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Abstract
While nonlocality has been considered by some to be a problem for quantum physics, it
is, in fact, an essential component of understanding how local interactions actually
operate. Locality and nonlocality are fundamental components of a dual system in
which each determines the behaviour of the other. The exact characteristics of the
different local interactions (weak, strong and electric) can be shown to be completely
determined by the nonlocal vacuum structures with which they are associated. At the
same time, gravity provides a nonlocal dual to the combined interactions, which has
inertia as its local manifestation. A completely integrated description of local
interactions and nonlocal vacuum structures is proposed, based on nilpotent quantum
mechanics and its unique algebraic sfucture.
Keywords: Nonlocality, nilpotent quantum mechanics, local interactions, vacuum,
gavity

1 Introduction

A significant problem in quantum physics is in accounting for the nonlocality or
instantaneity of quantum correlations, while recognising that all direct physical
measurement or observation must be local, or confined to information transmitted at the
speed of light or less. Nonlocality, in various forms, has now been demonstrated by the
experiments of Aspect' and many others, but there persists a view in certain quarters
that it is somehow a problematic aspect of quantum physics, one that defies 'common

sense' and all previous expectations. This is tied up with the strong feeling that the fact
'information' cannot be transmitted faster than c is one of the fundamental principles of
physics. In fact, the fundamental duality of nature (whiclr is evidenced in the universal
iewrite system proposed as emerging from zero totalitf4) requires nonlocality as much
as locality. And they are not separate occurrences: local interactions ultimately stem
from nonlocal processes. This is evident in the nilpotent version of quantum mechanics,
where it is possible to show that both the local and nonlocal aspects of the strong, weak
and electric interactions contribute to their special characteristics. In addition,
'information', in the computational sense of a code symbol equivalent to I or O, can be
transmitted faster than c through the spin correlations of entangled states. This is in
partial contradiction to the use of the term in physics, where 'information' is usually
restricted to the results of bosonic transfer. Really, however, we should define two types
ofinformation transfer, local (through bosonic transfer) and nonlocal (through quantum
correlation), and both provide 'information' in the computational sense. The holistic
nature of physics means that the local cannot, in fact, be separated from the nonlocal.
Even the terms can be misleading, because 'local' refers to the entire universe as much
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as nonlocal does. The nilpotent version of quantum mechanics shows that there is no
such thing as an isolated system, and so a complete local description, which originates
in the individual particle, will still require knowledge of the contents and disposition of
the whole universe. In principle, the difference between local and nonlocal is not in the
phenomena they describe, but in the method of description, essentially whether we use
an iterative or recursive computational paradigm. It is for this reason that, as proposed
by Duboiss, we should expect to see anticipatory features in many physical systems,
especially in ones driven by gravity, which is the most holistic of all the physical
interactions. Local interactions are determined by the collective nonlocal effect of the
rest of the universe, and, in this sense, could not take place without anticipation.
Gravity, however, as we shall argue, has a special anticipatory significance among the
four known interactions in providing the most directly observable aspect of nonlocality.

2 Nilpotent Quantum Mechanics

One of the advantages of using nilpotent quantum mechanicsa is that it gives us a very
precise definition of the boundary between the local and the nonlocal. It is important
here that the version of quantum mechanics used is relativistic, for without the
Lorentzian connection between space and time, and energy and momentum, we cannot
really define the local, and, without a proper account of the local, we cannot speciff
what we mean by nonlocal. The simplest way to derive nilpotent quantum mechanics is
to begin with Einstein's energy-momentum conservation equation (with the usual
conventionthatc: l):
Ê  - p ' - m 2 : 0 .  ( l )
We now need to define an algebra to factorize this equation, and, as in previous
publications, we use a combined algebra made from the tensor product of four
quaternion units and a set of four multivariate vector units to which these are
commutative. The four quaternion units, ,,, /r, l, follow multiplication rules which are
the same as those of Pauli matrices:

f : f :Ê: i i * : - r
ij = -ji= k

jk=-k j - - i
ki= _ik= j.

The multivariate vector units, i, j, lç i, are effectively those of complexified quaternions
(iù: i, (tfl: j, (ik):lç (tl) : t, and fo^llow the multiplication rules:

i " : j . = K : _ t i j k : l
i j : -ji: rk
jk: -tr; : ;i
k i : - ik:  r j  .

In multivariate vector algebra, which is also described as the Clifford algebra of 3D
space, two vectors a and b have a full product ab: a.b + ia x b. Terms like d, rj, ik are
pseudovectors (e.g. area, angular momentum) and i is a pseudoscalar (e.g. volume). The
eight base units have a similar structure to Penrose's twistors, with four real or norm I
components and four imaginary or nonn -l components. There is a significant
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difference, however, in that the connection between the units of space and time is a
quantum rather than classically relativistic one.
In the combined algebra, each of the four units units, i} k,l,is commutative to each of
i, j, b i. This algebra, which is isomorphic to that of the gamma matrices of the Dirac
equationo requires 64 units, which are * and - versions of:

i i k i i i i t k i r
i j k i i i i i k
ii ti ik iii iii irh
ii ti ik iii iit iik
kt tg kh iW ik, ikk

However, the 64 can be generated from a subset of 5, which can be matched to the 5
gamma matrices in a number of ways, for example:

T o : i k  y t : i i  f : i i  f : r c  y s : i i
The algebra now allows us to factorize (l) in the form:

(ikE + îrp,+ iipt+ ikp,+ jm\ (ikE + frp,+ ilpr+ ikp"+ im):
(ikE + tp + jm) (ikE + ip + jn) = 0.

Ifwe now apply a canonical quantization procedure to the first bracket in each ofthese
squared expressions, to replace the terms E and p by the operators E -> iô lôt, p + - iY
(this time equatjlg h to l), and assume that the operators act on the phase factor for a
free fermion, (t-'v'r-P'rt,we obtain the nilpotent Dirac equation for a free fermion:

(* olo,t*;.11* iklt ip+ im)s-t(n-e'") - 0.
\  ô r  ' ) ' (2)

One of the most convenient aspects of using a multivariate vector for the p or V term is
that, as Hestenes showed,6 it then automatically includes spin (essentially through the
extra cross product term in the full product). So, in equation (2), p is interchangeable
with o.p and V with o.V. However, if we should revert to using ordinary vectors at any
time, we would have to include an explicit spin or angular momentum term. As in
standard relativistic quantum mechanics, four simultaneous solutions are required for

the wavefunction - 2 for fermion / antifermion x 2 for spin up / spin down. The
conventional formalism uses a 4 x 4 matrix differential operator and a column vector
wavefunction, but the nilpotent Dirac equation uses a row vector operator and a column
vector wavefunction, each of which may be represented in abbreviated form by (+ ikn +
tp + jm).In the nilpotent formalism, the four solutions can be represented, typically, as

The observed particle state is the first in the column, while the others are the
accompanying vacuum statesn or states into which the observed particle could ûansform
by respective P, T and C fransformations:

( ikE+ip+jm)
(ikE-ip+jm)
?i*n+ip+jm)
(-ikE -ip +im)

P i( ikE+ip+jm)i  -+

T k(ikE+ ip + jm) k -+

C - j ( ihE+ip+jm)j  +

fermion spin up
fermion spin down
antifermion spin down
antifermion spin up

(ikE -ip + jm)

Gi*n+ip+jm)
(-ikE*ip+jm)
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Replacing fermion state spin up as the observed with any of the others would
simultaneously transform all four states by P, T or C. A full description of the nilpotent
wavefunction should always include all four terms, but it will often be convenient to
speciff just the first term, and with the others assumed to be automatic consequences.
The dual status ofthe energy 1s1s+ikE originates in the dual nature ofthe pseudoscalar
term *i, which is purely mathematical in origin. As is evident from (2), the time
coordinate (in ô /ôr) follows the same relative sign, so 'negative energy' particles go
backwards in time. In the single observable direction of time allowed by the second law
of thermodynamics, all material objects are observed to have positive energy. Negative
energy, as we have argued elsewhere, represents vacuum rather than the local quantiznd,
state, and the apparent disparity between matter and antimatter in the universe is really a
result of the fact that, as in the four-component Dirac wavefunction, one set of states
exists in observable real space, and the other in an unobservable 'vacuum space' or
'antispace', as required by zero totality. The dual nature of+i is also a factor in creating
existence of two states of helicity. Once we have decided on a sign convention for p, the
spin state of the particle (or, more conventionally, the helicity or handedness o.p) is
determined by the ratio of the signs of E and p. So ip / ikÛ has the same helicity as (-
ip) I (-ikE), but the opposite helicity to ip I (-ikE).
Nilpotent quantum mechanics produces all the standard results of conventional
relativistic quantum mechanics, which can easily be obtained by replacing equation (2)
with

Classic results include spin Yz, one-handed helicity for weakly interacting states, and the
zitterbewegung which emerges as an automatic switching process between the four
states in the wavefunctionn and which is interpreted as a mass-generating switching
between the fermion and its antifermion vacuum partner, and the two helicity states,
which are already mixed in real fermions.a However, it also produces many new ones.
Among the most important are the descriptions of three different boson-type states,
which are combinations of the fermion state which any of the P, T or C transformed
ones, the result being a scalar wavefunction.

(t ikE ! ip + jm'1 G ikE ! ip + jm) spin 1 boson
(! ikE ! rp + jm) (+ ikÛ + ip + jn) spin 0 boson
(! ikE ! ip + jm) (+ ikÛ + ip + jm) fermion-fermion combination

One of the most significant aspects of this formalization is that a spin I boson can be
massless, but a spin 0 boson cannot, as then (! ikE I ip) (+ ikE +ip) would
immediately zero: hence Goldstone bosons must become Higgs bosons in the Higgs
mechanism.

- i r ' ( ro Q +r '  ?*r '1*r ' !* i* ) ,v =o
\ d t o x d y o z )
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3 Vacuum and the Separation of Local and Nonlocal

The key aspect of nilpotent quantum mechanics, in fact, is not the equation (which is
seldom used directly) but the fact that an operator of the form (ikE + ip + im)
automatically generates a phase term on which it operates to produce a nilpotent
amplitude of the form (ikE + rp + jm), that is, one that squares to zero. In fact, it is not
necessary to assume that the fermion is free, and we could also incorporate field terms
or covariant derivatives into the operator, with, for example, E -+ iô I ôt + eQ + ..., and
p -+ -iV + eA + ... (though often, of course, the p terms can be transformed by choice
of frame). In this case, we could still represent the operator as (ikE + ip + im), but the
phase term would no longer be e-t\L't 

- p'"'. It would be whatever is needed to create an
amplitude of the general form (ikE + ip + im), which squares to zero, with the
eigenvalues E and p representing the more complicated expressions that will result from
the presence of the field terms.
The nilpotent structure immediately gives us a formal way of separating the local from
the nonlocal. The bracketed term representing the fermion creation operator or
wavefunction determines how conservation of energy applies to that fermion, as
squaring the wavefunction and equating to zero gives us back the energy-momentum
equation, and, of course, it is local, as the required Lorentzian structure is intrinsic.
However, the addition and multiplication of nilpotent wavefunctions construct the
nonlocal processes of superposition and combination, and these processes do not require
a Lorentzian structure. In effect, anything inside the fermion bracket is local and
anything outside it is nonlocal.
Nilpotent quantum mechanics is predicated on the idea that the total structure of the
universe is exactly zero. Once we have defined the structure of the wavefunction as a
nilpotent we can identiff the meaning of Pauli exclusion, which is a fundamentally
nonlocal phenomenon. If we imagine creating a fermion wavefunction of the form y7:
(ikE + rp + jm) from absolutely nothing, then we must simultaneously create the dual
term, tyu: - (ikE + ip + jm), which negates it both in superposition and combination. So
we have

Vr+ W= GkE + ip + jm) - (ikE + ip + jm): 0

VrW:-QkE+ ip+  jm) ( ikE+ ip+  jm)=0
We have identified the dual term as the vacuum appropriate to that fermion state, i4
principle, the rest of the universe needed to maintain a fermion in that particular state.a'7
Pauli exclusion then tells us that no two fermions can have the same quantum numbers
because the combination state would be zero. It also implies that no two fermions can
share the same vacuum. Now, vacuum is intrinsically nonlocal. Because the fermion is
localized, then the rest of the universe is necessarily nonlocalized. If the fermion is a
point, as experiments suggests that it may be, then the rest of the universe is defined as
everything outside that point. So the nonlocal connection which makes Pauli exclusion
possible can be thought to occur through the vacua for each fermion.
The nilpotent structure clearly demands a holistic approach to physics. When we write
down an operator or amplitude in the form (l ikE ! ip + im), the brackets may suggest
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that we have created a closed system, but in fact the E and p terms may contain an
unlimited number of potentials. rile have created a system but it is open. Closure or
energy conservation is only maintained over the entire universe, and requires the second
law of thermodynamics as well as the first. So, though the bracket may define locality,
locality does not imply a closed system. The creation of the fermion state is the creation
of a local region in phase space, to which everything else becomes nonlocal; the
creation of the two regions is simultaneous. Any subsequent change inside the bracket
(a rewriting of the structures of E and p) also affects everything else outside it, and vice
versa.
In the nilpotent formalism, the vacuum can be structured, directly reflecting that of
matter. If we take (X ikE ! ip + jm) and post-multiply it by the idempotent Kr. ikÛ t ip
+ jm) any number of times, the only effect is to introduce a scalar multiple, which can
be normalized away.

(t ikE! ip+ jm) k(r ikE t ip+jm) k(! ikE trp+im).. .  -+ (J ikEt ip+im)

The same applies with post-multiplication byi(t ikE t ip + im) or i(t ikE ! ip + im)
(except for an extra unit vector, in the last case, which disappears on every second
multiplication). The three idempotent terms have the mathematical characteristics of
vacuum operators. They also correspond to the respective transformations of altemate
brackets by T, C and P, or to the production of the spin l, spin 0 and fermion-fermion
bosonic states. The character of the original fermionic state remains unchanged, while
vacuum versions of the three bosonic states are created. In principle, the quaternionic
operators k, j, i,like T, C and P, which are associated respectively with E, m and p, split
the continuous vacuum into discrete units, and we can to some extent regard these units
as the respective 'charges' or sources of the weak, electric and strong interactions,
acting to create the vacuum necessary for these forces to act.

4 The Coulomb Interaction

Locality and nonlocality are, in every respect, dual processes. It is impossible to
imagine one without the other. Though we think of interactions in a local sense, they
also have equivalent nonlocal aspects. These are expressed in the symmetry groups for
the interactions, and these can be derived from the nilpotent structure. The translation to
the local effects comes about when we use the same structure to determine the
potentials to be added to the operators .E'and p in the fermionic nilpotent. (We can
consider decoherence to be an example of the reverse transformation, using local
potentials, for example, to remove the nonlocal quantum coherence.) The simplest of all
interactions is the Coulomb interaction, which follows the U(l) symmetry group and is
part of the structure of each of the electric, strong and weak forces. In the case of the
electric force it is the entire interaction; for the strong force it is the one gluon
exchange; and for the weak force it provides the hypercharge and the .Bu gauge field,
which creates the combination with the electric force in the Weinberg-Salam
electroweak theorv.
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The U(l) symmetry group comes from the characteization of a fermion as a point
source with spherical symmetry. Effectively, it is the statement that spherical symmetry
is preserved and demonstrated by rotation whatever the length of the radius vector used.
It is a purely scalar symmetry defined only by the magnitude of the charge, or source of
the interaction. It is equivalent, in effect, to defining a coupling constant for the
interaction, which maintains its value independent of the distance from the source. The
nonlocal effect which is responsible for this symmetry can be identified as the one
which is least specific and most general for all fermions: Pauli exclusion.
Now, a free fermion has no interactions, by definition. An interacting fermion is one
that has been brought within the range of influence (or field) of another or others. If
fermions are point particles and their influence is spherically symmetric, then it will be
convenient to express the influence of one point-source on another by changing the
coordinates of the 'receiving' particle from Cartesian to polar, with the point-particle
source at the cenfe of the coordinate system also defined as the centre of physical
influence. To use polar coordinates, it is convenient to revert to ordinary, rather ̂ than
multivariate vectors. We can then use a version of Dirac's standard prescriptionÙ for
converting the differential operator to polar coordinates, with the explicit inclusion of a
fermionic spin / angular momentum term:

r ' a  ' \ . . i + y ,
o . V  = l  * * :  l + i ! - .

\ôr r)  r
This means that the nilpotent differential operator now takes the form:

(  /a  r , . i+%). , )
Q * n  - i N  + i i m ) - + l  * n + i l  - + - t  t -  1 + q m  l .

\ \ A r r r ) )
The fundamental condition necessary to assign this operator to a fermion state is that it
maintains Pauli exclusion and leads to a nilpotent solution when applied to a phase
factor. This leads to the local manifestation of the U(l) symmetry. It can be seen,
simply by inspection, that it will be impossible to obtain a nilpotent solution (i.e. a
nilpotent amplitude) with any phase factor unless the operator /cE includes potential
energy term varying with I I r to cancel out the effect of that in the ii part of the
operator. The definition of one point-fermion as being within the range of another (or,
in altemative terms, within the nonlocal vacuum of another) requires the existence of a
potential energy term with the characteristic features of a Coulomb interaction, leading
to an inverse linear potential and an inverse squaxe force. All four interactions have a
component of this kind, and all three parts of the nilpotent sffucture contribute, as all are
required to fulfil the nilpotent condition. The symmetry, of course, is most closely
associated with the electric interaction, because this force has no other component, just
as the jm term has no other aspect than scalar magnitude. The fact that one term in the
nilpotent operator has no structure other than magnitude ensures that it must be possible
to have an interaction with no symmetry other than U(l).
The addition of the inverse linear potential to ikE now changes the nonlocal U(1)
(nilpotent or Pauli exclusion) condition to a local one, since the potential is added inside
the bracket. The solution is well known and is very quickly effected using the nilpotent
condition. It is significant because it provides a model for the more complicated strong
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and weak interactions, which have not otherwise succumbed to analytical calculation.
With the added potential, the nilpotent operator will be of the form
/  /  , r \  /  y  v  l . . i + % \  \
I t * l  z - : l x i l -a+ ! -+L+ . . . : t  i r  ' '  

l + , j ^ | .  (3 )
\  \  r )  \  r  r  r  r  )  )
To establish that it is truly nilpotent, we have to find the phase factor to which the
operator must apply to result in a nilpotent amplitude. The phase factor is, of course, the
well known

Ô = 
"-""' Z:"' '

To find the amplitude, we simply apply the differential operator (3), and, to prove that it
is nilpotent, we immediately square and equate to zeroi

+( n - 4\' = -2( - o * î- * L * ...L *, i + v'\ ' - 2( - 
" 

* L * L * ...! -, i * %)' * o*, .
\  r /  \  r  r  r  r  /  \  r  r  r  r  )

The positive and negative i(i+ %) terms notably cancel out over the four solutions.
The solution is completed in only a few mg9!te!l Equating constant terms leads to

q = r l m ' - E 2

Equating terms in 1/1, following the standard procedure, with v= 0, gives:

( ,q \ '  ( r *1 \ '  . (  j * v , \ '

[;J 
=1;j -(. r J'

Assuming the power series terminates at n', again following standard procedure, and
equating coefficients of llr for v: n',

2EA=1J^ '4  Qr+ t+n ' ) ,

l 1
and

With A: Zez,this becomes the well-known 'hydroger atom' solution for a one-electron
nuclear atom or ion with hyperfine structure.
The main purpose of deriving this well-known result is to show that the local Coulomb
interaction, and its very particular consequences, can be shown to be the result of a
nonlocal symmetry ultimately stemming from the fact that, at the quantum level, local
sources are point-like with unique vacua, that are distinguished by application of the
nilpotent condition. It is completely consistent with the idea, established since the time
of Immanuel Kant, that inverse-square forces result purely from spherical symmetry. A
similar reasoning can be applied to both the strong and the weak interactions, where
standard solutions are not yet established.

l +  
- -

'  
( y  + l+n ' )2
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5 The Strong Interaction

The strong interaction begins in a combination state, which reflects the vector nature of
the p term in the nilpotent wavefunction. Effectively, the vector aspect requires a source
term and corresponding vacuum with three components. A combination is outside the
bracket and so is nonlocal. Nilpotency, of course, prevents us writing a combination of
the form

(ikE + ip + jm) (ikE + tp + jm) (ikE + ip + im)

which would automatically zera. However, if we separate out three components of p in
the form

(ikE + iip" + jm) (ikE + iW, + im) (ikE + ftp' + im)

then we have a nonzero combination. Spin is defined in only one direction at a time, so,
at any given instant, the wavefunction will reduce to something like (ikE + frp, + im)
(ikE + jm) (ikE + jm\, which, after normalization, becomes simply (ikE + ipx+ im), 01
to (ikE + jm) (ikE + ijp, + jm) (ikE + jm), which becomes (ikÙ - ii:py + im), or to (ikE +
jm) (ikU + jm) (ikE + ikp, + jm), which becomes (ikî + ikp, + im).
The sign change in the second term is significant. Since we need to maintain the
symmetry between the three directions of momentum, there will be six possible
outcomes, using both + and - values of momentum terms, that is, a superposition of six
combination states:

(ikE + ilp,+ im) (ikE + jm) (ikE + jm)
(ikE - iip, + jm) (ikE + jm) (ikE + jm)
(ikE + jm) (ikE + iipr+ jm) (ikE + jm)
(ikE + jm) (ikE - itpr+ jm) (ikE + jn)
(ikE+ jm)(ikE+ jm\(ikE+ îl<p"+ jm\
(ikE + jm) (ikE + jm) (ikE - ikp" + jm)

-+ (ikE + iV,+ jm)
-+ (ikE - iip'+ jm)
-+ (ikE - itpy + im)
-) (ikE + iipy+im)
-+ (ikE+ ikp,+im\
-+ (ikE - ikp"+ im)

The six 'phases' represented here must all be valid at the same time, as required by the
rotation symmetry of space or of gauge invariance. The symmeûry is recognisably that
of the group ,SU(3), with the same structure as the three symmetric and three
antisymmetric'colour' combinations in the standard representation:

tz- (BGR - BRG + GRB - RGB + RBG - GBR).
The simultaneous existence of all phases means that individual quarks, and such
identifring characteristics as electric charges, are not identifiable by their spatial
positions (unlike the proton and electron constituting a hydrogen atom), thus explaining,
for example, why the neutron has no electric dipole moment. Just as U(1) establishes
that spherical symmetry of a point source requires the rotation to be performed
independently of the length of the radius vector, so .SU(3) requires the rotation to be
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independent of the coordinate system used. In terms of Noether's theorem, while U(1)
conserves the magnitude of angular momentum, SU(3) conserves the direction.
The SU(3) symmetry represents a nonlocal interaction between the parts of the
wavefunction or 'quarks' incorporating px, pv and p". This interaction is independent of
the physical separation of the components (and they must be spatially or temporally
separated to have different local and nonlocal manifestations). The local effect of this is
a transfer of p between the three brackets of each wavefunction. As it is local, with p
changing within each bracket, this is not instantaneous, unlike the actual combinations
and superpositions, and so there will be a nonzero local force or rate of change of
momentum. However, because it does not depend on separation, this force will be
constant. The local manifestation of a constant force is a potential that varies linearly
with distance. As the U(1) condition for spherical symmetry / Pauli exclusion /
nilpotence is also a requirement, then the minimal potential to describe this local strong
interaction is a combination of terms that are linear and inverse linear with distance. It
may be significant that the linear potential of the strong interaction is the only one that
is optional to the fermion state, the nilpotency not being dependent directly on the
vector nature of p.
Now it is significant that, because we have both positive and negative p terms for the
same ̂E term, the six phases incorporate a (maximal) superposition of left- and right-
handed components, thus explaining the zero observed chirality in the interaction. This
means that the mass term rz is necessarily nonzero, though the unbroken gauge
invariance which results from no momentum direction being preferred, means that, in
quantum field terms, the boson mediators managing the transitions between the six
component states must be massless, as well as spin l. The so-called mass gap problem
has been a significant one in particle physics for a number of decades, and is part of one
of the mathematical problems for which the Clay Institute has offered prizes. It would
seem that nilpotency suggests that the problem is now within our grasp. Significantly,
also, the solution would appear to be that of the Higgs mechanism, which supplies mass
to all the fermions. Many commentators have argued that the bulk of the mass of a
proton comes from the boson or gluon exchange and not from the Higgs mechanism.
Our analysis would suggest, however, that they are in fact the same process.
The SU(3) symmetry requires the existence of eight generators which can be identified
with six bosons of the form:
(tikE + iipù (+ ikE + i jpy)

(r ikE+ i tpiGikE+ ikpz)
(tikE + iipà (+ ikE + itpy)

( t ikE+ iw)GikE+ i tpx)
(+ ikE+ ikp") (+ ik î+ iW)
(likE + iipù(+ikE + ivz)

and two combinations of the three bosons of the form:
(tikE + iipù(+ikE + iipr) (! i tE+ iW)GikE+ itpy)
( t i kE+ i lVàGikE+ ikpT)
These structures are identical to an equivalent set in which both brackets undergo a
complete sign reversal,

(+ikE t iipù (tikE tiipù or ÎikE tiipù(+ikE + iWù, etc.,
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and, with normalization, to ones equivalent to a massless fermion acting on a 'strong'

vacuum,
(likE t i vx) eikE + i ipy) = (+ikE x i ipù i (likg t i w i.

A'colour' transitions can be seen as either an exchange of the components of p between
the individual quarks, or a relative switching of quark positions. The colours, therefore,
either move with the respective py, p,t, pz components, or switch with them. The effect

of either process is the same, and a sign reversal in p, as with i (likE t i ipy) l, is an

additional necessary result.
To establish that the local interaction produced by the combination of direct and inverse
linear potential results in a force with the characteristics of the strong interaction, we
need to extend the Coulomb solution of for this new nilpotent operator. In principle, it
will be the same whether we are referring to a quark-antiquark combination, with a
temporal cycle of the components p, , py, îîd pz, and a separation of quark and antiquark,
or to a combination of three quarks, with a separation of each from the centre of the
system. In either case, we will produce an operator of the form:
(  . ( -  A  - \ - . f  ô  r . . i + % \ . . ' )
I t * l t+J+Br  l+ t l  =+ ' * i ' " ' l + r i * l  (4 )
\ \ r ) \ o r r r ) )
Once again, we need to identiS the phase factor to which this operator applies, but a
relatively simple extension of the one for the Coulomb potential suggests that its form
is: 

/ = exp(- ar -br')r' zauru
v=0

Appryingoperator.r,;:::;.rË-i;::ïU.*::::=*,

r " r

- (o,  *0 * '  ! r , "  *r \ '  -ç 
:9 

.  4bzrz + 4abr -  ab(y + v +. . .+t)-4$, + v +. . . .  t ,

with the positive and negative i(i + %) terms again cancelling out over the four
solutions. Then, once again assuming a termination in the power series (as we did with
the Coulomb solution), \À/e can equate:

coefftcients of I to give 82 = 4b2
coefficients of r to give 2BE = 4ab
coefftcients of | / r to give ZAE =2a(f + r, + l)

The immediate consequences of these equations are:

b =+E
2

a =TiE
y  +v  +7  =1 i4 .

The ground state case (where 
,r= 

0) 
,l"lt Tires 

a phase factor of the form:

? = exp(a tnr + tBr2 l2)r*an-t ,
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We can identiff the imaginary exponential terms in / as representing asymptotic

freedom; the exp (+,- iEr) is typical for a free fermion. The complex rrt term can be
restructured as a component phase, Ar) : exp (+ iqA ln (r)), which varies more slowly
with r than the rest of Q.We can therefore express /in the form:

o=@ÏM,
where

k = + i E A i B r / 2 .
At high energies, and small r, the first term dominates, which approximates to a free
fermion solution or asymptotic freedom. At low energies, however, when r is large, the
second term, which incorporates the confining potential Br, dominates, leading to
infrared slavery. The Coulomb term, which emerges purely from spherical symmetry, is
the component which defines the strong interaction phase, lr), and, this can be related
to the directional status of p in the state vector. Once again, a nonlocal s)mmetry,
related to the nilpotent structure, determines the known characteristics of a local
interaction.

6 The Weak Interaction

We have so far discussed nonlocal combination and superposition states that lead to the
local Coulomb and strong interactions. There is, however, in all fermion states an
additional superposition resulting from the spinor structure of the Dirac wavefunction,
and the zitterbewegung that connects the superposed states. The fermion wavefunction
has two fermion and two antifermion states, each representing two directions of spin or
helicity. While the co-existence of two spin states can be thought of as, in some sense,
'real', and accounted for by the presence of mass, the co-existence of two energy states
can only be meaningfully understood in the context of the simultaneous existence of
fermion and vacuum. A fermionic source cannot be separated from its vacuum partner.
So a fermion or antifermion cannot be created or annihilated, even with an
antifermionic or fermionic partner, unless its vacuum is simultaneously annihilated or
created.
The nonlocal connection between fermion and antifermion, or fermion and vacuum,
which ultimately emerges from the dual nature of the pseudoscalar aspect of the term
ikE, can be seen as creating a kind of virtual dipole, which will necessarily have local
consequences. In the case of the zitterbewegung, this involves a switching between
fermion and antifermion states which is an aspect of the weak interaction, in which one
state is annihilated and another created by a boson exchange, the only interaction in
which such a process occurs. So, even though the transitions between the two energy
states, i/rE and -ikE, may be virtual, the zinerbewegung would seem to require the
production of an intermediate bosonic state at a vertex where one fermionic state is
annihilated and another is created to replace by it. In fact, all weak interactions operate
according to the same mechanism, and the mediator is a spin I boson (likE t ip + im)
KlikE ! ip + jm)k, equivalent to the state produced by a fermion acting on a 'weak'
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vacuum. Fermions are the only particles which act as weak sources, and the fact that
they are a kind of dipole under the weak interaction suggests that all weak sources act
in effect, as weak dipoles, and the immediate manifestation of this dipolar nature occurs
with the fermion's Yr-integral spin. Though the superposition of fermion and
antifermion states is nonlocal, we can expect it to have local consequences for a fermion
nilpotent. Locally, a dipole manifests itself through a squaring of the distance
dependence of the force. So inverse square forces become inverse fourth power dipoles
and linear forces become squared distance dipoles. There is also the possibility that the
existence of multiple dipoles will produce multipole forces.
It would seem that the weak interaction, like the electric and sfrong interactions, is built
into the structure of the nilpotent operator, and its nature is determined by that of the
pseudoscalar iE operator, whose sign uniquely determines the helicity of a weakly
interacting particle, or more specifically its weakly interacting component. So, the
question then becomes: how do we accommodate a local interaction which emerges
from this nonlocal superposition? The anslver requires us to investigate the nilpotent
solutions that would emerge from an operator incorporating a Coulomb potential
together with any other potential which is a function of distance from a point source
with spherical symmetry, apart from the linear potential which is characteristic of the
strong interaction. So, let us assume a nilpotent operator with a form such as

(  /  ;  \  / 6  1  . i + Y r \  . .  \
|  * l  n  -^  -c r "  l+ i l  f+ : t  i r  " '  l * , i ^1 .
\ \  r  )  \ o r  r  r  )  )

where n is an integer greater than I or less than -1. As before, we will need to find a
phase factor which will make the amplitude nilpotent. Again, we will seek to extend the
Coulomb solution, using the information that polynomial potential terms which are
multiples of r' require the incorporation into the exponential of terms which are
multiples of r*' . So, we may suppose that the phase factor is of the form:

û = e*pF a, - br"*t )r' la,r" .

As in the previous examples, we apply the operator and square to zero, with a
termination in the series, to obtain

(  t  1 2  /  r  1 + % \ 2+ l  t - : - C r '  |  = - 2 1 - " + ( n + l \ r '  + L + L + i * i  I
\ r / \ r r r r )

-z (  -  t  + (n  + lp r '  *  T  * '  * l  -  r  i  +v ' ) '
\ r r r r /

Equating constant terms, we find:

Equating terms in f",with z: 0, gives:
e : -@+ t ) 2  b2 .

Equating coefficients of r, where u:0:
AC : - ( r+ l ) b ( r+ù ,

Q+14 :+ iA '
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Equating coeffrcients of 1
v: n', leads to

and

I I and,coeffrcients of I I r, for a power series terminating in

A 2 = - ( l + y + n ' ) 2 + ç + Y r 1 2

- EA: a (l + y+ n').
Combining these results produces:

/  , z  _ n z \ .

lry [r * z * n')' = -(r + y + n')' + (i +%)'
\ u )

E =-  m ( t iA+n ' \ .
j  + % '

The last equation has the form of a harmonic oscillator, with evenly spaced energy
levels deriving from integral values of n'. If we now make an additional assumption that
l, which is the phase term required for spherical symmetry, has its origin in the random
directionality of fermionic spin, we might assign to it a half-unit value (l % i), or (+ y2

ihc if we explicitly include the constants), and obtain the complete formula for the
fermionic simple harmonic oscillator:

B  =  __ ! - ( / r+n) .
j +'/,

The constantl has the dimensions ofcharge (q) squared, or interaction energy x range,
and if numerically equal to + Yz hc has exactly the value required by the uncertainty
principle, if the range of an interaction mediated by the Zboson is calculated at h I 2Mzc
: 2.166 x l0-r8 m, as observed. In this interpretation, we can describe the
zitterbewegung as z dipolar switching between fermion and vacuum antifermion states,
with a weak dipole màment (hc I 2)3n I M;, of magnitude 8.965 x l0-r8 e m, and a
weak magnetic momen! of order 4.64 x l0-) x the magnetic moment of the electron.
The possible appearance of an imaginary factor i in I has an interesting relation to the
fact that a complex potential or vacuum is required for CP violation in the pure weak
interaction. The dual state + rftE which produces the dipolar switching is also manifestly
an SU(2) symmetry, and this can be related to the fact that the spherical symmetry of the
point source proceeds from the fact that it is independent of the handedness of the
rotation, which, in terms of Noether's theorem, becomes the conservation of the
handedness of angular momentum.
There are, however, two different SU(2) symmetries involved, though they are related.
The SU(2) of spin describes two helicity states, left- and right-handed. However, there
is another ̂SU(2) symmetry, weak isospin, which describes a fermionic weak interaction
as being independent ofwhether or not an electric charge is present and generating its
own contribution to mass. In effect, weak isospin tells us that the weak interaction,
though often occurring simultaneously and in combination with the electric interaction,
has an independent origin. In the case of weak isospin, the SU(2) is a switching between
different ratios of left- and righthandedness, and so of mass, determined by the
presence or absence ofthe electric charge in one ofthe two states. So a superposition of,
sa!, a1(ikfi + ip1 + jm1) + a2(ikfi - w + jmù might become B1(ikE2 + ip2 + im2) +
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Pz(ikE2 - tpz + jnz), with both spin I and spin 0 vertices, the additional spin 0 vertex
(the one which changes the mass) being equivalent to a fermion (likE t tp + im) acting
on an 'electric' vacuum of the form -j(LikE ! ip + jm) i. In effect, a combination of the
electric vacuum operator (l) and the weak one (/r) produces a partial transition in the
sign of p. Significantly, while all the forces contribute to the production of the scalar
mass term, the electric force is the only which contributes to nothing else.
Overall, the calculation shows that an additional potential of the form C{,where n is an
integer greater than 1 or less than -1, that is any potential emerging from a system in
which there is complexity, aggregation, or a multiplicity of sources, leads to a harmonic
oscillator solution for the nilpotent operator, irrespective ofthe value of n, atd, in fact,
any polynomial sum of potentials of this form would produce the same result. A dipolar
weak sources would require a minimum extra term of the form Cr', and the harmonic
oscillator solution would provide the precise characteristics that we would expect such a
weak source would produce. It is significant that, apart from the Coulomb and strong
interaction solutions, this is the only one which a fermion interaction specified in
relation to a spherically symmetric point source can produce. We have, in effect, shown
that there are only three local physical manifestations which result from the nonlocal
combinations and superpositions associated with a nilpotent fermion, and these are the
ones associated with the electric (or other pure Coulomb), strong and weak interactions.
They are also aspects which can be derived from the algebraic stTttcture of the three
terms, jm, ip, and /c4 which make up the nilpotent operator or wavefunction.

7 Gravity and the Nature of Mass

Gravity presents a different problem from the other three forces. Here, we have the U(l)
symmetry present in all the other forces, but at least two facts distinguish it from them.
One is the fact that gravity has not yet been successfully quantized. The other is that the
value of the cosmoiogical constani predicted from a quantum-style argument is 10123
times higher than experimentzl datq based on 'dark energy', would suggest. Ii as Seth
Lloyd suggests on the basis of the ho^lographic principle, there are 10'" possible bits of
data in the observable universe,''tu then the prediction is as wrong as it could
conceivably be, suggesting that we should look for an answer in a totally different
direction.In fact, it suggests, that,ratber than applying to a single quanfum state (local),
it actually applies to the whole universe (nonlocal). Other indications which point in this
direction are the gravity-gauge theory correspondence now being seriously considered
by string theorists, which suggests that gravity is somehow a totality of all the other
gauge forces, a fact which has always seemed obvious in the context of the nilpotent
structure, where the vacua of the weak, strong and electric forces seem to be derived by
partitioning of the general gravitational vacuum. In addition, the Higgs field, the zero-
point energy, the cosmic microwave background radiation, and even ordinary fields
point to a continuity in mass (i.e. mass-energy, as the source of gravity) which would
explain the fact that, unlike charges, it is unable to change sign. The Higgs field might
well suggest that the amount of mass-energy is the same at every point in space, and
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that changes occur only in its method of manifestation because of the presence of
charges of various kinds.
Everything points to the fact that gravity is really a nonlocal propefty, a manifestation of
the total vacuum, <+ ikE + tp + jm), even in the negative potential energy with which it
is associated, and is not a local force, as is often maintained, though it has, of course, a
local manifestation. In this case, gravity would be the carrier of all the information
separately available from the other three forces, and, in fact, of all their local
manifestations, but it would be their inverse rather than their summation, exactly as
reflected in its negative energy, and we could even regard the attractive nature of the
gravitational interaction between like particles as a result of its being a vacuum, rather
than a local force, and therefore requiring negative energy. It would seem from this
analysis that the local manifestation associated with gravity is the positive energy
inertial local reaction, which is what we really observe and equate to the gravity of
localized clumps of matter, and which, for a fermion we could represent by the nilpotent
structure (+ ikE + ip + jm) itself. This force, however, is fictitious and repulsive, which
means that it could be quantized, as a repulsive force requires a spin I gauge boson,
rather than the spin 2 particle which creates the renormalization problems associated
with quantum gravity.
We have shown previously that, if gravity is instantaneous and nonlocal, but physical
observation is local, involving time-delayed luminal or subluminal interaction, we can
no longer use the Lorentzian space-time of a local coordinate system in the description
of gravity.rr To do so effectively creates a noninertial frame for the gravitational
system, with the resulting appearance of fictitious inertial forces. Relativistic and
'gravomagnetic' effects would appear but would be properties of the local coordinate
system and not due to the gravitating source. One such effect would be an acceleration-
dependent inductive force analogous to that appearing in electromagnetic theory:

F = 9r,*,sino4 (5)
c"r dt

Sciamal2 proposed using a real force of this kind to explain inertia. He assumed that the
inertia of a body of mass m = mt could be derived from the action of the total mass mu:
mz within a Lorentzian event horizon of radius r,, making the force in equation (5)
equal to Kma, with K a constant. However, in our understanding, the continuous mass-
field or vacuum which provides gravitational nonlocality must also define the standard
by for a unit inertial mass for the entire universe, in the same way as the almost constant
gravitational field g allows us to define a unit mass at the Earth's surface. In this case,
the mass muwill define aradial inertial field of constant magnitude from the centre of a
given local coordinate system to the event horizon defined by ru, at the same time as the
gravitational field, (Gm" I ru'), independently of the local coordinate system, defines a
unit of gravitational mass within the same radius. Allowing isotropy to remove the
angular dependence, we obtain:

Gm, dv _G.u
c2r dt rj
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The calculation produces both an acceleration

o=L=uL=" t !
dt dr rj

and, by integration with respect to r, a velocity related to the Hubble constant, F/6:
cr

u = = = H o r

In terms of this constant, the acceleration now becomes:

o  = L  =  H t o r
ru

For a nonlocal gravity, this acceleration would be a fictitious one, the result of using a
local Lorentzian coordinate system to model the instantaneous interaction. It is a
fundamental physical process, analogous to a centrifugal force, which determines the
cosmology (however we interpret this) rather than being a result of it. Combining it with
the gravitational force due to total mass m at any distance, allows us to calculate an
equivalent vacuum density, p, from

F =+- Hlr =(1*r- rt),
r '  "  \ J  )

In terms of a Poisson-Laplace equation, this becomes:

Y'û = 4"G , -#)= +,c(o . i)= 4 nG(p - 3 p.*),

The vacuum density here,

p"*=#,
then becomes equivalent to a 'dark' energy density or negative pressure

- P = H î " '  '
47rG 

'

which can also be expressed through the cosmological constant
)"=8tzGp,o" =zHî

Defining the critical density for a 'flat' universe as

n  = 3 H ' or*i, gizc

we obtain
puo,  

=2

Pcrit 3

As stated previously, this value is within the limits of current observations, tut was
obtained twenty years before the earliest measurements from supernovas.4'I1'13-ls
Of course, if inertia is local, it must be quantizable, even if nonlocal gravity is not. Here,
we may make use of a discrete gravity theory by de Souza and Silveira,*"o based on a
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concept of extended causality, which is a development of the special relativistic 4-
vector space-time, including the proper time, which in our notation would be
represented by a nilpotent (ikt + ir + i), analogous to (/rE + ip + im).In this theory, a
single object (either a particle or field) at two points in Minkowski space-time (s) must
satisff the causality constraint n ? + tsz .In our interpretation this become s L(ikt + ir +

iù' :0. 'Extended causality' applies when we shift rand x by infinitesimal steps dtand
ah. Applying a massless scalar gives us a discrete field equation, and a field source
represented by a scalar charge to generate a 'graviton'-like object and a metric for a
discrete gravitational field. In our terms, the field is a repulsive inertial one, fully
quantized via the Dirac nilpotent, and the 'graviton'like object is correspondingly
identified as a spin I boson or photon-like pseudo-boson. The field can only be
quantized in this way because it is inertial, with positive energy, not gravitational, with
negative energy, as negative energy, in our understanding, represents nonlocal vacuum
rather than the local quantized state. In effect, we have reversed the argument used for
the other forces, working from vacuum to the quantized local state.

8 Conclusion

The fundamental basis of the work in this paper has been a long-held conviction that
physics ultimately requires just four parameters, space, charge, time, mass, which are
symmefrical elements of a noncyclic group of order 4, and which are respectively
characterized by multivariate vector, quatemion, pseudoscalar and scalar algebras, or, in
Cliffordian terms by vector, bivector, trivector and scalar algebras. The combination of
the four algebras (with units i, j, k; i, j, k, l; 1) gives us the 64-part algebra of the
fundamental physical unit, the fermionic state, with a minimal set of five generators,
typically ik; ii; ii; ki; tj. T\e process of creating these generators, however, by
'compactification' of the units, requires the creation of new physical quantities:
quantized energy (,â), quantized momentum (p) and rest mass (m\. At the same time the
symmetry of one of the two 3-dimensional quantities (space or charge) must be broken.
In practice, it is charge, and the weak, strong and electric components of charge take on
the respective characteristics ofpseudoscalar, vector and scalar algebra.'
In effect, the modification of charge shows the nonlocal or vacuum side of the
compactification process, while the compactification to energy, momentum and rest
mass shows the local. The algebraic characteristics acquired are manifested nonlocally
tluough the vacua associated with the energy, momentum, and rest mass components of
the nilpotent wavefunction. The different algebraic characteristics of the three
components then ultimately determine the nature of the local interactions which result
from the local symmehies. We have shown that it is possible to go all the way from the
nonlocal vacua to the recognizable physical effects which are characteristic of the
different forces.
At the same time, gravity presents a kind of inverse effect to that of all the other forces,
as v/e can see from the negative energy involved. While we can do the calculations for
weak, strong and electric forces from the perspective of the local structure of the
fermion state, and work iteratively to determine the effect of the rest of the universe,
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6.
7.
8.

with gravity we have to do the calculation universally or recursively to work back to the
inertial effect on the quantized fermionic state.
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