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Abstract

The gamma process is a stochastic process with independent non-negative incre-
ments having gamma distributions. It is an infinite collection of probability distri-
butions, correlated in a manner suitable for modeling gradual wear and degradation
over time. Degradation generally consist of cumulative amounts of deterioration and
the advantage of the gamma process is recognized by Jan M. van Noortwijk in the
1990’s and applied in many structural studies. We introduce a novel stochastic pro-
cess we call a delayed gamma process, designed for the estimation of infrastructure
lifetime. An overview of the development of the model is given and the methods for
estimation are reviewed.

Keywords : gamma process, structural deterioration, Reliability.

1 Introduction

It is difficult to estimate the deterioration rate of bridge elements. Each bridge is
unique, subject to various physical and chemical stresses. There are a number of
factors that affect the condition of a bridge, for example the traffic load. Road
traffic is hard to estimate and is often approximated. The time and quality of
construction, the environment, the management policies, all contribute differently
to ageing in bridge elements. To be effective in estimating a bridge lifetime, one must
develop mechanistic-based deterioration models to predict the micro-response of the
structure. For the purpose of bridge management, macro level models are built.
They are of a statistical nature, used to estimate the deterioration rates. Bridge
Management Systems are established for the purpose of managing effectively large
stocks of bridges. The most notable one is Pontis, a bridge management system
developed at the request of the U.S. Federal Highway Administration. Pontis was
developed via contracting to two consulting companies and in collaboration with
six U.S. states. Pontis was designed based on previous work in maintenance. A
pavement management system was successfully deployed for the State of Arizona to
produce optimal maintenance policies for the 7,400-mile network of highways (Golabi
et al, 1982). At the heart of the system is a Markov decision model. In a similar
approach, a Markov chain was made to drive the Pontis bridge management system.
The Markov model formulation is appealing because it provides a framework that
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accounts for the uncertainty and the optimal policies can be obtained by solving
simple programming problems. However, a number of criticisms have been made
against the usefulness of the model (Madanat et al, 1995; Frangopol et al, 2001).
Among the issues raised, the Markov chain has a restrictive stationarity assumption
by which the time effect is not introduced effectively. There have been attempts
at relaxing the assumptions of the Markov chain model, for example Ng and Moses
(1998). A more recent approach, developed for the state of New York by Agrawal
et al. (2010) uses the Weibull distribution for the calculation of deterioration rates
of bridges. This approach represents a fundamental departure from the traditional
Markov chain decision model. In a similar exercise, we seek a different approach
from that of Pontis. We develop a novel model based on the gamma process. The
advantage of the gamma process is recognized and applied in structural studies by
van Noortwijk and co-authors (Pandey and van Noortwijk, 2004; van Noortwijk
et al, 2005; Pandey at al, 2007). We recognize the applicability of the stochastic
process and use it for the calculation of deterioration rates of bridge elements. In
the next sections, we introduce the gamma process and discuss the estimation of its
parameters. We then develop the new model as an extended version of the gamma
process.

2 Modeling Deterioration Using the Gamma Process

Deterioration in structures is caused by corrosion penetration and similar inherent
degradation processes. For example, a large sulphate attack, freeze-thaw action,
alkali silica reaction, chloride ingress and carbonation lead to the deterioration of
concrete structures (Gaal, 2004; van Beek et al.,2003). Time dependent stochas-
tic processes are sequences of random variables that can be used to model these
deteriorations. A particularly convenient stochastic process for modeling the cu-
mulative aspect of deterioration of structures is the gamma process. The gamma
process can be found in its modern application to structures in the late 1990’s by van
Noortwijk (1998) and van Noortwijk and Klatter (1999). In some structural mate-
rial, empirical studies showed that the expected deterioration in some cases followed
the power law at®, where ¢ is the time. This function of time is incorporated into
the gamma process and used to model structural deterioration (van Noortwijk and
Klatter, 1999). The gamma process is a sophisticated statistical model that is well
suited for modeling the temporal deterioration of components of structures. It gives
the stochastic flexibility that other models lack, while remaining a mathematically
tractable model. van Noortwijk (2009) provides a comprehensive overview of the
use of the gamma process in maintenance of structures.

In bridge management and following a practice that has been established in the
maintenance of civil infrastructures, the state of an element of a bridge is judged
upon visual inspection to be in one of n states. n can be 4, 5 or up to 9. Regular
inspections are conducted and repair decisions are made based on the conditions of
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the elements on the structures. One of the possible condition states, say the first one,
represents the ‘as new’ condition, no-deterioration state, while the other condition
states mark increasing levels of deterioration. Among recorded inspection entries are
g, the total quantity of the inspected bridge element, ¢; the quantity in condition
state 1, go the quantity in state 2, to ¢, the quantity in condition state n. The
inspected quantities for each element are measured either in square meters (m?) if it
is a surface, in meters (m) for some elements such as railing and joints, or some other
units (Manamperi et al, 2009). To better study the deterioration of bridge elements,
the data of the observed condition states are converted to continuous variables. The
condition data (qi,...,¢s) of an element are converted to a univariate measure
C, using the notion of ‘Condition Index’. A number of condition indices can be
formulated. These indices are related to the California bridge health index (Shepard
and Johnson, 1999), a ranking system that takes values in [0,100]. The California
Department of Transportation was involved in the development and implementation
of Pontis. The variable C can be modeled with a gamma process.

The gamma process was first applied by the Australian scientist Moran (1954)
to model water flow into a dam. Abdel-Hameed (1975) was the first to propose the
gamma process as a deterioration model. The gamma process is suitable for mod-
eling gradual wear and degradation. Degradation generally consist of cumulative
amounts of deterioration and the advantage of the gamma process is recognized and
is applied in structural studies. In the context of structural deterioration, the gamma
process is defined (van Noortwijk, 2009) as follows: Let v(t) be a non-decreasing,
right continuous, real-valued function for ¢ > 0, with v(0) = 0. The gamma pro-
cess with shape function v(t) > 0 and scale parameter u > 0 is a continuous-time
stochastic process {X(t),t > 0} with the properties; (1) X (0) = 0 with probability
1, (2) X(1) — X(t) ~ G(v(1) —v(t),u) and (3) X (t) has independent increments,
where G(z|v,u) = u’z""'e ™ /T'(v) is the gamma probability density function de-
fined for € (0,00). The process can be parameterized. Letting v(t) = p?t?/c?
and u = p/0?, the mean and variance of the deterioration X (t) are E(X(t)) = ut?
and V(X (t)) = 0%t9. We consider the condition C(t) of a structural element to be
a function of the deterioration X (¢), where X (¢) is modeled by a gamma process.
C(t) = ro — X(t) where rq is the starting condition, often considered to be 100%.
ro — put? is the mean of the stochastic process representing the condition of the struc-
tural element under consideration. To illustrate, we apply the process to a concrete
element on a bridge and observe the parameter estimates § = 2, 4 = 0.37, 6 = 0.105
(Figure 1). Two data points are used; condition 99.26% is observed at time 15.09
years and condition 98.15% at time 17.12 years with a full 100% condition last ob-
served at time 13.5 years. Time zero is the start of the data recording. This example
shows a typical condition path of some structural elements on a bridge. The rates of
deterioration vary and the shape of the curve can also be convex if it is a case of less
severe growth in degradation, accommodated by a g value less than 1 in the gamma
process. The flexibility of the gamma process and its ability to capture deterioration
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(Aboura et al, 2009) take the modeling of bridge lifetimes to the stochastic process
level.

3 Estimation of the Stochastic Process Parameters

There are three approaches in estimating the parameters of the gamma process;
(1) Method of Moments (Cinlar et al, 1977), (2) Maximum Likelihood Estimation
(Cinlar et al, 1977) and (3) Bayesian estimation (Dufresne et al, 1991). The first
two methods give the same estimate for u, but different values for o. To estimate
the parameters u,o and g, one uses deterioration data in the form of amounts
z;,1 = 1,...,n observed during inspection times 0 = ) < t; < {2 < ... < .
The Likelihood function is constructed from the independent observations that are
gamma distributed. Given a set of observations of the deterioration process X(t),
{x;}™, for times {t;},, the likelihood function is a function of the three parameters
u,0 and g. The range of g can be made as large as desired, is descitized, taken one
value at a time and the likelihood function is maximized over p and o. We choose
that value of g that leads to an overall maximum likelihood function value. Cinlar
et al. (1977) provide the maximum likelihood estimates for ¢ fixed. The Maximum
Likelihood estimate of p is i = z,,/tZ and &, the Maximum Likelihood estimate of
o, is solution of
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Fig. 1: Gamma process estimation: § =2 g = 0.37 ¢ = 0.105
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Although & is not provided in a closed form solution, it is relatively easy to solve
the 1-dimensional equation. The MLE algorithm is to set ¢ = ¢i1,...,gm. For
each g, compute i and & and compute log(L(1,d,¢g)). Then we set ¢ such that
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log(L(j1,6,q)) is maximized. The MLE parameters are ¢ and corresponding (i, &).
We experimented with the process using simulation and estimating the parameters
with the maximum likelihood approach (Aboura et al, 2009).

3.1 Maximum Likelihood Estimates in the General Case

The data for each individual structure aren’t enough to estimate the parameters u, o
and q properly. Often, in a 15 years data, there will be about 7 to 8 inspection times
for a structure, leading to 7 or 8 element condition values. When using a stochastic
process as a deterioration model, one looks for renewal points and the deterioration
data following those renewal points in time. At most, there could be 2 or 3 renewals
in the 15 years, and quite commonly 1 or none. This translates into condition path
of few data points. In other words, in the data ({z}%,, {t}i,), n would be 1, 2 or
at most 3. This information can still provide an estimate, but the uncertainty about
those estimates would be large. One way around this problem, and the advantage
of using the gamma process, is to aggregate the data by dividing the bridges into
similarity classes. Bridges can be grouped so that the element in question that exists
on them behaves similarly on those bridges. Influencing factors, such as traffic load,
age, region and environmental stress are used to conduct the stratification. Once the
bridges are divided into classes, the corresponding data result in better assessment
| and prediction of the lifetimes. Due to the independent increments property of the
gamma process and with the assumption of conditional independence between the
f element’s data on the different structures within a class, the likelihood function can
| be written and maximized to estimate the parameters pu,o and g. The likelihood
function is extended from a single element to multiple elements by considering m
independent elements, j = 1,. .., m, for which n; inspections are performed resulting
in n; independent deterioration increments (Nicolai et al, 2007). The likelihood is

|
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} where z; ; is the cumulative amount of deterioration at the ith inspection time ¢;
| for the 5" component and &;; = x;; — Ti_1,; is the i deterioration increment for
| the j** element. This formulation leads to the solution of the estimation problem
} when an element exists on many structures that are part of a structure class and
} when data exist on the deterioration paths of these elements. It also applies to
| the case where an element is brought back to the ‘as good as new’ condition upon
| maintenance work, and eventually starts to deteriorate again, creating a second
| path. That second path can be included in the likelihood of eq. 2. This is due to the
| independence of paths for the same element once a renewal occurs. The Maximum
| Likelihood estimates of pu is:
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and ¢ is solution of
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where w;; = t{ ;—t{_, ;. The MLE algorithm proceeds by fixing g, determining (i, ),
computing the likelihood function value for (g, &2, 5). The ¢ value that provides the
maximum likelihood value is the estimates g.

3.2 Method of Moments

According to Cinlar et al. (1977) the method of moments estimates are:
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van Noortwijk and Pandey (2004) provide the derivation. We extend the derivation
to the case of several elements, more precisely to the case of several deterioration
paths. The Method of Moments estimates for the general case are:
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These estimates are easy to compute. They serve as initial estimates for y and o
for fixed ¢, and as input in a search for the zero of the function of eq. 4.

3.3 Robust MLE Computations

In computing the Maximum Likelihood Estimates of ¢, u and o, one must find the
zero of the function in eq. 4. For each ¢ value, the MLE of p is computed analytically
and the MLE of o requires the application of an algorithm for the search of the
zero of a function. In addition to this last operation being iterative, the search
algorithm may not converge, thus creating a robustness issue in computations. A
possible approximation is the replacement of the MLE of ¢ by its Method of Moment
estimate (MME). The MME and MLE estimates are the same for p, but in general
they differ for 0. We choose to approximate the MLE of ¢ by it MME. We conducted
an analysis of the use of this approximation and found that in most cases it provides
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the same estimates for the three parameters at the optimality point in the parameter
space. To do the analysis, recall that the final estimates are obtained, according
to the MLE criteria, by finding the triplet (g, &, 6) that maximizes the likelihood
function £(fi,4,q), or equivalently the log-likelihood function log(L(#,6,¢q)). We
compute the exact log-likelihood and maximize it using a numerical method. Then
we use the approximation where we replace the MLE of ¢ by its MME and compare
the results. In many cases, when the data is smooth, that is the deterioration
paths follow a similar trend, the MLE and MME for o are the same at the point of
optimality. In addition, the log-likelihood function for g is the same in both cases
and the estimated variances are very close. The only difference is where the error
in the search for the zero in the function of eq. 4 is a bit higher in values of ¢ in
which the MME replaced the MLE estimates for o when the search algorithm didn’t
converge. Even so, the error remains very small, to the order of 1071°, In all such
cases, the approximation provides a perfect match to the true log-likelihood, and
therefore to the optimal solution. This approach makes the overall application a
very robust and fast solution, as the algorithm converges in all cases with an exact
final solution. In some cases, using the robust solution, we do not obtain a perfect
match in all points of the log-likelihood function. Looking at the error, we can see
the values of ¢ at which the substitution of the MME of o is made for the MLE,
and we observe consequently that the corresponding log-likelihood values are a bit
off from the true values. However, at the point of optimality, where it matters, the
match is perfect and therefore the solution is good (Figure 2). A similar case is
encountered when the error in estimating the likelihood is more pronounced when
the MLE of ¢ is replaced by its MME. However, again, the solution is perfect as the
match is perfect at the optimality point. Many cases where studied, and the most
typical noticeable departure from the log-likelihood still leads to a perfect match at
the optimality point. A computational problem often occurs when g is large. The
log-likelihood function does not compute at some points. The values are returned as
oo by the computational routine at these values of ¢. While one can study the exact
reason for this and try to remedy, the point is that often one does not consider very
high values of g. When ¢ is high, it means that there is possibly a very sharp drop
in the condition, an event that may be considered catastrophic. By forcing ¢ to be
limited to the right, one does not loose much in estimation. If ¢ optimal reaches
the highest allowed value, it usually means that the user has to return to the data
and study whether parts of it can be excluded from the analysis. Most likely some
outliers may be explained by some special event and do not belong in the analysis
where a ‘normal’ trend is sought.

4 The Delayed Gamma Process

Following the analysis of bridge inspection data and after extracting all relevant
condition information, taking into account renewals in the maintenance process, it
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Fig. 2: Typical error in the log-likelihood approximation

was observed that all elements follow a time period where they stay in full condition
then start deteriorating (Aboura and Samali, 2011). The full condition time period
can be modeled as zero when the first inspection after a renewal reveals a positive
deterioration amount. It is very likely that no full condition time is zero. However,
since it is not possible to know the real start of deterioration, one considers a ran-
dom variable that represents the last time the condition was observed to be 100%.
Statistical investigations in both parts of the process, the full condition period and
the deterioration period, were conducted. They resulted in two statistical models
(Aboura and Samali, 2011). One is a probability distribution for the time in full
condition and the other is a gamma process. The amalgamation of the two parts
creates a new stochastic process. The novel stochastic process characteristics are
derived in the remaining of the section to provide a lifetime assessment model for
the element, bridge and network conditions.

4.1 Derivation of the New Model

Let C(t) be the condition of an element at time ¢ after a renewal, 0 < C(t) < 100,
C(0) = 100. Let Ty be the time to the start of deterioration, from a renewal
(Figure 3). Tj is the first observable time before a deterioration is observed, looking
backward in time. It is the last time the element was in full condition, and observed
to be, before a deterioration is recorded. Ty is an observable whose data can be
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Fig. 3: Time to start of deterioration

used in an inferential procedure to estimate and predict the element condition after
a renewal. A renewal is a point in time at which the element is brought back
from a deteriorated state to a full condition. Time ¢ is then reset to zero. 7y has
a probability density function fr,(tq), 0 < tg < oo, estimated from the data. A
skewed distribution like the Weibull and the Gamma probability density functions
are found to be good candidates. Let the mean and variance of Ty be E(T;) = m
and V(Ty) = s, respectively. The deterioration part of the element is modeled with
a gamma process Z(.). The process starts at time T,. In this case, we consider
Z(t — Ty) as a deterioration amount for t > T;. The condition of the element is
C(t)|Ty, Z(.) =100if 0 < ¢t < Ty and C(t)|Ty, Z(.) = 100—Z(t—Ty) if t > Ty. Using
this definition of the new stochastic process and the laws of probability, we derive
the mean and variance of this new deterioration process. The expected value of
C(t), C(t) = E(C(t)|Ty, Z(.)) = 100— f3 u(t —ta)? fr,(ta)dta. The variance of C(t) is
V(C(t)) = [H{o?(t—ta) 1+ [t —ta) 2} Fr(ta) dta— (i it —t)*fr,(ta)dta]?. Aboura
and Samali (2011) provide the full derivation. The functional form fr,(.) may be
such that possibly closed forms can be obtained for the predictions. However, one
should not be restricted by the need to have a closed form since most computations
involve only a one dimensional integration.

4.2 Bridge and Network Condition Assessment

Let N be a network of n bridges, By, B, ..., Bn. Let the estimated condition curve
for each bridge be Cg,(t), i = 1,...,n. Each bridge B; has m; elements, with corre-
sponding weights w; ;. These weights have been assessed according to a procedure
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using the California Bridge Health Index or a similar approach. Letting C’i,j(t) be

the estimated condition curve for the jth element, the bridge estimated condition
is Cp,(t) = Xy wi;Ci5(t) i =1,...,n and the variance of the bridge condition

is V(Cp,(t)) = &, w?; V(Ci;(t)), i = 1,...,n. Considering a network N of n
bridges B, Bs, ..., B,, and letting the estimated condition curve for each bridge

be C’Bi(t), i =1,...,n, the estimation for the overall network condition of the n
bridges is Cn(t) = S1_; 2Cp,(t). The variance for the network estimated condition

is V(Cn(t)) = XL1(2)? V(Cp,(t)). Figure 4(a) shows the network condition model,
as it typically appears in all cases. It has a concave starting curvature which flexes
into a convex tail. It is interesting to note this characteristic form. The shape is sim-
ilar to that of the reliability function in the case of a univariate lifetime distribution.
Figures 4(b) shows the example of a bridge that is part of the network considered
in which the bridge estimated condition along with its standard deviation (straight
lines) is plotted against the network condition (dashed lines).

= T = T T

Network Condition

o 2 4 6 8 o 12
4 16 B 20 Yime from a Renewal [in Years)

2 4 6

8 10 12
Time from a Renewal [in Years]
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Fig. 4: Network Estimated Condition

5 Conclusion

Pontis methodology has taken hold in the United States and subsequently elsewhere.
We introduce a different method. The statistical model we showcase implements a
new approach. The main driving force in the work is the fact that a statistical
model like the gamma process is better suited for bridge lifetime assessment. We
followed the work of van Noortwijk and others in modeling deterioration in civil
infrastructure and found support for their approach. We extend some results and
develop a new stochastic process for modeling structural deterioration.
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