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Abstract
The notion of an alpha field has been associated to any potential field that can be
presented by two dimensionless field parameters u and o'. The problem in this paper is
to derive the generalized metrics in the Relativistic Alpha Field Theory (RAFT). In that
sense, it is started with the new GeneralLorentz Transformation model in an alpha field
(GLT" - model) derived by employing the well known group postulates and isotropy of
the space. It follows the derivation of the general line element and the related general
metric tensor in an alpha field both in the Minkowski and Riemannian metrics. The one
section of the paper is devoted to derivation of a general diagonal form of a line element
and metric tensor in an alpha field. It has been shown that there exists a simple
coordinate fansformation procedure in an alpha field that transforms the Riemannian
metrics into the Minkowski one and vice versa.

Keywords: General Metrics, Relativistic Alpha Field Theory, General Line Element,
General Metric Tensors, Diagonal Forms in Metrics.

I Introduction

This paper has been written by consideration of the related theories and fundamental
laws of physics in the references U-211. The notion of an alpha field has been
associated to any potential field that can be presented by two dimensionless field
parameters c and c'. For an example, to this category belong an elecffomagnetic field, a
gravitational field and their combination (a two-potential freld). These parameters
should satisff the field equations ofthe related potential field in each concrete case. The
field parameters a and c'are the functions of the potential energy of the related field. In
the case of the multi-potential field, the field parameters c and c'become the functions
of the total potential energy in the multi-potential field. This fact opens the possibilities
of derivation of the form invariant mathematical descriptions that unifu dynamics of
one, or two, or more potential fields. Even vacuum (without any potential field) is
included, because in that case the field parameters o and c' are equal to one (c = o' =1).

Following this idea one can derive the form invariant features that unify the well known
Einstein's Special and General Theory of Relativity.

The first step in that unification should be the derivation of the related unified mefric
forms. Thus, the problem in this paper is to derive the generalized metrics in the
Relativistic Alpha Field Theory (RAFT). In that sense, it is started with the new General
Lorentz Transformation model in an alpha field (GLT' - model) derived by employing
the well known group postulates and isotropy of the space. It follows the derivation of
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the general line element and the related general metic tensor in an alpha field, both in
the Minkowski and Riemannian metrics. The one section of the paper is devoted to
derivation of a general diagonal form of a line element and metric tensor in an alpha
field. It has been shown that there exists a simple coordinate transformation procedure
in an alpha field that transforms the Riemannian metrics into the Minkowski one and
vice versa. The presented line elements and metric tensors can be used in Special
Relativity for cr = cr' = 1 and in General Relativity by identification of the field
parameters a and o' in a gravitational potential field, using the well known Einstein's
field equations. Following the considerations in this paper, one can conclude that the
unification of the line elements, metric tensors and coordinate transformations in the
Einstein's Special and General Theory of Relativity is possible, if one employs the
dimensionless field parameters c and o,'.

This paper is organized as follows. Derivation of general Lorentz Transformation
model in an alpha field (GLT, - model) is presented in the section 2. The general line
element in an alpha field, as function of the dimensionless field parameters cr and o', is
derived in the section 3. The related general metric tensors in an alpha field are
presented in the section 4. Derivations of the general diagonal form of the line element
and the metric tensor in an alpha field are pointed out in the section 5. Finally, the
conclusion and the reference list are given in the sections 6 and7, respectively.

2 Derivation of General Lorentz Transformation Model in an Alpha
Field (GLTa - Model) from Group Postulates

The GLT' - model can be derived, among the others, by employing the group
postulates [1] and isotropy of the space. The coordinate transformations between inertial
frames form a group. This group is called the proper Lorentz group with the group
operation being the composition of transformations. This means performing one
transformation after another. In that sense, the following four group axioms should be
satisfied:

l. Closure: the composition of two transformations is a transformation. In such a
manner a composition of transformations from the inertial frame K to inertial
frame K' and then from K' to inertial frame K" can be replace with a
transformation directlv from an inertial frame K to inertial frame K":

[r - K'][K'-+ K"]= [r + r"]. (r)

2. Associativity: the result of the following two fansformations is apparently the
same:

( [r  -  K' ] [K'+ K"])[K" - K" ' ]  = [ t< + K"' ] ,- (2\

[r - K']([K'+ K"][K" - K"']) = [t< -+ K"'].

3. Identity element: there is an identity element, a transformation K -) K.
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4. Inverse element: for any transformation K -) K' there apparently exists an
inverse transformation K' -) K.

Let an inertial frame K' is moving in an alpha field with a velocity Vo relative to an

inertial frame K. Using rotations and shifts operations one can choose the x axis in K

and x' axis in K' along the relative velocity vector îoand that the events (t: 0, x: 0)

and (t' : 0, x' = 0) coincide. The velocity boost is along the x and x' axes only, therefore
nothing happens to the perpendicular coordinates (y, z) and (Y', z') and one can just omit
them for brevity. The transformation [K+K] connects fwo inertial frames. Therefore
it has to transform a linear motion in (t, x) into a linear motion in (t', x') coordinates.
The conclusion is that the transformation [K9K'] must be a linear transformation. This
also includes that a relative velocity v,, between K and K' systems should be a constant.
Meanwhile, a motion in an alpha field with relative velocity vo, between reference
frames K and K, generally is not a constânt. In order to derive a linear coordinate
transformation model, one should assume that in the infinitesimally small space-time
regions of an alpha field (dx, dt) and (dx', dt'), a relative velocity vo is a constant. In that
case the General Lorentz Transformation in an alpha field [K+Kl transforms a linear
motion in (dt, dx) into a linear motion in (dt', dx') coordinate system.

Generally, for a relative motion of the systems K and K' in an alpha field, the relative
velocity vo is a composition of the two velocities (v and v1). Here v is a component of
the relative velocity vo that is equal to the free particle motion. The velocity vr is a
component of the relative velocity vo that shows an influence of an alpha field to the
particle motion. For an example, vf could be a free fall particle velocity in a
gravitational field. Therefore, the velocity vl should be a function of the field parameters
a and cr'. Taking into account the previous consideration, the relative velocity vo ,
between two systems K and K', can be described as the following composition of its
components:

_ r(a - cr'). c

2 '

ç = \ y = 0  
- )  V o  =  V o "

r (o  -  a ' ) c
= V - -

Here g and y are angles between vectors (V,V.,) and (Vs,Vo), respectively. In the

relation (3) we assume that the observation signal is the light with invariant velocity c in
both system K, and K'. Finally, we can employ, for the convenience, an observation
parameter r. Thus, one can put r: I if an observation signal is emitted from the origin
of the system K, or r : -l if an observation signal is emitted from the origin of the
system K'. The relation (3) can also be obtained by using the relativistic adding law for
velocities and putting u' : 0. The structure of the relative velocity v, in (3) has been
confirmed, among the others, by derivation of generalized relativistic Hamiltonian in an
alpha field [2ll that, after inclusion of the related field parameters cr, and a', is valid for
both an electromagnetic and a gravitational field.

Vo = VCl* = V" * Vf* = VCOS9 + Vf COSV = Vx

(3)
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In order to derive the GLT" - model in the tensor form one can inffoduce the
differential forms of the displacement four-vectors, dX and dX'. Let these four-vectors
are defined in frames K and K'bv the relations:

dX + 
" 

1.0,,0*, dy,tu)= {O*u} ,

dX'->K'(cdt ' ,dx ' ,dy ' ,M')= 
{A* ' ' }  ,  1.r=0,1,2,3.  

(4)

Here dX has the components in the frame K, and dX'has the components in the frame
K'. The variables dxp, or dx'p are the related contravariant coordinates in a space-time
region.

Because the field parameters cr and cr' are functions of the space-time coordinates, a
particle velocity, vo, in an alpha field is not a constant. In derivation of the GLT' -

model we supposed that in the infinitesimally small space-time regions of an alpha field
dxF, and dx'F, F = 0, l, 2,3, tlte particle velocity vo is a constant. This means that in the
mentioned infinitesimally small intervals of dxts, and dx'ts, the field parameters cl and o',
and the free particle velocity v are constânts. Now, taking into account the displacement
four - vectors (a) and employing the four group postulates [4] one can derive a tensor
form of the GLT' - model for the events on x-axis:

dx'P- ÂP' dxt, F[, V = 0rlr2r3,

Vcr =const.  -)  xtr=Aru xu.

In this relation the Einstein's summation convention is postulated. The first line in (5) is
valid for vo is a constant in the regions (dx,dt) and (dx',dt'), while the second line in (5)
is valid for vo is a constant in the regions (x,t) and (x',t'). The term Âpu is the element in
the p-th line and v-th column of the (4x4) transformation matrix [Àpl of GLT' - model:

H -HPo 0
-HFo H 0

001

In the relation (6), the parameters H and 9c are presented by the equations:

(s)

ïl[nu' ]=

'=[,-5)-''' =[", -5.

(6)

r (o -a ' )o' )*  ar r* ' ) - t "
- T - l  

t
c - )

(7)

Vo =V* -r(a: ' )*c,  cr ' l  =1- 
12(cr-  o 'X

9o =L,
c
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If the angles between vectors (V,Vo) and (Îi,io) are equal to zero (g = 0 and y = 0,

respectively) then v* -+ v and r(a - cr')* + K(cr - o'). In that case the relations (7) are
transformed into the expressions:

(8)

- v o- -  s
c

(e)

" = 
[, 

-5)-" = (oo, -5.tg#]-)-''',

B.,
It is easy to see that in the case of vacuum (without any potential field) the field
parameters o and cl' should be equal to one (cr : a' = 1). For that case the relations (6),
(7) or (S) are transformed into the well known Lorerlz Transformation model (LT -

model) [] .

3 General line Element in an Alpha Field

Generally, in mathematics, a line element can be thought of as the square of the
change in a position vector in an affine space. This is equated to the square of the
change of the arc length [2-8]. A line element is a function of the metrics and can be
related to the curvature tensor. Therefore, the line elements are often used in physics,
mainly in the Special and General Theory of Relativity. Thus, in a gravitational field a
space-time is modelled as a curved manifold with Riemannian metrics. When one wants
to consider space and time derivatives of functions it is agreed that time derivatives are
taken with respect to the proper time t [8-ll]. This is because a proper time is an
invariant, with consequence that the proper time derivative of any four-vector is itself a
four-vector. From the time dilation relation in the GLT' - model one has very important
equation that connects the proper time derivative dt with another time derivative dt:

É = s =( r-É)-" '  =( oo, -*  *r( . , -g, '  )cvl-" ' .
dr [  . ' /  \ .  c '  c '  )

Here dr is a differential of the proper time of the moving particle, H is a transformation
factor, as an invariant of the GLT' - model and vo is a particle velocity in an alpha
field. In the relation (9) we suppose (without losing in a generality) that the angles

between velocity vectors (V,V..) and (i;,Vo) are equal to zero (q = 0 and y = 0,

respectively). The consequences are that vx + v, (oa')* -t crcl' and r(o - cr.')* - r(cr -

Û').
In order to derive a line element ds' of the GLT' - model one can employ the

equation(9) andderivationprocedure fromthereferences [5,6,8,11,13 and20]:

dr2 =# =#ur' + ds2 = -fi"'at'.
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lncluding the first form of H from (9) to the equation (10) one obtains the line element
in the following general form:

ds2 = -czd( +v'odt ' . ( 11 )

Now, one can make the following substitutions into the relation (l l):

' ,oi =(uL)'*("i) '*(" i) ' ,  v[ =#, F=r,2,3. (tz)

These substitutions transform the second equation in (11) into the first form of the line
element of GLT' - model, valid for a particle motion in an alpha field:

ds2 = -czdt2* (a*L)' * (a*i)' * (a*i)'. (13)

Since dxl =dxordx2" =dy"rd*to =dzo, one can describe the first form of the

general line element of the GLT' - model by the following equation:

ds2 = -c'dt2 +d*3 +dyl +M1. (14)

This line element has a diagonal form with the Minkowski metrics. Meanwhile, the
coordinates dxo, dyo and dz" are the functions of the field parameters c and c' as it

7 .1 y- l /2

s=[t-g | -+
I  c" /

follows from (3) -o tt?ro 
- cr,) c

d*o =dx---LlJr!-dt'
r(cr - o') c

dvo=dv-ladt,

r (a -  o ' )  c
dz^ - dz- ' '' dt.

u )

'  =( .oo' -!.r(cr - -a' )c vl- " ' -
\ c -c - )

ds2 = -c,;c,'c2dt2 -*(o-cr')vc dt2 +(v)2 dt2.

Further, one can make the following substitutions into the relation (16):

Now, applying the second form of H from (9) to the equation (10) one obtains the
second general form of the line element as the explicit function of the dimensionless
field parameters cl and cl':

(15 )

(16)
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*(* - cr ')v = *(o - o')* nt + r(ct - cr ')" v2 + r(o - o'),  t ' ,

( ' ) '  =  ( . ,0 ' ) '  *  ( ' ,0 ' ) '  *  ( t ' ) ' ,

These substitutions transform the equation (16) into the second form of a line element
of GLT' - model, valid for a particle motion in an alpha field:

ds2 = -aa'c2dtz - *(o - q')* cdtdxr - *(* - *'), cdtdx2 -

- *(o - d')"cdtdx3 * (d*') '  * (* ') '  * (* ') ' .

Since dxl : dx, dx2: dy and dx3 = dz, we can describe the second form ofthe general
line element of the GLT' - model (18) by the following equation:

ds2 = - c',o' c2 dt2 - *(o - o')* cdtdx - *(o - o'), cdtdy -
(1e)

- * (o -a ' ) "cdtdz+dx2 +dy2 +dz2.

This line element has a nondiagonal form with the Riemannian metrics. It can be shown
that the substitutions of the coordinates (15) into the line element (la) and including
relations for crcr' from (7) or (8), the diagonal form of the line element (14) with
Minkowski metrics can be transformed into the nondiagonal form of the line element
(19) with Riemannian metrics.

If a particle is moving in a vacuum (without any potential field) then the field
parameters cr and ct' satisfu the relation cr : cr' : 1. For that case the second form of the
general line element (19) is transformed into the well-known line element valid in the
Special Relativity:

ds2 = -c'dt '  +dx2 +dyz +d22. (20)

if ds2 > 0,As it is the well known, the line elements (14), (19) and (20) are a space like
a time like if ds2 < 0, and a null (or light) like if ds2:0.

4 General Metric Tensors in an Alpha Field

The differential form of the contravariant displacement four-vector, d)Ç, of the GLT' -

model, presented in the first form of the line element (14), can be defined in the frame K
by the relation:

dXo -+K(cdt, dxo,dyo, dr.*)={*l}, p=001,2,3. (21)

Following (13), (14) and (21) one can derive a matrix expression of the components of
the general covariant metric tensor gpv, valid for the first form of the line element (14)
and the coordinate system (21):

uu = dîu,  
I r=1,2,3.  

Q7)

d t -

(1 8)
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[s*l =diae[-l I I t]=[n,]. (22)

This matrix expression of the metric tensor is diagonal and belongs to the well known
Minkowski metrics lpu, as we expected that should be. Therefore, the related line
element (14) is also called a diagonal line element. The related components of the
contravariant general metric tensor gtsn in an alpha field can be derived by inversion of
the covariant one using (22). As the result of that inversion one obtains a matrix
expression of the components of the general contravariant metric tensor gtsu equal to
(22):

(23)

The determinants and traces of the matrices of the components of the metric tensors (22)
and (23) are presented by the relations:

aet [e* ]=det [nu" ]=-L aet [su ' ]=det [np" ]=-1,

r; [e*] = r* [n,,"] = z, t. [**] = r. [n* j=, 
(24)

Now, one can recall the well known condition that should be satisfied by any metric
tensor 19-121:

F;[aJ-l

[t-" ] = [eu"]= [n*"]= ['1'].

(2s)

From the relations (24) one can conclude that the condition (25) is satisfied.
The differential form of the contravariant displacement four-vector, dX, of the GLT'

-model, presented in the second form of the general line element (19), can be defined in
the frame K by the relation:

dX + K(cdt, dx, dy, Oz)= {axr}, p=0,1,2,3. (26)

Applying displacement four-vector dX from (26), the second form of the general line -
element (19) is transformed into the equation:

ds2 = -oo'(a*o)t - *(o - o')* dx'dxr - *(o - o'),  dx'dx2 -
(27\

-* (o -o ' ) "dx 'dx3 +(o* t ) t  * (a* t ) t  * (a* ' ) ' .

As it is the well known, the Riemannian line element can be introduced by the
following expression:

ds2 = e* (a*o )t * 2gotdx0dxr + 2go, dxodx 2 + 2gordxodx' +

t  , t 2  r  ^ t 2  t  . t 2  
( 2 8 )

+g, , (dx ' )  *gr r (d* 'J  +grr (dx ' )  .
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Here g is the related metric tensor of the Riemannian manifold. Comparing the
equations (27) and (28), one can conclude that non-null components of the metric tensor
g in the line element (27) zre determined by the following relations:

[eu"] =

ooo = 
- l

I t  
c , ,0 '+b2 '

o03 _ o30 _

l 1  1 1
O ' -  = ç - ' =

L
g o t = g l o =  l * : . ,();().-'+b'

L
n1 'tA Lrv

È-- =È-- ------7---3s

cr,0'+ b-

11 . t  -b*  bu
g -=g -  = - - - - - ,

ocr,'+ D-

)z 1) -by b"
Î - ' = f ' -  = -
{ >  è  .  . 1 ,

c[,cr,'+ b-

b*

I

0

0

by

0
I

0

b,

0
0

I

. (30)

b" cr,cr,'+ bv2 +b.2

ag'+b2 
)

ct,cr'+ b*2 +br2

gt t  =

o;o' +bz',

O-"  =

g"=
clo'+ b2

ct,ct,'+ b*2 +by2

crcr'+ b2 
'

The related quantities of the parameters b*,
determinants and traces of the mefic tensors
relations:

b2  =b*2  +bvz  +b .2  .

(3 1)
by, and b, are given by (29). The
(30) and (31) are presented by the

g00 =-dcr', gor =gr0 =0,. =-P , Eoz=820=0, =lq2a!,

.  -*(o -a'),
gor  =gro -b.=- t -2  - , gr r=1 ,  gzz= I ,  9 r r= l '

(2e)
Following (28) and (29) one can derive a matrix expression of the components of the
general covariant metric tensor gpu in an alpha field, related to the second form of the
general line element (27):

-c[c['

b"

by

b,

c,;o, '  +b2'
-b*b"

This metric tensor is symmetric and has ten non-zero elements, as we expected that
should be. The matrix expression of the metric tensor (30) is nondiagonal and belongs
to the well known Riemannian metrics gun. Therefore, the related line elements (19) and
(27) zre also called nondiagonal line elements.

The related components of the contravariant general metric tensor gpu in an alpha
field can be derived by inversion of the covariant one using (30). As the result of that
inversion one obtains the components of the general contravariant metric tensor gpu in
an alpha field:
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aet[su"] = -(crcr'* bt),

r. [g* ] 
=3 - o"d' '

Now, we recall the well known condition (25) that should be satisfied by any metric
tensor [9-12).Including the determinant of the matrix of the metric tensor components
gpu from (32) into the relation (25) one obtains the important relation between field
parameters a and a':

!6cr'+ b' = cr,cr,+ 
rc2 (a - cr')2 -, ,

(33)

K2=1, r  l+ l=t .\ .2  )
This relation can be employed in the procedure of determination of the field parameters

cl and cr'in each particular alpha field. The condition (33) is also satisfied for cr: cr'= I
that is related to the particle motion in a vacuum (without any potential field). This case
belongs to the Special Theory of Relativity.

If a particle is moving in a vacuum (without any potential field) then the field
parameters a and a' satisff the relation c[ : cr' = 1. For that case the parameters b' = b,
: b, = 0, and the second form of the general line element (27) is hansformed into the
form (20). In that case the covariant Riemannian metric tensor g (30) is transformed into
the well known Minkowski metric tensor \ (22).As it is the well known, this metric
tensor is valid in the Special Relativity.

5 Derivation of a General Diagonal form of line Element and Metric
Tensor in an Alpha Fietd

The problem is to derive a general diagonal form of the line element in an alpha field in
the following expression:

ds2 =-(* ' ) ' * (dr ' ) '  * (ar ' ) '  * (* ' ) '  .  (34)

In this relation dzq, p : 0,1,2,3, are the new contravariant coordinates of the system.
From (34) one can see that diagonal line element generates a diagonal matrix of the
components of the metric tensor equal to the well known form of the Minkowski metric
tensor structure (22). As we know, this metric structure is used in the Special Relativity.
In order to solve the mentioned problem, one can start with the nondiagonal second
form of the general line element (Z7)thatbelongs to the Riemannian metrics:

ds2 = -cra'(oxo)' +2b*dx'dxr + 2bydx'dx2 +

O"t[eu"] = - l/(crcr' * bt ),

,*[ru"]= 2.#. 
(32)

F;G;J=

+ 2b,dxodx' + (a*t )' * (a*t )' * (a*')'

(T)'='
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The contravariant coordinates dxP, F= 0, 1,2,3, in (35) are given by (26). The related
parameters b*, by, and bz have the forms given by (29). Now, one can employ the
following coordinate transformation procedure:

dzT =a dxo = aÆ* É d"o, dzl = b*dxO + dxl, dz2 =b"dxo + dx2, - -.'  'Ga)

dz3 =b"&o +  dx3 ,  b2  =b*2  +br2  +b .2 .

Applying (36) to the general diagonal form of the line element (34) one obtains the non-
diagonal form of the line element (35). This confirms that the coordinate
transformations (36) transform the non-diagonal line element (35) into the diagonal one
(34) and vice versa.

It can be shown that the coordinate transformations (36) are equal to the coordinate
transformations (15) if the condition (co'+bz)= I is satisfied. Since this condition is
always satisfied by (33), one can conclude that the following relations are valid:

&3 =d"0, dxl =62t, dx!=612, û1 =dz' . (37)

Thus, the first form of the general line element of the GLT' - model, given in (13)'
belongs to the general diagonal form of the line element in an alpha field (34). Both
diagonal forms have the Minkowski metrics (22).

6 Conclusion
The presented line elements and metric tensors can be used in Special Relativity for

cL: cr' : I and in General Relativity by identification of the field parameters cl and o' in
a gravitational potential field, using the well known Einstein's field equations.
Generally, these line elements and tensors can be employed in any alpha freld if the
identification of the field parameters o and cr,' is possible in that potential field. The
coordinate transformations (36) transform the Riemannian metrics (35) into the
Minkowski metrics (34), and vice versa. Following the considerations in this paper, one
can conclude that the unification of the line elements, metric tensors and coordinate
transformations in the Einstein's Special and General Theory of Relativity is possible, if
one employs the dimensionless field parameters cr and cr'. For solution of some
problems (like identification of the field parameters cr and cl' in a gravitational field) the
presented models should be transformed into the spherical polar coordinates, which are
appropriate to these problems. This will be done in the next paper, together with the
identification of the dimensionless field parameters a, and cl' in a gravitational field. In
the future works, the presented approach will be applied to the other items in the Special
and General Theory of Relativity.

Acknowledgements

This work v/as supported by grants from the National Scientific Foundation of Republic
of Croatia. The author wish to thank to the anonymous reviewers for a variety of helpful
comments and suggestions.

103



References

[] Lorentz Transformations (2009). in http://en.wikipedia.org/wiki/Lorentz-transformation,
28.04.2009,pp. l-16.

[2] Gauss Carl Friedrich (1827). General Investigations of Curved Surfaces. Raven Press
(1965), New York.

[3] Hawking S. W. and Ellis G. F. R. (1973). The Large Scale Structure of Space-Time.
University Press, Cambridge.

t4] Dodson C. T. J. and Poston T. (1991). Tensor Geomeûry. Graduate Texts in Mathematics,
130 (2"" ed.), Springer-Verlag, Berlin, New York.

[5] Lee John (1997). Riemannian Manifolds. Springer-Verlag, Berlin, ISBN 978-9387983226.

t6] Gallot Sylvestre, Hullin Dominique and Lafontane Jacques (2004). Riemannian Geometry
(3'" ed.). Springer-Verlag, Berlin, New York, ISBN 978-3-540-20493-0.

[7] Vaughin Michael T. (2007). Introduction to Mathematical Physics. Wiley-VCH Verlag
GmbH & Co., Weinheim,ISBN 978-3-527-40627-2.

[8] Wikipedia organization, the Free Encyclopedia (2010). Metric Tensor (11.02.2010).
http ://en.wikipedia.ors/wiki/Metric tensor .

l9l Einstein Albert (1909). The Collected Papers of Albert Einstein. YoL 2: The Swiss years:
writings, 1900-1909. Princeton, NJ, (1989).

[0] Einstein Albert (1916). Die Grundlagen der allgemeinen Relativiteitsttreorie. Ann. Physik.
Vol.49, pp.769-822.

Il] Einstein Albert (1955). The Meaning of Relativity. 5ft ed. Princeton University Press,
Princeton, N.J.

[2] Miller, A. I. (1981). Albert Einstein's Special Theory of Relativity : Emergence (1905) and
early interpretation (1905-l9l l). Reading, Mass.

[3] Supek Ivan (1992). Theoretical physics and structure of matter. Zagreb: Skolska knjiga,
ch. 7, pp. 419-439.

[a] Dunsby Peter (1996). Applied Mathematics. http://vishnu.mth.uct.ac.zal

[5] Selleri F. (1994) . Theories Equivalent to Special Relativity. In Frontiers of Fundamental
Physics, eds. M. Barone, and F. Selleri, Plenum Press, New York.

[ 6] Dubois Daniel (2000). Computational Derivation of Quantum Relativist Electromagnetic
Systems with Forward-Backward Space-Time Shifts. CASYS'99-Third International
Conference of Computing Anticipatory Systems. Edited by Daniel M. Dubois. Published
by The American Institute of Physics, AIP-CPSl7, pp.417429.

[8] Nibart Gilles (2000). Do Tachyions Violate the Causality Principle ? Comput. Anticipatory
Systems: CASYS'gg-Third Intemational Conference. Edited by Daniel M. Dubois.
Published by The American Institute of Physics, AIP-CPS17, pp. 383-390.

[9] Novakovic Branko , Novakovic Dario and Novakovic Alen ( 2000 ) . A New General
Lorena Transformation Model. In Computing Anticipatory Systems, CASYS'99, ed. by
D.M. Dubois, AIP Conf. proc. 517, pp.437-450.

[20] Novakovic Branko, Novakovic Dario and Novakovic Alen (2001). A Metric Tensor
of the New General Lorentz Transformation Model. In Computing Anticipatory Systems,
CASYS'2000, ed. by D.M. Dubois, Int. Joumal of Computing Anticipatory Systems, vol.
10,pp.199-217.

[21] Novakovic B. (2010). Generalized Relativistic Hamiltonian in an Alpha Field. CPl303,
Computing Anticipatory Systems: CASYS 2009 - Ninth Int. Conf., edited by D.M.
Dubois. American Institute of Physics 978-07354-0858-6/10/$30.00, pp.141-148,2010.

104


	Casus_v27_pp93-104_Novakovic



