : - 

Lpnlogrp, + \ ninilogrptj,

(e)

; - 1 ;  ; - 1

respectively, where P : (pr) is the fransi,tion matrir and p : (pr,..' ,pr,) is the
stat'ionary dtstri,bution P and p satisfy the following properties:

( i )  p i i  ) 0 f o r a l l  1 < i , j 1 n .

(ii) Dtr Pti : rfor all r ! i < n'

(iii) pa ) 0 for all 1 < i 1 n.

(1") fL, pr: I.

(") IL, ptprj: p, for all I1 j < n.
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?zi is the probability of transition from state z to state i. pn i, the probability of
observing state i. Thus, the probability of the occurrence of each word sf e Af
is given bV p("i) : pstpstsz' ' 'p"1,-1"1. A finite-state stationary Markov process S
is ergodi,c if and only if its transition matrix P is i,rreduci,ble l20l: a matrix P is

irred,ucible if for all 1 < i, j < n there exists I > 0 such that el!) > 0, where pjj)

is the (r,j)-th element of P'. For an irreducible non-negative matrix P, stationary
distribution p : (pr, . ",pn) exists uniquely and satisfies fu > 0 for all 1 1 i 1 n.

In our previous work [14], we showed that the equality

E.(S) : O15; (r2)

holds for any finite-state stationary ergodic Markov process. The key point of the
proof is that the probability

Q L :  I  p ( n ) : \ , n ( " )  ( 1 3 )
n€Et,

l d -1 (a ) l >1
r4Y

diminishes exponentially fast as L -, oo for any finite-state stationary ergodic
Markov process, where the set Y is given bv (2) in Theorem 3. For the proof
of the equality (11), we also appeal to this fact. Hence, we shortly review the reason
why this fact follows.

Let .L be a positive integer, We introduce the following probability B, for each
symbol s € An:

É" : Prisfllsi I s for any 1 < j s N), (14)

where N : LLl2) and lrJ is the largest integer not greater than s'

Lemma 5 (Lemma l-2 in [14]) Let S be a fini.te-state stat'ionary stochast'ic pro-
cess and e be a posi,tiue real number. If 0" <. e for any s Ç An, then q7 { 2ne.

Proof. \Me shall prove f,.y p!r) è L - 2ne, where the set Y is given by (2) in
Theorem 3. Let us consider words s! € A* satisfying the following two conditions:

(i) Each symbol s € A, âppeam in sfl at least once.

(ii) Each symbol s e A, appeârs in sftr*, at least once.

By the assumption of the lemma, we have

Pr{sfll(i) holds} ) r - ne,

because

rr{sf l( i)  holds} * 
Ëtrt" iglr i  

f  "for 
any 7 < i  <N} > 1.
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Similarly,

Pr{sfi*,1(ii) holds} } 1 - ne

holds because of the stationarity. Hence, we obtain

Pr{sf lbottr (i) and (ii) hold} ) 7 - 2ne .

Since any word sf € ,4f satisfying both (i) and (ii) is a member of the set X given
by (t) in Theorem 3, we obtain

n€Y
f ro(") : I p(sl) > Pr{sf lboth (i) and (ii) hold} } ! -2ne.

slex

n

Let S be a finite-state stationary ergodic Markov process whose transition matrix
is P and stationary distribution is p. We can write p, in the following form by using
Markov property:

Ê" :  I  p("t  " 'p,u) :  
f  p",p","r  "  'P",u-1"1, :  ((P")"- t  u",  P),  (15)

s;*s,  s i*s,
l< j<N 1<i<N

where the matrix P* is defined by
I

/ D \  _ J 0  i f i : s
\ r  s r ; d  -  \\ "'Lr 

lPr otherwise,

the vector u" : (ur,'..,un) is defined by un : 0 if i : s otherwise ut : 7 and

{.-' ,...) is the usual inner product in the n-dimensional Euclidean space.
We can prove that the non-negative largest eigenvalue À of P" is strictly less

than 1 and absolute value of any other eigenvalue of P" is not greater than À by
using Perron-Frobenius Theorem for non-negative matrices and the irreducibility of
P (Lemma 13 in [14]). Hence, by decomposing P" into a sum of a diagonalizable
matrix and a nilpotent matrix, we obtain the following lemma:

Lemma 6 Let S ôe a finite-state stat'ionary ergod,ic Markou process. There erists
0 ( a < 1, C > 0 and a positiue integer k su,ch that A" < CaLLk for any s € An
and, sfficiently large L.

4 Mutual Information Expression of Permutation Excess
Entropy

In this section, we give a proof of the equality (11) for finite-state stationary ergodic
Markov processes. We make use of the notions of ranlt sequences and rank aariables
which are introduced in [2.l.
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Rank sequences of length .L are words rf e N' satisfying I 1 \ 1- 'i fot i' :

1,.'. ,L. We denote the set of all rank sequences of length L by R7- Clearly,

lRù:  L t :  l sd .
We can transform each word sl e A" into a rank sequence r! e Rr, by defining

x

\ -  
" z  

/  \r i :  L ô ( s i  <  s i ) ,  i : 1 , . . '  ,  r ,

where ô(X; : 1 if the proposition X is true, otherwise ô(X) : 0. Namely, 16 is
the number of indexes j (1 < i < i) such that s3 ( s,. Thus, we obtain the map

ç : AL, --, Rr such that p("!) : r! .
We can show that the map p I A*, - Rr is compatible with the map Q : A! --

.Ss. Namely, there exists a bijection t:R7-+ 51, satisfying Lo9: ÔL14).
Given a stationary stochastic process S : {Sr, Sz,' ' ' }, its associated rank uari'-

ables are def ined by &: Dtra(Sj < S,) for i :1,2,"  ' .  Notethat rankvariables
R.i (i:7,2,'.- ) are not stationary stochastic variables in general. By the compat-
ibility between Q and ç, we have

H(Rl): r{.(Sf) : H(ô(Sl))

for .L ) 1.
Now, let S be a finite-state stationary ergodic Markov process. By (12), we know

that the permutation excess entropy E.(S) exists. By (17) and the chain rule, we
have

E.(s) : rlll (H.(sf ) - h.(s)r) : jIL (//(Æi) - â.(s)r) (i8)

: i lttlort*i-') - h.(s)) .
L=1

Since the infinite sum in (19) converges, \ile obtain

(16)

(17)

ln6!*,1n!) - â.(s)rl :

By the definition of mutual information, we have

r (ô (s | ) ; ô 9"1 ù : H (ô (s?j.-J) - n (ô 6']*, ) | d ( sf ) ).
In addition, we have H(ô6nrD : H(Ô(S!)): 11.(Sl) by the stationarity of S.
Hence, it is sufficient to show that

lstOts?l,11ô,siD - h.(s)rl , l_ o

to prove the equality (1,1). However, by (19), this reduces to showing that

W@6n)lô(s?)) - H@TL+llRl)l ,l- o,
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which is equivalent to showing that

in(O(sf), ô(s'"'*,)) - H(ô(s?"))l 
":'_ 

0
bv (17).

Lemma 7 For 
"'r",t?" 

€ A?:' , tf ô(t?L) : ô(t'r"), then g(s!) : ô(t!) and g(s!\r) :
ô(tTL*r). Namely, the partition 

"T 
AT by the rnap ô: AIL ---r 327 is a refinement of

the partiilan of A! x AI: AT by the rnap ë x Q: A! x A! -.51, x 61.

Proof. The claim follows immediately from Lemma 1.
B

Lemma 8

o < H(ô(s?")) - H(ô(s!),ô(9"!",))

holds for any finite-state stationary stochast'ic process S, where

P(r ' ,2 t " )  : pG?")

(:22)

(23)

s! eô-r (n,),

"!\re4-r1n,,1
for r ' , r"  e 51.

Proof. By Lemma 7, we can write

Ë(d(sT")) - H (ô(s!), ô6nJ)
: - 

I p(tr)logrp(7r)+ t p(tr',r")logrp(tr',r")
r€321 r t  , r t ' €57

( \
: t | 

- I p(n)togrp(r)+p(o',tr")togrp(tr',r")l
r/,r,,€sr 

\ ,r!À'_r,ilF.*,, )

( \
:  I  l -  I  p(r)tosrp(r)+ I  p(n)togrp(r ' ,n ') l

r t , r ,ÊSy  [  é - t t " ) ç  @- r ( z ) c  I
\  ( 6xp ) - I ( r ' , r " )  ( ôxâ ) - t ( n ' . î " )  /

t\: I p6,,nll- p," ffi,*,#34 In,,r,,est, 
\ <0fl1r_\71?,_,,, /p(r',r't)>o 
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0<-
é_L(r)c

(QxQ)-\ (n '  , r t t )

rf l$-l(tr ') l :  1 and lÔ-'("") l :  t  hold ror (tr ' ,o") e S;, x S7,, then l(/  x

ô)-t(n',n")l:1. In this case, if p(tr',n") > 0' then we have

By Lemma 2 (ii), we have

n' ,n"eE1,
ld- l  ( r , ) l>1 ot  lë-1 (n, t ) l> l

!(n) ,,, tou, 11")-, < 2nlog2(L * n).
p(tr', T") 

-"ot 
p(tr ', v"1

.p(r)  . lon^ ,P(t)  ,  :  o.
p(n' , r") "o" p(tr' , v"7

é-1(")g
(gxS)-r(xt ,nt t )

Lemma 9 (22) holds for any fini'te-state stat'ionary ergod'ic Markou process S.

Proof. We have

p( t '  , r " )
l d -1 ( r ' ) l>1 '

rt 'eE1

û

p(n' ,r")

: , 
,r_Eurrp(tr,) 

:2qr..

By Lemma 5 and Lemma 6, there exist 0 1 a 1 7, C > 0 and k > 0 such that

W !CaLLk for sufficiently la.rge, if S is a finite-state stationary ergodic Markov
process. The claim follows from Lemma 8.

D

Thus, we get our main theorem in this paper:

Theorem lO The equality (11)

E-(S) : tin I(Q$!);ô(s'"!*))
lr+æ

holds for any fini,te-state stat'ionary ergodi'c Markou process S.
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5 Conclusions

In this paper, we showed that the permutation excess entropy is equal to the mutual
information between the past and future in the space of orderings for finite-state
stationary ergodic Markov processes.

Combining this result with the equality between the excess entropy and the per-
mutation excess entropy for finite-state stationary ergodic Markov processes proved
in our previous work [14], we can see that the global correlation measured by the
mutual information between the past and future in a given finite-state stationary
ergodic Markov process is fully captured by a different coding of the process, namely,
coding by the orderings of values.

We hope that our result gives rise to a new insight into the relationship between
complexity and anticipation.

Acknowledgements TH was supported by JST PRESTO program. The au-
thors acknowledge anonymous referees for their helpful comments to improve the
manuscript.
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