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Abstract
In this paper we discuss the several standard representations of Quantum Theory. The
requirements of time order and operator self-adjointness are too much restrictive. To
describe quantum correlations of rVparticles with a possible not causal order we propose
a new formalism which include all conjugate quantities in the same configuration space
where we define a "global state function" Y of 6,Àtl-1 scalar variables.
The function Y is 3/f-dimensional (non relativist Y) or 4N-dimensional (relativist Y)
when spin variables are separable. Usual kinematic functions are computed as implicit
functions, and new quantum operators are introduced.
Keywords: quantum correlation, quantum representation, time operator, causal order,
self-adj oint extension.

1. Introduction
The idea that a cause should precede its effects in time is an ancient philosophical

concept [3] of naiVe intuition. In Newton mechanics the observed time order was
assumed to always match the causal order. According to the Zeeman theorem [a] the
Lorentz transformation is required to preserve the time order. The so-called "causality
principle" has been much discussed by many authors [5,6,7,8] although it never appeaxs
explicitly in any equation of Physics.

The pioneers of the early Quantum Mechanics assumed that the time order should
match the causal order of the evolution of any quantum system. Therefore they
introduced [9] the time evolution operatori [{r,ra) computed as:

^ , , -4(r-,.) Hlx,,*r'xr)
U, \ t , t ) :e  o

and satis$ing the two following conditions:

Ù ( t o ' t o ) : 1  a n d  Û u * : Û *  Ù : t

where Û* ir the transposed conjugate of the operator Û. They also

regular time dependency functionsii f,(t) defined as:
_1p_t

f , ( t )=s  n - '

(1)

(2)

introduced the

(3)

i often shortly named "evolution operator"; reference l9l , p. 222-225.
iialso called "universal time dependency functions".
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and the chronological ordering operator' [0] defined by the equation (37).
In a previous communication [1] we have shown how the space-time structure is

basically built from space-time derivative operators which are related to momentum-
energy operators, to SO(3,R), SO(3,1,R) rotation groups and to 2-spinors.

In an other paper [2] we have shown that the time order might not match always the
causal order. A true causal order would be the order of quantum states in a sequence of
quantum transitions: it would define the proper time order of the quantum system and it
has not to match the time order which is observed in a privileged referential frame.

On the contrary, Carlo Rovelli Ul] asked to "forget time" and proposed to build a
timeless quantum theory.

For Ognyan Oreshkov et al. |21the pre-existing space-time is a causal structure
where events take place and thus the standard Quantum Theory is only valid locally,
and some more general correlations are possible with no causal order.

Thus a new quantum formalism should be proposed: it is the purpose of this paper.

2. The Several Types of Representations in Quantum Mechanics

To describe the evolution of a quantum system in time, the early Quantum
Mechanics introduced configuration spaces which do not need to be the space-time
manifold (see sections 2.2.,3.). There are two major representations [9,13,14] which we
recall in next sections:

l. the representation in coordinates,
2. the representation in momentum,

and there are three versions of these two representations [9,13,14]:
. theSchrôdingerrepresentation.
. the Heisenberg representation,
. the Dirac representation (theory of perturbation).

In the Schrôdinger representation, the evolution of a quantum system in time since an
initial time ra is described by the evolution of the wave function in time, as:

V , ( r , ,  x2 ,  x3 ,  t ) :  Û , ( r , ro )  w(x , ,  xz ,  xz ,  h ) (4)

In the Heisenberg representation, the evolution of a quantum system in time since an
initial time ra is described by the evolution of the operators in time and the wave
function does not depends on time:

!U( r , ,  az ,  x t , t ) : lU(x , ,  x r ,  x ,  to )

In the Dirac representation the evolution in time of the Hamiltonian É1 is the sum
of the initial Hamiltonian nJrr) and a perturbation term Ê,(r, xr, xr,t)

Moreover, for spin particles the spin ohas to be included in the configuration space.
To describe any quanturn system of several inseparable particles, the configuration
space was extended to contain the coordinates of all particles.

2.1. The Representation in Coordinates

In the non relativist Quantum Mechanics, the representation in coordinates for a

(s)

'reference 
[0], p. 333.
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single particle is built on the configuration space J, :
X , = t r , , x r , x r , t ] (6)

where the index l, 2,3 refer to the three axis of a space referential, and the wave or state
func t ion  is :  

v (x , ,  x r ,x , t )  e )
The position, momenfum and energy operators are usually defined as:

î , ( t ) : x , x  ( S )

î  (x,  ,  x,  ,  x,  ,  t ) : i .  (9)

Êr(t, , x2 , x3, t)=- i7-ê- (10)ôxr

h ( r r , r r , x . , t ) = - i 7 r f '  ( l l )

È(*r, r r ,  xr , t )=i7x!  e2)a t

with the usual notations for operators, vectors, gradients, scalar product ofvectors.
For a spin particle, the configuration space with the spin o is:

2 , : { r ,  , x r , x r , o , t }  ( 1 3 )

The Minkowski space-time X', defined by (36), is a relativist spinless
representation in coordinates with the time coordinate n (or a) such as:

x t : 1 c I

so the relativist wave or state function is:
V  ( r , , x r , x , x o )  ( 1 5 )

We usually build the relativist momentum-energy 4-dimensional operator Ê with the
following definition:

? ( r r , r r , x , x o ) = - i 7 a f i  o .  ( 1 6 )

where oVo is the 4-dimensional gradient in the relativist configuration space, in

relation with the relativist energy operator:

A t  r  
- j î ' l  

- - \  . +  ôf t \ xv  x2 ,  x3 ,  x t ) :A  E \x t ,  x2 ,  \ ,  x4 ) : l nZ i î (17)

2.2. The Representation in Momentum

In the non relativist Quantum Mechanics the representation in momentum for a
single particle is built on the configuration space Io:

x o : { p ,  ,  p z ,  p z , t J  ( 1 8 )

and the v/ave or state function is:
o ( p , ,  P r '  h , t )

(14)
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The momentum, position and energy operators are usually defined as:

Ê, ( t )=  p rx
^  /  . \p \ t ) =  p '

i r ( P , ,  P z ,  h , t ) = i h ! o P t

? ( p , ,  p r ,  p r , t ) : i h i  , '

È ( p , ,  P z ,  h , t ) = i h *ô t

For a spin particle the representation in momentum with the spin o is:
z  o : {  p ,  ,  p z ,  h  , o  , t }

A relativist representation in energy-momentum can also be defined:
time variable twe introduce the energy variable as:

po=-i E (26)

It leads to the configuration space I '" 
of the representation in momentum-energy:

x ' r : tP r  ,Pz ' h ,PcJ
which has a Minkowski mefiic. so the relativist wave or state function is:

o ' ( p ,  , P z , h , P )  ( 2 8 )

A relativist event, i.e. a 4-dimensional position in the Minkowski space-time is then
defined with the following position operator:

V(o ,  pz ,  p t ,  po)= iho i  , .  Qg)

where o[, is the 4-dimensional gradient in the relativist configuration space of

momentum-energy. This relativist representation in momentum-energy I 
'" 

needs to
introduce a time operator ? lsee section 5.1.).

3. The Extended Representations in Quantum Mechanics

When a quantum system contains several interacting particles the configuration
space usually contains the coordinates of all particles: when particles are inseparable
their coordinates are also inseparable in the state equation of the quantum system.

In the case of two inseparable spin particles A1r; and A1z; the extended configuration
space, in the representation in coordinates, is:

) , : {41  ,og , t 'a t ,o6 , t } (30)

where the labels 1, 2 between parenthesis identiff the particles. The state function is:

(20)

(21)

(22)

(23)

(24)

(2s)
instead of the

V:(r | , l  ,o6,r-ç4,o6,t)

In the representation in momentum the extended configuration space is:

Xo: l  4 t ,  orr l ,  pi t t l ,  o6, t j

(27)

(3 l)

(32)
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and the lvave or state function is:
o=(  p î  t ,  o r r r ,  p i r r ,  o  p1 ,  t )

As the vectors i and F are 3-dimensional and o is a
space of a system of /f spin particles has the dimension:

din(>)=4 4'tr a1 (34)
be decomposed intoThe separability condition defines when the system S can

independent subsystems. In the case of two particles we write:
3 r l r , ,  r l r ,  :  ! I  ( r i ,  y,  o1, y,  iq2,1, o p1,r)  =U, (  d l ,  o11 y, l )  + tp,  (  t i l ,  o g, t ) (3s)

After the Bell theorem [15] there is no local (hidden) variables which help to reduce the
dimension of the configuration space. So the separability condition has to be
demonstrated for every quantum system which is studied.

When the Relativist Quantum Theory uses the Minkowski space-time manifold as
the unique configuration space:

2 '  , : I x r ,  x r ,  x . ,  x o ] (36)

it does not allow to properly describe quantum correlations between inseparable
particles, and it naturatly leads to the E.P.R. paradox when the separability condition
(35) is not met.

4. Discussion About Time

Time is a physical observable which is measured from the periodic movement of
clocks, but it was not considered as a quantum observable by the early Quantum
Mechanics because the time operator was not assumed to be self-adjointi as we explain
below (see section 5.1.). So the variable f was infroduced in every configuration space
to represent the time order and also it was assumed to match the causal order.

Fàr n successive perturbations V(t) the invariant theory of perturbations writes
symbolically:

n  - l  t , , .  t  , .

o(r"): î f l  .+ 
tztt '- ' )  (t ' - t ' - ' )q(60)

/r= I

^  +É Û( t - , )  ( t , - t , - , )

ô(r" )= Te"  ' - '  ô(6)
where the so-called "chronological operator" Î ttas been artificially introduced to
recall that the addition is not commutative within the exponent in the equation (38).
According to the official interpretationii [0] î is rupposed to reset the product of
operators in the "conect order" (SIC!). Moreover the equation (37) is dubiousiii because
mathematically [16,17] we cannot obtain et(A+B) from en,l when the operators
A, Bdo not commute.

isee the definition and properties ofself-adjoint operators in the appendix.
iireference 

[0] page 335, text and notes 1,2.
iii see the Lie-Trotter product formula in references [16,17].

(33)

scalar, the configuration

(37)

(38)
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Now let's consider two events a, b seen by the observer O, the equation (37)
simplifies into:

q  ( r r )  : "#  Àr '  ) ( r ' - r ' ) ' i ' " ' "n - " 'Q( 'o )

If they are separated by a timelike interval:

c(tr- trf -(îu- î.)'r o

the time order is preserved by any Lorentz transformation, but the
exponential operators in equation (39) is not commutative.

If the events ao b are separated by a spacelike interval:

c(tr-  t r) ' - ( îo* i")2 <o

(3e)

(40)

product of

(41)

the time order is not preserved by any Lorentz transformation so a second observer O'
may see the corresponding events a', U at times t'r>t'z in the inverse order of the
observer O. In this case the chronological operator may define a privileged referential
frame.

Does the chronological operator î iottodo."d in equation (3?) by the so-called
"invariant theory of perturbations" define the proper time order of a quantum system or
does it privilege the referential frame of the laboratory ?

Moreover in the CPT transformation group the Ztransformation shown below:
(r)

t  - + - t (42)

reverse the time order and "causal loops" can be "formed by using bradyon and anti-
bradyon signals" [l8] as a positron may be an electron going backward in time |9,201.

5. Boundary Conditions for Introducing Quantum Operators

In usual treaties on Quantum Mechanics all quantum operators are formally
introduced with the equations (8) to (12) or (20) to Q4), all demonstrations are done in a
mere formal way and they let the reader think that all operators are self-adjoint.

To associate the wave function of a particle with expected values of kinematic
measurements, the corresponding operator must have real eigenvalues, and thus the
operator must be selÊadjoint or have a self-adjoint extension. In the contrary, the wave
firnction cannot be normalized, and then both the De Broglie double solution and the
Copenhagen interpretation fail.

5.1. Time as a Quantum Observable

Since W. Pauli's works [21] time was not assumed to be a quantum observable as the
time operator î was not considered to be a self-adjoint because of the semi-boundness
of the continuous kinetic energy spectrum:

Err0 (43)

with however some exceptions as e.g. electrically charged particles.
Nevertheless there is a strong requirement of a quantum time operator for measuring

tunneling time [22,23,24f, time delay induced by scattering 125,26], collision duration

I27,28), nuclear lifetimes, etc ...
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The introduction of a time operator ? has already been proposed by several authors

129,30,311.
It is defined in the representation in time as:

I : l

and in the representation in energy as:

î=- ih =o=
Ô E

(46)

(47)

(44)

(4s)

Although v/e can define formally the time operator, we must demonstrate that the
time operator is self-adjoint or has a self-adjoint extension for the known boundary
conditions of a given quantum system.

5.2. Some Position and Momentum Operators may be Semi-Bounded

The problem of boundary conditions is not specific to time, as it has been shown by
J. von Neumann [32] with the example of a free particle moving on a spatial semi-axis
r > 0 bounded by a rigid wall at xr:0: its momentum pr cannot be represented by the
operator (10) which is not self-adjoint. So position and momentum are not always
quantum observables (with the standard definition of self-adjoint operators).

5.3. Choose a Quantum Representation According to Operators Properties

Which quantum representation can we choose to describe a given quantum system ?
The answer was definitely given in the mathematical studies of J. von Neumann [32,33]
and Marshal Stone [34]: in the chosen representation all operators must be selÊadjoint
or have a self-adjoint extension. There is no unique standard representation of any
quantum system

If the energy or momentum operators (11), (12) are self-adjoint we rather choose the
representation in coordinates. If they are not self-adjoint, the representation in
momentum (or momentum-energy) is used.

V j:1,2,3 .f bounded = ffr(r):bjG)
X,= {r, , rr, r, , t}

V j:1,2,3 Éy bounded + îJrr):?j (r)
x ,= {P r  ,Pz ,  h , t J

If any operator is just symmetric (not self-adjoint) a self-adjoint extension has to be
found - if it ever exists.

When both rr and pz are semi-bounded the operators ptandît are not self-adjoint.
Ifthey have no self-adjoint extension, no standard representation can be used.

So stândard representations do not allow to build a complete quantum theory.
J. von Neumann [32] has shown that considering only self-adjoint operators is too

much restrictive to build a complete quantum theory. Operators which are only
symmetrici must also be considered,

Furthermore Ogrryan Oreshkov et al.lI2l claimed that the usual Quantum Theory is
only valid locally in the pre-defined space-time structure. They predicted quantum

'see the definition of symmetric operators in the appendix.
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correlations which have no causal order (ruled by some "causal inequalities"). The
authors predicted non causal correlations '\rhich are not included in the standard
formalism" and require a more general formalism [2].

6. A Global Representation of any Quantum System

6.1. Definition of a Global Representation

To lay the foundations of a more general quantum theory, we propose a global
representation in a multi-dimensional configuration space by merging the two conjugate
representations.

For a quantum system of two spin particles in the non relativist theory we merge the
representations (30) and (32) as:

)12y:) ,U)o

For a quantum system ofy'/spin particles the global configuration space is:
X1 7yy : { t,-i 111,...,i 1 t 11, F p1,...,V1r1, o11 ;,.'., olry }

lP( l, rf, 1,..., rfut, 4, t,..., fr g, o 1g..., o(n)) = 0
When the spin variables are separable from other variables as:

V= V ( t, ri,,,..,, 4 ù, f1r1,..., l i"y ) V" ( o1, y,..., o1,v;)

where the label between parenthesis in the right hand side of the equation is the number
of every particle. For better convenience we write the variable f in first position.

To describe all relations in the system, we introduce a real or complex vector
function Pand we call it the "global state function". The state equation is then:

(48)

(4e)

(50)

(s1)
we have a state equation without spins:

V(t,ri1,...,r irt,pi,1,..., pîrl):0 G2)
In the non relativist case ï&),F@ ne 3-vectors and o(r) is a scalar, so >1rv; has
7lÉt-l scalar dimensions (with spins) or 6lÊrl (without spins).

From the state equation (50) or (52) kinematic equations can be computed as implicit
functions. As an example \r/e may compute the momentum of the trl particle, if the
momerfia pg are independent, as:

frrF f r( t, ri;,..., rirvy)

and, ifalso the variables r@ are separable, as:

P-11; f ç(t, tia)

Let's apply the implicit function theorem in the real domain (sections 6.2.,6.3.) and
in the complex domain (section 6.5.).

6.2. Case of one Free Spinless Particle

In the case of a free spinless particle moving straight forward on the x axis, the
equation (52) is known to reduce to the simplest function:

Y( t ,x  ,p )=0  (ss )
Let us consider Y as a real scalar function of real variables. from the well known

(53)

(s4)
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implicit function theorem [35] we obtain the time derivatives of the real functions x(f)
and pdt) expressed as:

ôY ôY
ô x  ô t  ô p ,  ô t- : - -  - : - -
ô t  ô Y '  ô t  ô Y

ô. 6
(s6)

6.3. Case of a Real State Function of Several Particles

Let's consider a non relativist system of // particles and omit spin variables for
simplicity. In the equation (52) we replace every 3-vector by its scalar components, so
we have 3y'y' scalar variables of momentum and 3,Àf+-1 scalar variables of space-time
coordinates.

For better convenience we further use the following notation:

Qo: t  i  Q i :  r  ,  ( j :  t , . . " :  l v  )
so the global state function can be formally written as:

! [ r(qs,. . . ,  Q3 11 ,  p1,. . . ,  prr) :0

' = Jrlt

(57)

(s8)

(se)

(60)

(61)

function

Considering Y as a real vector function of real variables, let's apply the multi-
dimensional implicit function theorem [36], we can write the "total derivative" as the
Jacobian bi-matrix below:

/  a* ,  ôv,
I  ô q o  ô q t ,

DV=l :  . . .  :
\ôv , "  ôvr "
I . :-
\ d q o  

d Q z x

If there is a point (a,b) in the configuration space >rr,'y of Nparticles such as:

a(a ,  b ) : (ê ts1 . . .0  2 i3 , ,  b r , . . . ,  b r  r )e21r , , ;  :  ! [ / (a ,  û ) :0

where the right hand side matrix of the Jacobian (59) is invertible:

ôv t r (a ,b )  ôv  r (a ,b )
ô p t  ô p t u

a W r * ( a , t )

ô p t  ô h ,

then there is. an open set S containing the point (a,b) where exists a vector

E\qo,..., q^) defined by its vector derivative as:

ôY

ô È  ô q r- : - -
ôqr AY

ah

f -
J l p ) -

r57

(62)



and the function ! represents the following set of momenta:

E( q0,. . . ,  qr r)= (  p t , . . ' ,  Pr r) (63)

As -Irpr is a square matrix, the global state function Pmust have 3/y'real dimensions.

6.4. Generalization to a Complex State Function of Several Particles

To represent a quantum state, the function Y is required to be a complex vector
function. The generalization is done with the "analytic implicit function theorem" [37]
which has been demonstrated [38,39]. If the function Y is holomorphic, all rules and
computations presented in the previous section still hold. "do1 is still a square matrix and
so the global state function must have 3.fy'complex dimensions.

6.5. Generalization to a Relativist Complex State Function

In the relativist quantum theory the variable qo is the time coordinate xo: cf and the
y'fparticles are described with Nmomentum 4-vectors. The particles positions in space-
time still have 3Àtl-1 scalar dimensions (real or complex), but the Nmomenta have 4/Û
scalar dimensions (real or complex). So the relativist state frrnction becomes:

V(q0, . . . ,  Qtr , r ,  Pr , " ' ,  Pou)=0 (64)

The relativist global state function has a total derivative which is also represented by
an invertible Jacobian bi-matrix similarly to (59). It is:

/  av,  ôv,
I J

I  ôqo  ôq t ,
DrIr=( : ... :

\ ôvo ,  ôvo ,

\ ôq '  ôq *

(6s)

where the right hand side matrix lo1 is still a square matrix, and so the global relativist
state function must have 4Ndimensions.

6.6. New Quantum Operators

We introduce operators which are acting on the global state function Y defined by
the equation (50). These operators are the following:

ôôa
aqr ;  a  n ;  a "  r  

(66)

They look like usual derivative operators, but they are quite different as they are related
to the global configuration space .d1e defined by (a9). They are used to build the
invertible Jacobian bi-matrix (59) or (65).
We also introduce an integral operator defined by:

- t  t  l  O Pg\Qo,...,q;= J fiolr
which gives the implicit function p from the equation (62).

(67)
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7. Appendix: Recall of Basic Properties of Linear Operators

A linear operator,4 defined in a domain D(,4) on a Banach space H, i.e.

D( ,4 )sH

is said to be "s5rmmetric" if:

v  , , yeo(â ) :  (Àx l  y )= (x l  Ày )
Here the space H is not required to be a Hilbert space.

The adjoint â* of a linear operator Â is defined as:

V  x ,  y  e o ( Â ) :  ( À x l  y ) : ( x l  À *  y )

A linear operator is said to be "self-adjoint" ifand only if:

À * : À  ( 7 1 )

In any vector basis its^associated matrix is Hermitian.
A linear operator Â is said to be "bounded" if its norm is bounded by a real number

m over all non-zero vectors:

rmeR, v xeD(â) l lx l l+o:  l l2" l l<ml l ' l l  (72)
and a linear operator Â is said to be "semi-bounded from below" if

(68)

(6e)

(70)

(73)

(74)

3m€R,  VxeD(â) :  (Àx l * )>  r l , l l * l l '
An operator which:is not bounded may be semi-bounded or unbounded.

If the operator.4 is defined everywhere:

D( '4):11

the operator ,4 is bounded after the Heelinger-Toeplitz's theoremi [a0] and thus it is selÊ
adjoint (it is called Hermitian). Only selÊadjoint operators have real eigenvalues.

If the operator.A is partially defined, i.e.:

n( .4 )cs (75)

it may be or not self-adjoint. A partially defined symmetric operator may have no or
several self-adjoint extensions l4l,42l and it may have no eigenvalues at all. In many
problems of quantum physics, the Hamiltonian is only symmetric: to solve such
problems we have to find self-adoint extensions of the operator in relation to some
boundary conditions.

Unbounded operatorsii [40] can have an empty spectrum.

8. Conclusion
The standard Quantum Theory which has been developed with self-adjoint operators

on a Hilbert space, is valid locally but it is not complete. A more general theory should
be able to use quantum operators which are not bounded and have no self-adjoint
extension. It should be able to describe quantum correlations with no causal order.

This paper proposes a most general formalism with complex implicit functions, to
describe non relativist or relativist quantum systems.

'reference 
[40], section III.5, page 84.

iireference 
[40], chapter 8.
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In future works we will develop expressions of the global state function of some
quantum systems.
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