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Abstract
We suggest a new method of quantum causal analysis. The causality is defined wittrout
invoking the time relation. It clarifies Cramer principle of weak causality, which admits
time reversal in the entangled states and directly leads to the anticipation. The quantita-
tive quanfum measure of causality is the pseudoscalar velocity of irreversible infor-
mation flow called the course of time. The smaller course of time modulus, the stronger
causal connection. The causal parameters for the examples of three-qubit entangled
states have been computed. The results have been compared with the degrees of mixed-
ness and entanglement of the states. In the simplest cases the formal measure of quan-
tum causality does not contradict its intuitive understanding. But even in slightly more
complicated situations intuition may be a failure.
Keywords: causality, entanglement, time, anticipation

1 Introduction

Causality is one of the universal physical principles. It plays the twofold role. On the
one hand, in the theoretical problems, this principle allows selecting of the physically
realizable solutions among a plethora of the mathematically admissible ones. On the
other hand, establishing of causal-effect connections in analysis of the complicated sys-
tems is the first step to constructing of a phenomena model.

In references to the causality principle, usually one does not bear in mind anything
except retardation of the effect relative to the cause. However what is the "cause" and
"effect" remains indefinite. In the theoretical problems it may lead to the confusions. In
the complicated phenomena investigation the serious mistakes are possible.

The necessity of formal taking into account of really existing causal connections was
felt by many researchers. Moreover deeper insight into causality problem had been led
to the interesting theoretical and experimental consequences concerning anticipation

[26].Inanswer to this challenge the formal method of classical causal analysis was sug-
gested [9]. This method had been successfully applied to the various theoretical and ex-
perimental problems of classical electrodynamics, magnetohydrodynamics and geo-
physics, e.g. [8, 10]. Later it was also applied to the experiments on macroscopic entan-
glement lll,13-251. But the olassical approach to a quantum phenomenon is rather lim-
ited. Recently the quantum causal analysis has been suggested [12].

Quantum causality, unlike classical one, can exist only in the mixed states, i.e. in a
system which is or was open. Another interesting property of the mixed entangled states
is that they obey the weak causality [5] (for which reverse time is allowed).
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In Ref. p2l the series of examples of two-qubit causeless (symmetric) and causal
(asymmetric) states has been considered. In this paper we consider more complicated
three-qubit states. In fact this consideration demonstrates the qualitative peculiarities of
the many-qubit states as compared to two-qubit ones. In Sec. 2 we review the idea of
quantum causal analysis. The main new results are contained in Sec. 3, were we consid-
er the examples of causal analysis application to the three-qubit states. Conclusion is in
Sec. 4.

2 Quantum Causal Analysis

The main idea of causal analysis is formalization of usual intuitive understanding of
asymmeûry of a cause and effect, owing to which we can usually distinguish them with-
out measuring the retardation (although the finite retardation is, ofcourse, a necessary
condition of causal connection).

For any classical variables (subsystems) A and B the independence function i can
be introduced:

, , ,=f# ' tn,=W'o<i<l '  ( l)
where S are conditional and marginal Shannon entropies. As it has been shown in Ref

|21in classical causal analysis there are two measures of causality. One of them is the
causality fi.rnction 7:

t ^ , ,
y=+,03y<æ,

l,tla

Another on is the course of time:

^ ,_(t- in1)(l - irrr)c,=rffif, (3)
where & = Lr I 6t; we suppose that the subsystems A and B are separated by some fi-
nite effective distance Âr; and ôt is duration of an elementary signal. The c, has a

meaning of the velocity of cause-effect information transition. The direction of irre-
versible information flow is determined by the sign of cr.

It can define that A is the cause and B is the effect rf y(A,B)<l or, equivalently,

cr(A,B\> 0. And inversely: B is cause andA is effect f y(A,B)>l or, equivalently,

cr(A,B)<0. The case y =1 or, equivalently, cr(A,B)-+tæ corresponds to adiabatic

(causeless) relationship A and B .
For the quantum variables von Neumann entropies ,S in Eq (1) are used. For the en-

tangled states the conditional entropies can be negative [2, 3]. Therefore -l < i < 1. In
particular, for the pure bipartite states from Schmidt decomposition it is follows
irtn=inl"=-1. Next -@<f <æ and the value of y becomes meaningless when it is

negative. Moreover even positiveT failures when the both i are negative, while c, as

(2)
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shown in Ref. [12] remains to be always consistent. That is the course of time cris the

appropriate measure of quantum causality. Thus we have:
Definition: The cause A and the effect B are the subsystems for which

c r ( A , B ) > 0 .

Then, introducing the demand of the effect retardation t , we can formulate the axi-
om of sfrong causality, embracing local and nonlocal correlations, as follows:

c z > O à  r > 0 ,  c ,  <  0  =  a  < 0 , l c , l - +  æ  =  t  - + 0 . (4)

Notice, that nonlocal correlations are often treated as instantaneous and causeless
ones. Our approach includes such treafrnent, but only as a particular case.

The axiom (4) is the principle namely of strong causality. Cramer was the first to dis-
tinguish the principles of strong and weak causality [5]. The strong causality corre-
sponds to the usual condition of retardation of the effect relative to the cause. Without
this axiom we have the weak causality. The weak causality corresponds only to non-
local correlations and implies a possibility of information transmission in reverse time,
but only related with unknown states (hence "the telegraph to the past" is impossible).
Note, that in the examples of the Sec. 3 we shall nowhere use the axiom (4). Reverse
time is allowed.

Interpretation of entanglement of a quantum system as the resource serving for in-
formation transfer through it, justified in Ref. [27], gives c, the additional physical

meaning. Specifically in Ref. l27l it has been proven that negative conditional entropy
is "an amount of information which can be ffansmitted through <the subsystemP I and
2 from a system interacting with I to another system interacting with 2. The transmis-
sion medium is quantum entanglement between I and2". Causality characteizedby c,

value reflects the asymmetry of this process (the greater causality is expressed by the
less lc,  l ) .

Zyczkowski and Horodecki's [31] were the first to put forward the hypothesis on
asymmetry in the transfer of quantum information with respect to its direction. It has
been just that we have studied in this work. As compared to the first article on quantum
causal analysis [2], where only the simplest two-qubit states were considered, in this
work we can demonsfiate the specific causal properties of the compound parties of the
quantum systems.

But though defined by Eq. (3) the course of time c, with accuracy to the coefficient

fr is of great interest by itself, it is desirable to show the way of its full determination
for the natural processes. For this there is no remain ôr to be duration of "an elementary
signal", that is pertinent only for a technical channel. Since ôt in any case plays a role
of some elementary time, it is natural to suppose it, according to Ref. [1], to be time of
brachistochrone evolution. In the case of time independent Hamiltonian this time is
easily expressed explicitly:

6t =Y, (5)
2at '

where 2o is fhe difference between the largest and smallest eigenvalues of the Hamil-
tonian and 0 is the length of geodesic (according to Fabini-Study metric) connecting
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the initial and final states. If they are orthogonal, 0 = r .ln realistic Hamiltonian a de-
pends on distance Âr and fr becomes definite. It is readily shown [9] that for the sim-
plest Coulomb interaction k = e' I h ,lhat corresponds to Kozyrev order estimation of c2
obtained from the semiclassical reasoning [26].

To keep the examples described bellow from becoming too involved; we shall re-
sfiict ourselves by calculations of c, with accuracy to k = 1 , because, as it has been

demonstrated in Ref. [12], the precise estimation of crwith regard to variable frcalcu-

lated through the eigenvalues of Hamiltonian does not lead to a qualitative change in c,

behavior.

3 Examples

By entropic symmetry stemmed from Schmidt decomposition causality is absent in
any bipartite pure state. Therefore the mixedness is a necessary condition of quantum
causality. Following the line of Ref. [2] we consider the dissipation as a way of partial
decoherence which leads to the mixedness. The dissipation is reduced to the following
qubit transformation [7, 30] :

lo)(ol-+loXol,
ItXtl - (t - p)lt)01 + pl oxol,

(6)
ItXol- uFplt)(ol,
lo)01-Jr-plo)(t l ,

where 0 < p<l is decoherence degree.
We consider the three-qubit systems. The first qubit we call the subsystem A, the

second and third - the subsystems B and C respectively. Another source of mixedness
of a two-particle subsystem is its interaction with the rest of the system, which is the
third particle. We consider the bipartite states, where one party may consists of two par-
ticles, that is some more complicated in comparison to Ref. [12], where only one-
particle partition has been analyzed. Thus the rather simple three-qubit examples will
help to understand the peculiarities of many-particle causality in comparison to two-
particle ones.

Except the measure of causality c, and independence functions i, every example we

shall provide with the negativity N as a measure of entanglement and the entropy of
full system S(ABC) (or two-particle subsystems S(lC) etc.) as a measure of mixed-

ness.

3.1 Coffman-Kundu-Wootters State

Cofftnan, Kundu and Wootters [4] have discovered the (CKW) state:

lcrwl= f l roo) *]( oor) * | oro)),

80

(7)



which is notable by maximal pairwise entanglement (measured by concurrence) of the
subsystems AB and AC . T\e entanglement properties of this remarkable state have
also been considered in Ref. [6]. In Ref. [12] it has been found that those subsystems are

causal, aparty A isa common cause for B and C:cr(A,B)=c2(A,C)=5.30 (the link

.B - C is causeless: I c, (8, C) l= æ ).
Let the particle C be dissipated as in above examples. Then the state is:

pt';f =] | o t o) {o t o | . ft 
(l o r o) (r oo | + | r oo) (o r o l) +

|l r ooXr oo | * f {t 
- o) I oo r) (oor | + } r I ooo) (ooo | +

.m (i f m r) (o r o | + J- | oo r) (r oo | + | I o r oXoo r I * J- | r oq 100 1 l).
One may expect that as a result of dissipation of C cr(A,C) must be lowered, while

cr(A,B) must remain constant; the finite causality must appear in all the other links.

The tesults of all calculations are presented in Fig. I (except the link A- B , where all

the parameters are constants: cr(A,B)=5.30, S(AB\=0.811, iav=-0.233, into=0'

IN(A,B)=tr).
In Fig. la it is seen that indeed cr(A,C) lowers from 5.30 as p increases and tends

to 0 at p +1. cr(A,C) is minimal among the others at any p . Indeed, just in the link

A-C directionality of causal connection owing to original asymmetry and owing to
dissipation is the same and resulting causality turns out the strongest. In the link B - C

causality is only due to dissipation and, accordingly, it is weaker: cr(B,C) > cr(A,C) at

any p. Next, in Fig. la it is seen that causality in both the two-particle links A-C and

B-C is stronger (c, is less) than in the three-particle links AB-C, A-BC and

AC-8. It is explained by the fact that mixedness of the formers is more - the both
S(AC) and S(ÀC) are more than S(ABC) (Fig. 1b). It should be stressed that the rela-

tionship of causality and mixedness is only a tendency, but not a rule, e.g. cr(B,C) and'

S(BC) both decrease as p increases.
A nontrivial result is that dissipated particle C can belong not only to the party-

effect (in the partitions AB -C and, A- BC ), but to the party-cause too (in the partition

AC-B). At full dissipation (p=t) the particle C "disappears" from its two particle

parly and as a result cr(AC, B) = c 2(A, BC) = cz(A, B) = 5.30 .

(8)
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Figure 1. Dependenceof c2 (a), S (b), i and N (c, do e, f) on degree ofdissipation p

of the particle C for the different partition of the state (8).
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When Fig. la is compared with Figs lc-e it is apparent that for most of the partitions

cr(A,C)<cr(AB,C)<cr(AC,B)<cr(A,BC). But the part i t ions A-B and B-C do

not obey this relationship. That is the relationship of causality and entanglement is only
a tendency, but not a rule too.

InFig.lfitisseenthatinthelink B-C atany p<l theboth i and N arepositive.
The subsystem -BC is entangled in spite of the entropic classicness.

Now consider dissipation of the particle I :

the stronger entanglement the
N (A,C) < N (AB,C) < N (AC, B) < N (A, BC)

ment (Figs. 2c and 2d): at

lcr (AC,B) l< lcr (A,BC) l ;  u1

I c r(AC, B) l>l c r(A, B C) l.

weaker causality:
correspond to

N(AC,B)<N(BC,A) corresponds to

N(AC,B)> N(BC,A) corresponds to

p[:;î, =] {l oo tl loo t | + | oo r) (o r o | + | o r o) (oo r | + | o r o) (o r o ; ) * f I r oo) (r oo | +

{ | ooo) (ooo t . l, /* (l oo r) (r oo | + | o r o) (r oo | + | r oo) (oo r | + | r oo) (o r o l)2 '  t r  ,  2 1  2
One may expect that as a result of increasing dissipation of A, the original causal

connection A -+ C will at the beginning attenuate until disappear at some p , after that
direction of causality will reverse with further utrnost amplification of the connection
C -+ A as p will tend to l. The finite causality must appeax in all the other links, except
B - C because of its symmeûry. The results of calculations are presented in Fig. 2, ex-
cept the link .B - C , where all the parameters axe constants: cr(B,C) â too , ,S(BC) = 1 ,

iayc = icln = 0.233 , N(B,C) =!2| (the particles B and C are entangled and classi-

cally correlated due to availability of the common cause). The partition AB-C is
equivalent to the presented one AC - B .

In Fig. 2a it is seen that indeed cr(A,C)changes its sign àt p=*."* the variation

of positive cr(A,C) (corresponding to directionality of the causal Jonnection A-+C)

proves to be not monotonous; it has the intuitively unexpected minimum equal to 5.08
at p = 0.103. The monotonous increase of negative cr(A,BC) simply reflects amplifi-

cation of causality along with increase of dissipation of the effect I . It is notable that
mincr(AC, B) = mincz(A, C) . There is an interesting relation, which is valid not only in

this example: p(mincr(Ag,B))= 1-p(l cr(A,C)1= æ)+p(mincr(A,C)) .

There is no a relationship of different c, with the degree of mixedness (Fig. 2b).

There is only arelationship of cr(AC,B) md cr(A,BC) withthe degree of entangle-

(e)

I
p . ,

1pr t
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Figure 2. Dependence of c2 (a), ,S (b), i and N (c, d) on degree of dissipation p of

the particle A for the different partition of the state (9).

In Fig. 2d it is seen that on the interval 1. O .1 the partitio n AC - B is classically
4

conelated (the both i are positive), but entangled. The same is observed in the subsys-

tem AC (Fig.3), but on the wider interval L. p.t.
4
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Figure3.Dependenceof i and iy' ondegreeofdissipation p oftheparticle A forrc-

duced p(AC) ofthe state (9).

A comparison between the cases AB -Cdi"" and BC - Ad"' shows:
(i) lcr(AB,C'") l-+ 0 at p + I quicker than lcr(Ad"' ,BC)l.It reflects the influence of

the original (at p = 0) causality in the link A-C (wherel is the cause andC is the ef-

fect).
(ii) S(Ad*BC) increases faster than S(ABCd"') as p increases. It means that the dis-

sipation ofthe original cause enhances mixedness stronger than ofthe effect. Therefore
opening of the system through tlte cause (information source) is more dramatic than
through the effect (information runoff).
(iii) ir,*1ac-+O at p-+1 quicker than i"a*ptn. Therefore dissipation of the original

cause quicker destroys quantum correlation than ofthe effect.

( i r r )  A t  o .  p .L  N(AB,Cf i * ' )<N(BC,Ad i " ' ) ,  bu t  a t  ! .  p . t

N(AB,C**')> wçBC,i*"). Therefore dissipation of the original cause a"rt of, entan-

glement to a greater extent than of the effect.

3.1 WRr-State

In Refs. [28,29] the different three-particle states related by the symmetry fiansfor-
mations, the particular cases of whichareGHZ and W-states, have been investigated. In
particular the duplet has been obtained:

lwn l =f tloot > + loro > -2ltoo >).
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In Ref. U2] it has been found that, similar to CK'W state, the subsystems AB and
AC are causal, a party A is a common cause for B and C ,but quantitatively the cau-
sality is expressed stronger:cr(A,B)=cr(A,C)=3.43 (the link B-Cis also causeless:

lc r (B ,C) l=æ) .
Again at the beginning let the particle C is dissipated. Then the state is:

p#,f =|l o r oXo r o | - ] {l o t o) 0 oo | + | r oo) (o r o | - z I r oo) (r o0 l). ? loot)(ootl+
( t  t )

] p I ooo) (oo0 | . l+ (l oo r) (o r o | - z I oo r) ( oo | + | o r o) (oo r | - z I r oo) (oo r l)6 '  |  / \  |  6
The results of calculations are presented in Fig. 4 (except the link A- B , where all

the parameters are constants: cr(A,B)=3.43, S(,48)=0.650, iutr=-0.413, iAo=0,

N ( A . B \ =  { t ' - t  ) .' 1 2

It easy to see, that the state (11) qualitatively is similar to (8). The quantitative dis-
tinctions are stemmed from stronger causality in (t l).

Then consider dissipation ofthe particle I :

pî# =|{loot){ootl+loor)(orol+loro)(oorl+loro)(orol).Jtt-ollroo)(rool+
(r2)

Jr I ooo) (ooo | - ;fi7 (l oo r) (r ool + | o r o) (r ool + | r oo) (oo r | + | I 00X0 I 0 l)
The results of calculations are presented in Fig. 5 except the link B - C , where all

the parameters are constants: cr(B,C) -)tæ, ,S(,BC)=0.918 , i*c =iqu=0.412,

^11- ' t
N(B,C)=-:, that is againparticles B and C are entangled and classically corre-

b

lated due to availability of the cornmon cause. The partition AB-C is equivalent to
A C _ 8 .

In conhast to dissipation of C, dissipation of I leads to a number of qualitative dis-
tinctions in Fig. 5 as compared to Fig. 2. Contrary to all the above cases, the entropy of
dissipated particle ,9(l) does not decrease monotonously, but has a maximum at

I
p =i,while mixedness of the whole system S(ABC) does not increase monotonously,' 4 '

but has a maximum at p - I 
Gig. 5b). Therew irh S(AC) is the same (with a maximum'  4 '

1 .
a t  P = ; ) .

a
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the particle I for the different partition of the state (12).

The causality set in Fig. 5a notably differs from that in Fig. 2a. cr(A,C) changes its

sign at p =1, that is original pairwise causality in WRr-state is more robust than in
4 '

CKW one. mincr(A,C)=2.12 is deeper and observed now at P =0.377 . In conûast to

dissipated CKrù/ state, cr(A,BC) changes its sign at p=*. O, less p direction of
2

causal connection is A->BC, at higherpit is A<-BC. The minimum of

cr(A,BC)=15.2 corresponding to A-+BC is observed at p=0.288. The curve of

cr(AC,B) in Fig. 5a is similar to that in Fig. 2a, although mincr(AC,B)=1.97 at

// "/  . - ', /  . . 'y ' . ;

/.:
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p=0.627 is not equal to mincr(A,C) but their position also obey the relation:

p (min cr(AC,.B)) = t - p (l cr(A,C) 1= æ ) + p (mn c r(A, C)) .

The same relationship of cr(AC,B\ and cr(A,BC) with the negativity is observed in

Figs. 5c and 5d): at p.+ N(AC,B) < N(BC,A) corresponds to
4

lcr(AC,B)l<lcr(A,BC\l; at prl N(AC,B)> N(BC,A) corresponds to

lcr(AC,B)l>lcr(A,BC)1. Note, that the inversion points: O =1^this case, ̂d p =+

in the case of CKW state dissipation, exactly coincide with break points

cr(A,C) -+ iæ.

In Fig. 5c it is seen that on the interval l. O .1 the partitio n A- BC is classically

correlated (the both i are positive, unlike Fig.2c), but entangled. The same is observed
inFig 5d at p>0.625 forthepartition AC-Ù. The subsystem AC (Fig.6) is classi-

cally correlated, but entangled, but on the wider interval 0.375 < p <l .

Figure 6. Dependence of i and .lû on degree of dissipation p of the particle A for re-

duced p(,4C) of the state (12).

The conclusions (i) - (iv) conceming dissipated CKW state remains true for WRr
one (with less p = 0.390 in the quantitative justification of (iv)) and obviously are gen-

eral.

-  - ' : - l -  -
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4 Conclusion

The classical causal analysis, which abeady has rather rich history of applications,
has given two equivalent measures of causality. One of them, the course of time c,

proved to be adequate for its quantum extension. The direction ofcausal connection is
defined as the direction of irreversible information flow which is determined by the sign
of cr; the quantitative measure of this connection is value of cr: the absence of causali-

ty corresponds to I crl-+ æ, accordingly, the degree of causal connection is inversely

related to I c, l. This formal definition of causality is valid at any time direction. In tum

the causality in reverse time implies the direct anticipation.
The possibilities of causal analysis have been demonstrated by a couple of examples

of the three-qubit states. The causality parameters for both the examples have been
computed and compared with the degree of mixedness and entanglement. In the sim-
plest cases the results of formal causal analysis correspond to the intuitively expected
ones, but even at small complication of a quantum system the intuition fails. Thus its
employment leads to the nonfivial conclusions about quantum information propagation.

In conûast to the classical case, a finite causality can exist only in the open systems,
because a necessary condition of quantum causality is a finite mixedness. Correspond-
ingly consideration of various causal linls in the different states has shown that often
(although not always) the greater mixedness the less cr. The mixedness of the asym-

metric subsystems inside even closed quantum system leads to their original causal
connection. In the originally causal systems the dissipation leads to nontrivial redistri-
bution of the causal connections. Opening of the system through the cause (information
source) leads to more mixedness of the state than through the effect (information run-
ofT). Dissipation of the original cause destroys quantum correlations and entanglement
to a greater extent than ofthe effect.

In addition we have found that some states can be entangled but classically correlat-
ed. This fact is important for theoretical insight into the results of experiments on mac-
roscopic entanglement of the dissipative systems [13-27].
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