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Abstract
Starting from a sub microscopic point of view the gravitational time delay effect (the
Shapiro effect) is described in detail. Two different microscopic approaches to the study
of the photon delay caused by a gravitating body are examined: the variational
procedure of classical mathematics and the fractal changes of the fundamental tessel-
lattice of space. It is shown that only the second approach brings about a reasonable
alteration to the photon path consistent with the experimental result. Namely, the
gravitating body confiacts cells of space and hence photons hopping from cell to cell
run through a larger number of cells, which results in a lengthening of the whole photon
path.
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1. Introduction

The Shapiro [1,2] time delay effect, or gravitational time delay effect, is one of the
four available classic solar system tests ofgeneral relativity. Shapiro sent radar signals
from the Earth to the Mars, which passed near the Sun and took a little bit longer time to
travel to the target and back, than it should occur in the case when the Sun was not
present. The signal path is longer than the straight-line path between the planets due to
deflection by the gravitational field of the Sun. The measured time delay 200 ps was
also calculated [,2] on the basis of the Schwarzschild metric of the Sun. General
relativity introduces nonlinearity to the flat metric, such that the time component goc =l

gains the appropriate correction gct=!-ZGMl(c2r) (see, e.g. Ref. 3). Later the time

delay effect was observed for the binary pulsar PSR 1913+16 [4] and the phenomenon
is applied to various other cases.

There are a few other alternative approaches, which agree with experimental data,
to the resolution of the three classical tests: the motion of the Mercury's, the light
deflection of starlight by the Sun and the gravitational redshift of light. In particular, the
motion of Mercury perihelion was considered by Giné [5], Dubois [6], Anderton [7] and
the author [8]; the light deflection of starlight by the Sun was treated by Giné [9] and
the author [S]; the gravitational redshift of spectral lines also was described by the
author [8]. Berger [9] developed his own alternative approach to the description of all
four classical tests of general relativity: the perihelion precession of Mercury, the
deflection of light by the Sun, the redshift of light and the Shapiro time delay effect.
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Berger's calculations were based on the laws of classical physics with assumptions that

the velocity of a test object near the gravitational centre is u = cll+ 4GM/(rc2) and the
gravitational constant G is not a constant but a function with a similar dependence

G,=G.(+4GMl(rc')). B"tg"rr' study of the Shapiro time delay effect raises a

question whether the photon path becomes longer due to an alteration of physical
parameters or the longer path is associated with a real geometric change of space.

Suntola [l] developed his very original approach to the description of the
universe, the so-called dynamic universe. In his theory locally observed phenomena are
derived from the conservation of the zero-energy balance of motion and gravitation in
whole universe. Inertial work looks as the reduction of the rest energy due to motion in
space, which gives a quantitative explanation to March's principle. By using this
approach, Suntola derives correct expressions for the perihelion precession of Mercury,
the deflection of light by the Sun, the redshift of light and the Shapiro time delay effect;
besides he describes also the Sagnac effect. In his theory the velocity oflight is locally
variable and can drop at the gravitational interaction.

In the present paper the Shapiro time delay effect is freated from the viewpoint of
submicroscopic concept.

2. Submicroscopic Concept

A sub microscopic approach, which is applied below, also gives a detailed
explanation of the phenomenon. In the author's works tl2,8,l3l a theory of gravitation
appears as a continuation of the developed submicroscopic (subquantum) mechanics of
elementary particles and the theory of ordinary physical space that has been constituted
as a tessellation lattice of primary topological balls [14-17]; this mathematical lattice
has been called a tessel-lattice.

A physical particle is feated as a local deformation of this mathematical tessel-
lattice, i.e. a volumetric fractal deformation of a cell of the tessel-lattice. The motion of
the particle through such structure is necessarily associated with the interaction of the
particle with surrounding cells of the tessellattice. The motion can be described by a
Lagrangian ï18-221

L = -t,oczû-t4*o"'1fuo*' * poi' -2n Ir.lraa@i - uodl"' (1 )

where zo is the particle's mass, x is its position; 7ro is the mass of excited cloud of
excitations of the tessellattice (they were named inertons, because they are associated
with the field of inertia of the particle), 7 is the position ofthe centre mass of the cloud;
l/T is he frequency of collisions of the particle with the cloud of inertons; uo is the
initial velocity of the particle and c is the speed of light. This Lagrangian is constructed
as an inner development of the so-called relativistic Lagrangian of a particle

^ F---';-=

L = - m o c ' i l - u J c ' .
The moving particle is rubbing against the tessel-lattice, which results in the

appearance of the particle's cloud of inertons. But this is not a classic friction that stops
the particle.
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Indeed, the Euler-Lagrange equations: d I dt (d L I dq) - d L I âq = g

for the particle (q = x) and its inerton cloud (4:7), which are based on the Lagrangian
1, result in periodical solutions:

* = Do. (1- | sin(arlz) l), (2)

x= t )o t+) " ln .k -Du ' ' '  cos(n t lT ) - ( t+4 t t r l \ ,  (3 )

I  = lv ln- ls in(tr t  lT) l ,  (4)

i = (l)tt/rt ccos(nt lT) ,

Â, = ttoT, 1\ = cT .

(5)

(6)

. This is the harmonic oscillator Hamiltonian, which means

Hamilton-Jacobi equation for a shortened action Sr of the

Expressions 2 and3 show that the particle's velocity periodically oscillates and 2 is the
amplitude of particle's oscillations along its path. In particular, 2 is the period of
oscillation of the particle's velocity that periodically changes between uo and zero. The

inertons cloud periodically leaves the particle and then comes back; Â is the amplitude
of oscillations of the cloud and c is the velocity of the cloud of inertons. The Lagrangian
I allows us to introduce an effective Hamiltonian of the particle, which describes its
behaviour relative to the centre of inertia of the particle-inerton cloud system

H 
"n 

= p' l1zm1+ mf2.n t(271]' x' tz (7)

, -  , r 1 " ,w h e r e  m = m o l i l - D Â

that we can construct the
particle

(ôs,l ôx)2 t(2m) + ml2.r l(2\]' x' l2 = E

where .E is the energy of the moving particle. Introduction of the action-angle variables
leads to the following increment of the particle action within the cyclic peiod2T,

LSr = 
{Odx 

= E-27 (9)

Eq. 9 can be rewritten by using the frequency v =l l(27) . At the same time l/Z is the

frequency of collisions of the particle with its inertons cloud. Allowance for

E = mul l2 gets

ÀS, = rauo .uoT = pp" (10)

where po = muo is the particle's initial momentum. If we equate the value ÂSr to

Planck's constant ft, we obtain instead of expressions 9 and 10 the major de Broglie's
relationships

E = h v ,  2 = h l  p ,

which form the basis of conventional quantum mechanics.

(8)
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Relationships I I allow one to derive the Schrôdinger equation

trz-l-Y"ty(r,t) +V(r)y(r,t) = ElVrçr,11 .
zm

(r2)

The submicroscopic concept developed in the real space on the scale of Planck's
length operates with a particle and the particle's cloud of inertons. Conventional
quantum mechanics, which was evolved in an abstract phase space on an atom scale,
works with the wave rp-fimction. These two approaches can be combined if we assume
that the inerton cloud of an entity, which is associated with the entity's field of inertia,
represents a substructure of the entity's "mysterious" tTrwave function.

Therefore, the cloud's inertons are a substructure of the matter waves and they are
field cariers that tansfer mass and fractal properties from the particle to distant points
ofspace.

A range of space covered by the particle's Wwaye function is specified by the
amplitude of the inerton cloud, lt = ).c I uo (which is spread in transversal directions of

the particle's path), and the particle's de Broglie wavelength ), alongthe particle's path
(c is the speed of light that is the velocity of migrating inertons in the inerton cloud,
which are transversal to the particle's path; uo is the initial velocity of the particle, and
also the component of the velocity of the inerton cloud along the particle's path). If the
particle is motionless, its inertia and gravitation are restricted in the particle's
deformation coat whose radius coincides with the particle's Compton wavelength
Aco = h /(mc) where z is the particle's mass.

In a macroscopic object local oscillations of entities generate inerton clouds, which
overlap, forming a set of harmonics of inerton waves in the object [23]. Moreover, long-
wave inerton harmonics go far beyond the physical size of the object. These oscillating
waves bear mass properties to a great distance away from the object. Oscillating waves
mean that inertons emitted by the object return to it, which signifies that these inerton
waves are standing spherical waves.

Solutions to standing spherical waves are characterised by the inverse dependence on
the distance to the wave's front. Standing inerton waves of a macroscopic object were
studied in works [2,8,13] where it has been shown that at the average, the standing
inerton wave results in a quasi-stationary mass potential field around the object with a
mass Mo, which is subjected to spherical symmeûry

M - M o / r .  ( 1 3 )

This average mass field automatically results in the Newton's gravitational potential

u =-GM tr .  (14)

Besides, the notion of a point mass, which is typical for general relativity, cannot be a
real point but rather a small macroscopic object whose smallest radius can be estimated
at around I um.
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In paper [8] the submicroscopic theory has been further developed for the interaction
of mass objects; it was exhibited that the gravitational interaction between two mass
objects should be described by a correctedNewton's law

u =-cM!' ['.9J, ( ls)

where l* is the tangential velocity of a test mass M1, which is in line with Poincaré's
remark [2a] that an expression for the gravitational interaction should include the
velocity of a moving object. By using expression 15, the submicroscopic approach has
been applied to describe tlree macroscopic phenomena: the motion of Mercury's
perihelion, bending of a light ray by a stax and the red shift of spectral lines. The
approach allowed us to derive exactly the same equations for the description of the three
phenomena as those that were predicted by general relativity (see, e.g' Ref. 3). This
means that the solutions are also identical.

An important feature of the sub microscopic theory [12,8,13] is the derivation of
Newton's gravitational law, expression 14. The study shows that the metric of a mass
object is flat, because the mass object does not possess any singularity in its
gravitational field. Nonlinearity has manifested itself only at the interaction with a test
object. A package of photons, which travels near the mass object, does not disturb the
space, because photons do not form inerton clouds around themselves and hence cannot
participate in the reciprocal interaction through inerton clouds with the mass object.
Therefore, the first term in expression 3 does not affect photons. Only the second term
of expression 3 is responsible for the deflection of photons of a gravitating body, which
results in the deflection of a light ray by the angle [8]

g = 4GM /(c2r) (16)

(this result in the agreement with that obtained in the framework of the
phenomenological formalism of general relativity, see, e.g. Ref. 25). Here r is the
radius of a gravitating body; in the case of the sun it is the Sun's radius.

In this note we apply the submicroscopic theory of gravitation [12,8,13] to the
description of Shapiro's time delay.effect.

3. A photon Path in the Vicinity of a Gravitating Body

Let us consider a path of photons that travel from one planet to the other and come
back passing near the Sun (Figure l). A conventional consideration is based on a
variational téchnique. Time has to be treated as a natural parameter,

(17)

where ds is the interval length of the path of photons and c is the constant, the velocity
of light. A ray of light, which comes by a gravitating body with the mass M and the
radius R, has to be deflected in compliance with expression 16.

,= I+,

t4l



F'igure 1. Photon path from one planet to the other, which passes near the Sun. The x-
axes line is a straight line; the upper line (dotted line) is the real path of photons. Below
in the text we use the following designations: the distance from Earth to the Sun is r,,

the distance from the Sun to Mars is r" and the distance from Earth to Mars is n + r..

3.1. Classical Mathematical Variational Procedure

Following classical mathematics, namely, the variational procedure, we can write

(18)

(21)

t=!g!=Iry=!.'lt.-t:<x-*
where the fi.rnction y(.r) is defined in expression 16 and Figure l:

(te)

and, therefore, its derivative becomes

e'(x) = - 4GIh
c'1R' + x'1t''

Such approach does not require any uncertainties at extremely low distances, which
are prescribed by the formalism of quantum mechanics, because at the sub microscopic
consideration nature is indeed deterministic even at its minimal scale [3].

Substituting form 20 into expression 18 we obtain

, =! la7'.(ry)' d.r = | [n' . * {#)' #'tr

(20)

= +?k, .,k,). *(#)' ?i# *ï61
where 7 = xl R is the dimensionless variable.
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From expression 21 we get for the time delay

where 4 and r, are distances from the Earth to the Sun and from Mars to the Sun,
respectively.

Physical constants are: G = 6.673x lO-tt m3kg-ls-2, M =1.99x1030 kg,

r t=L49.6x loe  m,  rz=227,94x10e m,  R=0.695x10e m and c=3x108 m/s .

Substituting these constants into expression 10 we get an estimation of the time delay

âr - lo-tt s, Q3)

which is 5 orders less than the experimental result and the value obtained by Shapiro

[,2] on the basis of Schwarzschild metric's components.

3.2. Fractal Changes in the Photon Path

A submicroscopic consideration allows us to determine deeper the proper time of
migrating photons in the different way. Photons, as mass quasi-particles [13], have to
interact with the mass body via the second term of expression 15. This interaction with
the body's total inerton cloud changes the path of photons near the body, expression 4,
which one can perceive as a local space curvature. Since the real space is organised as
the tessel-lattice of topological balls [14-17], the space curvature can easily be
illustrated by changes in geometry of cells of the tessel-lattice around the mass object.
Then in this case the proper time of photons, form 17, becomes

(22)

cds rdx r dx'=  l ;=  l ;+  lo ; (24)

(26)

and thus the time delay, i.e. the second term in the right hand side of expression 24,
appeilrs as follows

e  . d x61= !rp(x)- Qs)

where the angle of deflection p(x) is defined in expression 19. Calculating the integral

in 25 we obtain
.  - -  - (  , r n  -  ( n + r " ) t R  \

^,=4cy|2' ' ' i  +*2" i '$lc'  I  d. / t+7'  , ,1*  Jt*z ' )

= Yl^Ç . 5 ail'" . *(" + Jr + rz\dt+>r 
n1

=Yr^(r+)^,2xlo-as.

143



Note the numerical value of the result 26 coincides exactly with Shapiro's outcome [1].
ln the tessel-lattice, which represents an inner structure of real physical space,

volumetric fractal changes of cells are associated with the physical notion of mass. But
what is the gravitating body's inerton cloud doing around the body? It distributes a mass
potential around the body, which results in the induction of Newton's gravitational law
14 and 15. In its tum the induction of mass in the space means the appearance of
volumetric fractal changes in appropriate cells of the tessel-lattice.

This means that the tessel-lattice really shrinks around the body, as is schematically
shown in Figure 2. Then for the problem displayed in Figure 1, the photon path acquires
additional cells in comparison with the case of a degenerate space (when a gravitating
mass is absent). Note such investigation is in agreement with general rules of fractal
geomeby (see, e.g. Ref. 26), which in reality makes it possible to measure a curve by
means of the number of balls that cover it.

Studies of Bounias and the author |4-l7l allowed us to introduce an additional rule
towards a ball, namely, its feasible fractal volumetric changes.

Now putting the size of a topological ball of degenerate space (a cell of the

undisturbed tessel-lattice) equal to the Planck's size 1., =JhGlc3 =1.616x10-35 m,

we may estimate the number of cells that introduce the time delay, expression 26. The
number of cells, which form a path for photons that hop from cell to cell with the
constant velocity c, is

Figure 2. Curvature of space as a fractal volumetric spherical deformation of cells of
the tessel-lattice caused by standing inerton spherical lvaves of the gravitating body.

*  =*^- ' [or=T-1046. (27)

An additional number of cells involved in the path due to the cells' fractal volumetric
shrinking caused by the mass M and the interaction of photon with the gravitational
field of this mass via the second term in expression 15, is

* = 
+"- !r(x) 

d x = ff ,n(r+)- 103e.
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Thus, the Sun's gravitational field shrinks the tessel-lattice, such that the number N
of cells in a rectilinear path between the Earth and the Mars increases by the value of
ÂN, which is the maximum in the case when the path lays in the immediate vicinity of

the Sun (in this case ÂN - 10'n , expression 28).

4. Conclusion

General relativity showed that Newton's law of gravitation was not adequate to
account for certain gravitational experiments, namely: the motion of Mercury
perihelion, the bending of a light ray, the gravitational red shift of spectroscopic lines
and the Shapiro time delay effect. General relativity, as an abstract formal theory, used
Newton's law as the major term, but could not suggest any reasonable physical
substitution for Newton's law of gravitation.

In contrast to orthodox quantum theory and general relativity, the submicroscopic
concept allows us to derive the Newton gravitational potential [2], expression 14, and
to introduce the corrected version of Newton's law of gravitation [8], expression 15, for
interacting objects, which allows a description and submicroscopic interpretation of four
macroscopic phenomena mentioned above. Owing to the inerton field introduced by the
submicroscopic concept, which has already been tested in many experiments from a
microscopic to cosmic scale, hypotheses resting on general relativity, such as
gravitational waves and black holes have to be complete reviewed and possibly
abandoned.

A curvature of space originates from a metric in particular Schwarzschild's that
represents properties of the geometry of space-time of a point mass M at rest.
Nevertheless, as shown in paper [8] the geometric metric includes implicitly the second
term of physical tnteraction, expression 15, of the mass M with a small test mass la in
the location of the latter. The present paper further develops the submicroscopic concept
showing that it is fractality of the tesselJattice, which is exhibited in the vicinity of a
gravitating body accounting for the appearance of the so-called non-flat space-time
metric of general relativity.

That is why fractality of the tessellattice and fractality of balls, which compose the
tessel-lattice, are responsible for the real geometry of physical space. This means that
space-time of general relativity is disclosed as the four dimensional space of the tessel-
lattice. In the tessel-lattice the fundamental metrics of the ordinary physical space axe
represented by a convolution product where the embedding part allows the description
by the following relation [15]

D4= (2e)

where dV is an element of space, and dY(w) a function accounting for the extension

of coordinates to the 4th dimension through convolution (*) with the volume of space.
The fourth dimension reflects the space fractality, i.e. fractality of the tessel-lattice's
balls. Time determined as a natural parameter through the path, expression I7, can

{,J* 
d, d4)*dY(w)
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I2l

t3l

t4l

t5l

t6l

17l

change only in the case when balls, which form the path, shrink. Therefore non-linear
components of metric of general relativity shall be considered as a mapping of original
shrunk balls of the tessel-lattice.
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