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Abstract
Based on projective differential geometry, a quantum holographic approach to the
post-Keppleriam orbiton/spinon dynamics of quantum blackholography and clinical
magnetic resonance tomography is mathematically described. Crucial applications
of the conformal steady-state free-precession modality and automorphic scattering
theory a,re the compelling evidence for a supermassive central black hole in the Milky
Way galaxy.
Keywords : Blackholography, mathematical radiology, quantum field theory, har-
monic analysis of the real Heisenberg Lie group, quaxrtum entangled symplectic
spinors, Hopf fi.bration and tangential Hopf link, Kerr's exact solution of the Ein-
stein vacuum fleld equations

Et habet i,psa etiam proliritas phrasium suam obscuritatem, non rninoren'L quan't'

concis a breui,tas ( Johannes Keppler, 1 571-1630).

1 lntroductoryOverview

The concept of balanced steady-state free-precession, well known from the synchro-
nization procedure of cardiac magnetic resonance tomography, can be traced back
to the epoch-making treatise Astronomia y'fooo published by Johannes Keppler in
1609. In view of the fact that the universe is basically a quantum physical con-
struction, the orbiton/spinon dynamics of the Keppler space observatory, launched
by NASA on March sth, 2009 on a earth-trailing heliocentric trajectory to discover
earth-sized and smaller ertrasolar planets or exoplanets of the Milky Way galaxy in
or near the habitable zone, tries to determine how many of the billions of stars in
the Galaxis have such stars.

A terrestric analog of the Keppler space telescope with the earth as host star is
the orbiton/spinon controlled Nightpodtechnology of the International Space Station
ISS. The Nightpod optical instrument is positioned in the observation cupola of
the spacecraft on its geocentric trajectory. It represents an interesting application
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Fig. 1: Title page of Johannes Keppler's treatise Astronomia Noaa of 1609 indicating
the role of the planet Ma,rs for the Kepplerian astrophysical studies. For the first time
they are concerned with a mathematical treatment of the orbiton/spinon dynamics of
balanced steady-state free-precession. Based on Tycho Brahe's long-term observations
with unaided eyes, the fi.rst a^nd second Kepplerian law of planetary motion have been
established and conformallv visualized in the record of a decade's intense labor.

of the orbiton/spinon dynamics of balanced steady-state free-precession, which is
implemented by the seesâw pair configuration displayed infra.
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The seesaw pair detachment diagram establishes the planetary laws of the Kep-
plerian projective libration theory of harmonic oscillations (libra: torsion balance,
already known to Copernicus) by acting in the three-dimensional real projective
space JP3(IR) of spin-tags

O(Cn e eo, R)

O(2,R.) x O(2,R.)

Sp(2,IR) x Sp(2,R)

Mp(2,JR),

In the seesaw pair diagtam, the vertical arrows visualize embeddings and slanted
arrows indicate connections of detached members of mutually centralizing dual re-
ductive pairs in the spirit of orbiton/spinon dynamics, performed by the Fourier
filter-bank of the unitarily exponentiated reducible metaplectic representation of
Mp(2,R). The Lie group Mp(2,lR) forms a two-sheeted covering group of the sym-
plectic group Sp(2,R) = SL(2,R).

The action of the seesaw pair detachment diagram is fully consistent with the ax-
ially symmetric Kerr-Newman contact geometry for the exterior field of a stationary
black hole. It forms the general solution of the Einstein field equation for a rotating,
charged mass in vacuo. In the limit this geometry corresponds to an astrophysical
black hole ([9], [16], [17]). To an outside observer it takes infinite time for light to
reach the event horizon, and hence no radiation is detected from a black hole. Due
to the conformality of the Môbius inversion in a sphere, it extends projectively the
stationary, spherically symmetric geometry of Schwarzschild space-time metric. In
this context, spherical symmetry is meant that the Schwa,rzschild space-time is foli-
ated by a family of geodesically parallel two-dimensional spheres, with no direction
within the sphere bundle preferred.

The Schwarzschild space*time metric reads in terms of the radial tensor coordi-
nates

with scale factor

of geometric mâss ms and radius r > 0. The space-time metric discovered by Roy
Patrick Kerr in 1963, some 48 years after the Einstein vacuum field equations were
first developed, forms lhe only solution of Einstein's equation among the stationary
ones which is non-singular outside the horizon ([46]).

The mathematical background of his innovative space-time concept describes
Kerr in the following manner:

In 1958 I became interested i,n the new methods that were enteri,ng general rela-
ti,ui,ty from di,fferential geometry at that t'ime, and the use of projecti'ue geometry.

g, ! ,4 ,11' r r r

,  2rno
^ :  -

r
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Neither the frber bundle approach to projective differential geometry nor the
ray-traced visualization technique of general relativity theory were available at that
time. To quote Stephen William Hawking, the result of Kerr's efforts reads as
follows:

The Kerr solutions are the only lcnown fami,ly of eract solutions whi,ch could rep-
resent the stati,onary arisymmetric asgmptoti,cally fl,at freld outside a rotat'ing mas-
si,ue object. The Kerr solutions do appear to be the only possible erterior solutions

for black holes.
In the case of the Kerr solution, the flat Minkowski space-time extends the sin-

gular plane u : 0 of the affine coadjoint orbit model Lie(N).lCoAd(^/) of the
real Heisenberg Lie group Âf. In view of the gradient controlled coordinatization
technique of conformal projective differential geometry, the metaplectic spinor co-
ordinates of the bicylindrical bore part of the axially symmetric Kerr space-time
metric arising from a steadily spinning source read

(1. r ,  *  ra . - rT !  T,  ,1  @ l0)\ - t  
1 2  i - y 2 )  U 2  + f 2 ,  f )  

\ -  7 -  " .

with scale factor

,  2 m g r 3
^:  ;4T;E 

'

The Kerr space-time metric can be expressed in terms of the advanced Eddington-
Finkelstein as well as the classical Boyer-Lindquist charts ([17]). Due to Joseph
Liouville's remarkable classification of conformal mappings in terms of Môbius trans-
formations, that is mappings that are generated by similarities and Môbius inver-
sions in spheres, the quantum field theoretic extension of the Kepplerian planetary
astrophysics reads as follows:

Theorem 7. The quantum holographic approach to the blackholography of relatiuistic
cosmology prou'ides eractly two asymptotically fl,at stationary solutions of the Ein-
stein uacuum field, equati,ons, namely
(i) the spherically symmetric Schwarzschild solution,
(ii) the anially sgmmetric Kerr solut'ion.

The preceding theorem is based on the Stone-von Neumann theorem of quantum
field theory, and Liouville's infinitesimal characterization of conformal mappings of
the affine coadjoint orbit model Lie(Ât)./CoAd(I/). The proof of the latter which
depends upon the classical idea of a triply orthogonal family of smooth surfaces
and the theorem of Pierre Charles Flançois Dupin on umbilical intersection points
of lines of curvature ([ ]) does only indirectly refer to the Penrose twistor calculus
([29], [46]) with coordinates

i (

f \
( w : r * f y e C e )" ; '  

" ï r )
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of the complex Minkowski time-space. It became clear that Kerr's discovery of an
exact stationary vacuum solution ofthe Einstein field equation that corresponds to
the axially symmetric field around a steadily spinning source became the basis of
black hole research. Specifically it became clear that a spinning black hole represents
the unique final equilibrium configuration of any electrically neutral collapsing body.

Another highly interesting application of the orbiton/spinon dynamics of bal-
anced steady-state free-precession which is implemented by the Fourier filter-bank
of the seesaw pair detachment configuration is the general relativistic test for the
existence of gravitational wave radiation by means of the rapid orbital period decay
in the recently discovered detached binary white dwarf system J065133+284423.
Similarly to the relativistic binary pulsar PSR 81913+16, it is based on the loss
of angular momentum of the detached binary dwarf system of extreme low masses
0.26 Mo and 0.50 M6 which has been observed at optical wavelengths at a distance
of about 3 x 103 light years from the earth with a 12.75 minute orbital period and
a 1315 kms-r radial velocity amplitude ([5], [40]).

Radio pulsars are rapidly rotating highly magnetised neutron stars. After six
years of high precision observations, the astrophysicist Joseph Hooton Taylor Jr.
who discovered with Russell Alan Hulse at Arecibo Observatory in \974 the 7
hours 45 minutes relativistic binary pulsar PSR 81913*16, formulates the post-
Kepplerian orbiton/spinon dynamics as follows:

Spin precession prouides an unprecedented opportuni,ty to map the radio pulsar
beam in the lati,tude direction and a chance to observe for the first ti,me a "n1,agnet'ic"
aspect of graui,tg.

In this way, Taylor supports Keppler's magnetic approach to spherical gravity
which is based on William Gilbert's treatise Tractatus, siae physi,ologia noaa de mag-
nete, magnetici,sque corporibus et de magno magnete tellure. Ser libris compreh,ensus
of 1600 ([38]).

Among the best known results of the post-Kepplerian orbiton/spinon dynamics
are measurements of the relativistic advance of perenigricon at a rate some 35.000
times that of Mercury ([7], [41], [a5]); see Figure 6. The concept of perenigricon
corresponds to the perihel in the heliocentric planetary system. It is this cosmo-
logical effect which suggests a contact geometrical visualization of the stationa.ry
trajectories and their linearized focal phase shifts at perenigricon.

The importance of the seesaw pair configuration derives from the fact that it
implies in terms of the Euclidean distributional Laplace operator A : S'(lR. O IR) -'

S'(lR O R) the partial differential equation of second order

0 2 u  ' ^  1
*  

:  U 'Au+ nu  
(y :  Sru)

for the automorphic rvâve function (t,w) ^n u(t,w) on the product space iR x Ce. As
a consequence of automorphic scattering theory ([22], [15]), the Schrôdinger wave
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equation of quantum mechanics

in standard notation arises.
The metaplectic group Mp(2,1R), which admits as a double covering of the sym-

plectic group Sp(2,IR) the exact sequence

{1}  *  Zz  +  Mp(2 ,R)  -  Sp(2 ,R)  - - - ' {1 } ,

was first introduced in order to reformulate Carl Ludwig Siegel's analytic theory of
quadratic forms in terms of group theory W4]). As a projective representation of
the symplectic group Sp(2,R) âr SL(2,1R.), the metaplectic representation forms a
genuine unitary linear group representation of Mp(2, R) which forms the basis of the
projective differential geometry of symplectic spinors ([20], [21]).

In the context of the seesaw pair configuration, the involutive automorphism of
the Argand plane Cp = R.(i) È C, defined by the complex conjugation mapping,
provides the orientation reversing spin echo transition Cp , en. It forms an
efficient tool of magnetic resonânce spectroscopy a,nd clinical magnetic resonance
tomography ([31]). Due to the isomorphy of the Galois cohomology group

f l2(sp(c*, R),zr) Ètzz,

the symplectic group Sp(Co,IR) = Sp(2,lR) admits, up to isomorphy, a unique non-
trivial extension by Z2 : Zl2V', the metaplectic group Mp(Co, R) = Mp(2' iR) which
can be explicitly constructed in the exact sequence

{1} - Zz - Mp(Cn,R) - Sp(Cn,R) ------ {1}

in terms of the Maslov index ([14]).
The phase shift due to the Maslov index provides the corrected Feynman path

integral representation on phase space. Since Richard Feynman's original formula
is valid only for short times, the connection of the Maslov index to the metaplectic
group Mp(2,IR) justifies the mathematician's ca,re, of which Feynman emphatically
complains.

The physicist cannot und,erstand, the rnathematician's care in soluing an idealized
physical problem. The physicist knows the real problern'is much more complicated.
It has already been si,mpli.fied by i,ntui,tion which di,scards the unimportant and, often
approrimates the remainder.

The orbiton/spinon dynamical subtleties hindering a thorough understanding of
the modality of magnetic resonance tomography were the reason for the difficulties
with its clinical reception. It was Erwin Louis Hahn who decisively changed the
practical applicability of magnetic resonance tomography by the seminal discovery of
the concept of spi,n echo in 1949. In pulsed nuclear magnetic resonance spectroscopy,

u *w:lor
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relaxation times are measured directly and accurately from the spin echo amplitudes.
Concerning magnetic resonance tomography, Hahn wrote:

I apologize to magnetic Tesonance i.maging (MRI) pioneers because I neuer be-
li,euedMRJ would work, lz,ke Rutherford, who said that anyone who belieued' nuclear
radioacti,aity would be useful "is talking moonsh'ine". Howeuer, I was only one of
many unbel'ieuers. Another unf,del in parti'cular was Atatole Abragam, a distin-
guished French physi,cs researcher in magnet'ic resona,nce. The French Society of
Radi,ology wanted to award Abragam a medal in spite of the fact that he told thern
he hadn't contributed lo MRI and didn't belieae it would worlc.

Abragam replied: There was nuclear magnetic resonance before Erwin Louis
Hahn's discouery of the spin echo, there is nuclear magnet'ic resonance after. It is
not the same.

The truth is, contrary to some of the preconceived opinions about its evolution,
that clinical magnetic resonance tomography is a quickly expanding topic at an
extremely rapid pace of innovation.

Understanding the modality of magnetic resonance tomography helps to under-
stand the structure of the Kerr space-time in the sense of Felix Klein's Erlanger
Programm. The investigation of its structure is synonymous to black hole research.

2 The Real Heisenberg Lie Group

The quantum holographic approach to conformal steady-state free-precession and
magnetic resonance tomography depends on the ordering concept of real Heisenberg
Lie group I/o : IR x lR x T'with the twisted multiplication law

("t,yr, zr)(rz,y2, z2): (r1 f r.2,Yr + A2, zrz2e(rfl2))

where, as usual, e(g) : exp(2ril) : s2ni'0 for 0 e lR describes the central phase circle
U(1, C) ry 1f within the symplectic plane IR @ lR ry Cp of infinitesimal loop rotation
S*À la:o e(0) :2v.

The symplectic plane R@lR ! Cn and the onedimensional compact torus group

T e Rlz = u(1, c) = so(2,IR)

are considered as embedded into,Vs. The center of ,Â/6 is 1f <l/0. There is an obvious
complexification of "Â/s, which is an extension of CR = IR.(r) = C by CX. According
to the Stone-von Neumann theorem, the central character

I R > d ^ ' e ( v | ) e T  ( z e l R " )

determines by their central Larmor labels v g IR x the equivalence classes of ir-
reducible unitary linear representations of ^/0. The strong Stone-von Neumann
theorem asserts on the L2 level of the two-sided ideal of Hilbert-Schmidt operators
that square integrability modulo the center is valid if and only if unicity by the
central character is guaranteed.
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To provide geometric insight into the harmonic analysis of ^f0, notice that the
universal covering group of Â[ is a three-dimensional real Lie group,Â/ which is also
called Heisenberg group. The center of ,Â/ is R<tr/, where the real line lR. is conceived
as the universal covering group of the one-dimensional compact torus group 11. The
real Lie algebras Lieffi) and Lie(,Â/) coincide, and the real dual vector space

Lie(,Â/s). r'Lie(yV).

gives rise to the a,ffine coadjoint orbit model Lie(,Â/)-/CoAd(/U) of the unitary dual
of ,À/ which consists of the equivalence classes of irreducible unitary linear represen-
tations of ,Â/ ([20], [31]). Geometrically, it represents a stack of non-homogeneous
affine contact planes a,nd a unique homogeneous singular control pla,ne within the
ambient dual vector space Lie(Âf*; see Figures 2 and 3. In magnetic resonance
tomography, the slice selection is performed by switching trains of axial linear gra-
dients.

Fig. 2: The boundary plane of the non-Euclidean hyperbolic half-space IF3 forms the

unique singular control plane z : 0 of the a,ffine coadjoint orbit model Lie(,A/)-/CoAd(,Âl).
It consists of Dirac point measures at ur6 € Cn which control the canonical holomorphic

a^nd a.ntiholomorphic line bundles -Lç and Zc of the bipola"r stereographic projection 4.
The Dirac measures a.re in bijective correspondence to the unitary characters of the real

Heisenberg Lie group .Â/. In the projective differential geometry of symplectic spinors,
the frequency-splitting plane u: 0 gives rise to the singularity of the stationary, axially
symmetric, and asymtotically flat Kerr space-time metric of post-Kepplerian cosmology
and its multipolar moment configuration. An extension of the singular plane z : 0 is the

flat Minkowski space-time. @ W. Schempp

3 A Relativistic Perspective: The Spin Factor

The real Lie group generated by the conformal Môbius inversions of the Riemannian
sphere 52 = 1P1(C) acting on the three-dimensional real projective space lF3(lR) is
given by the projective orthogonal group

PO(3,1 ,R)  =  O(3 ,1 , lR) / { id ,  - id } .

o
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Fig. 3: Conformal projective differential geometry of orthogonality involutions: The

modality of bipolar stereographic projection 4 from the round sphere of diameter 1 in lR3

in the contact geometry of planar coadjoint orbits of the threedimensional real Heisenberg

Lie group ,Â/. The Riemann surface 52 = Pl(C) is regarded as the union of two affine copies

of the plane Cn with parallel real axes IR and identifi.cation performed by the conformal

inversion rc : Cfr ) hri.w * 2,,-]-- € Cfr. The manifold of fibers of the Hopf principal

bundle 51 .--+ 53 -----+ Sz fit together conformally to represent the two-dimensional round

sphere 52 = O(3,R)/O(2,R) in the ambient conformally projectivized dual vector space

PLie("A/).. @ W. Schempp

The invariance group PSO(3,1,R) of inversive plane geometry is isomorphic to the

Lorentz group PSL(2, C) associated with the non-Euclidean hyperbolic half-space

F3 .-+ F3(R). Let f denote the cross-sectional functor, and S, A the symmetrization

and skew-symmetrization functors, respectively, of the category of fiber bundles over

differentiable manifolds. Then I recognizes the fibered structure of the underlying

smooth manifold. The projective orthogonal group PO(3, 1, JR) associates the cross-
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sectional bilinear symmetric two-form fiber

-d,r2 + dr2 + dy2 + dz2 ef(S2T.lR.4)

of Minkowski signature (3,1) on the dual tangent bundle of the real vector space JRa
with positive definite symmetric absolute two-tensor. The group PO(3, 1, R) admits
the neutral component

POo(3 ,  1 ,R)  =  Oo(3 ,  1 , lR) .

Fig. 4: Stationary contact trajectories performing balanced steady-state free precession:

Generation of the inversive geometry of the affine coadjoint orbit model Lie(,V)-/CoAd(,A/)
of the real Heisenberg Lie group "A/ in the ambient conformally projectivized dual vector
space PLie(,4/)*. The center of the real Heisenberg Lie algebra tie(,A/) identifies with the
axis of the the axisymmetric Fock-Kâhler manifold 52 x 52 '- Cfr x Crt. Its direction
in PLie(,4/)* is given by the line of sight. In the detachment case l{ : 1, the gradient
switched contact planes of Kâhler type (1,0) and (0,1), respectively, are holomorphic and
antiholomorphic sections of the tangent bundle (T(S2 x S2), J 8n J) which implement
contact geometrically the foci. In quantum cosmology the Fock-Kâhler manifold 52 x 52 +

Afr x Art describes the post-Kepplerian effect of advance of perenigricon. @ W. Schempp

The Lie group of orientation preserving conformal Môbius inversions of JF3(1R) is

non-compact and isomorphic to the group of automorphisms of the round sphere

Sz = O(3,R)/O(2,R). It was this kind of observations in which Arthur Cayley

obtained various metrics that led him to state with succinct enthusiasm metric
geometry to be subordinate to projective geometry, and projective geometry to
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be all of geometry. After the development of general relativity theory, projective
geometry had to be extended to projective differential geometry in order to describe
in quantum cosmology the post-Kepplerian advance of perenigricon, the effect of
gravitational radiation damping, causing a measurable rate of orbital decay, and the
detection of changes in the pulse shape, resulting from geodetic spin precession of
binary pulsarsl see Figure 6. The axial and transversal relaxation effects of nuclea,r
spin ensembles in magnetic resonance tomography indicate the important link of
quantum cosmology and mathematical radiology.

The spin factor associated with the real Heisenberg Lie group ,A/ = Cn @ IR is
given by

.7(CnoR) =CnoRC,p.

It forms a Jordan algebra under the multiplication law induced by the Minkowski
metric and therefore is one of the most rema,rkable in the classification of simple
formally real Jordan algebras ([t]). The projective orthogonal group PO(3, 1, JR) acts
on .7(Cn €) IR) as the group of isometries. Its onedimensional subspaces spanned
by non-zero isotropic vectors are the light rays inside the light cone of .7(Cn O R).
The manifold of all light rays is called the heavenly sphere Pr(C) È Sz of the spin
factor.T(AnOR) associated with,Â/. If the symplectic spinors are restricted to the
multiplicative Lie group SU(2,C) = Spin(3,IR) = 53 of unit quaternions, the Hopf
projector

4 : 53 ------+ $,

pops up. The Taub manifold IR. x $ should then be seen in connection with cos-
mology ([17])). To quote Jean-Marie Souriau:

La uariété de Képler est globalement symplectomorphe au fibré cotangent à la
sphèreS3, priué de sa section nulle.

Thus, due to the Newtonian approach, the Kepplerian manifold can be symplec-
tomorphically represented by the fiber bundle (T.Sr)' ([36], [37]).

The Môbius inversion transforms conformally the affine coadjoint orbit model
Lie(,Â/)./CoAd(l/) onto the axisymmetric Fock-Kâhler manifold 52 x 52 - Cft x
Cft. It consists of the bicylindrical Dupin cyclide of the projective symplectic or-
biton/spinon dynamics laboratory under its principal fibration by circles; see Figures
2 and 3.

4 Momentum Mappings

For the steady-state free-precession the balancing condition reads 2zru: 1. The
central frequency inversion

IR." > 2zr L, ̂ .) -2tr u ell(_'
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is logarithmically associated with the contragredient coadjoint orbit identification
mapping

rc:Cfr  )2r i r^-çf iecâ

of the Hopf principal fibration quantum gate 51 '-' Ss ' Sz. The conformal
inversion ,i may be regarded as arising from two bipolar stereographic projections
from the round sphere of radius I in m,3. Let Sz .* IR3 denote the round sphere
52 .--+ JR3 endowed with the reverse orientation. The Hermitian metric

H : ( ' l ')z+ i 'A

on the complex tangent bundle T(S2 x Sr), admitting the difierential two-form of
rotations of reverse orientations as its imaginary part

o :  drr  Â dyt + (-1) .dy, Adr2: dr1 A dy1 * dr2 Ady2,

gives rise to an extension V of the Levi-Civita connection of the Riema,nnian metric
(.1.)2 which pops up as the real part ftfI of the Hermitian metric. Then V is
Hermitian with respect to complex tangent vectors (Wt,Wr) of the four-dimensional
compact Fock-Kâhler ma.nifold Sz x Sz -' Cft x Cfr, and is the unique Hermitian
connection of Kâhler type (1,0) ([a3]).

In the context of an application of the seesaw pair detachment diagram to the
tangential spinor structure of 52 x 52 --l Cft x Cft, the sum of squares factorization

(*ry, + rztt)2 -l (xgt - rzyz)2 : (rtvz - nzAt)2 * (rrvr + nz?z)2

: (r2, + ,Z)@? + a3),

generates the pair (Vr, Vz) of qua.ntum entangled momentum mappings

V 1  : l R a )

/  , rar+ u2y1 \* | :,';,': ::),1 ,"^
\ i tyl +aï I

V 2 : l R a ) € Rn,

which are acting equivariantly under the coadjoint action CoAd of the real Heisen-
berg Lie group,A/ on the four-dimensional compact Fock-Kâhler product manifold

(s2 x 52,o).

-6;i'Êù
( ù

( ù
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Due to the isomorphy of groups

O(2,R)  o  Sp(2 ,R)  =  U(1 ,C) ,

the ranges of the quantum entangled momentum mappings Vr and Vz are circular
cones on the two-dimensional compact spheres Sz .- lR3 and Sz .-- IR3, respectively.
The parallel symplectic differential two-form O is closed and yields, according to
the third Kepplerian law, the conditions for the entangled energy level geometric
quantization of the compact Fock-Kâhler manifold 52 x 52 '* Cft x Cfr of stationary
contact trajectories.

5 Linear Gradient Bundles and Isotropic Lines

To understand topologically the post-Kepplerian effect of perenigricon advance,
recall that in terms of projective contact geometry any point of a central conic
in which conjugate lines are orthogonal is called a focus of the tangential spinor
structure. Because a focus is never located on the conic itself, it admits two different
tangent lines which are invariant under the action of the orthogonality i,nuoluti,on.
Each tangent line is conjugate to itself, so that the tangents are 'isotropzc lines and
therefore pass through the absolute circular points

e r  :  ( 1 ,  - i , 0 ) ,  e 2 :  ( I , i , , O )

on the zero-dimensional absolute quadric

1 2  + y 2 : u s t t r : l w l ' :  z : 0

of the complex projective plane F2(C). Motivated by the pair (V1, Vz) of quantum
entangled momentum mappings, consider Pr(C) as the projective closure of the Eu-
clidean plane lR @ IR. ̂r Cn. Due to Edmond Nicolas Laguerre's cross ratio based
phase formula it follows:

Theorem 2. In the Euclidean plane iR OR, a projecti.uity of a linear gradi,ent bund'le
that leaues fiied its tuo 'isotrop'ic I'ines i.s i,nduced by a planar rotat'ion. The angle of
thi,s rotati.on is a right angle i,f and only i,f the projectiui,ty forms an inuolution, the
o r-th o g on ality inu oluti o n.

The absolute quadric belongs projectively to the the axisymmetric Dupin cyclide
which is associated with the canonical parallel almost complex structures

./ e r(EndT(ae)), i : -J e r(Endr(Cfr)).

They are integrable and admit the matrix form of orthogonality involutions

,  ( o  - 1  \ - o r l ô r T ! \  i - /  
n  r \

r : ( î  o^Je sL(2,R),  , : ( l t  ; ) .sL(2,R)
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Thus the orthogonalty involution admit the spectrum {-i,i}. In this context, J is
the infinitesimal generator of the maximal compact subgroup SO(2,R) of SL(2,R)
and the axisymmetric Dupin cyclide is conceived as a principal U(1, C) fiber bundle.
An easy computation shows that the curvature tensor ,R e f(End A2 T(S2 x Sr))
is skew-Hermitian with respect to the Hermitian metric H : Q(i',J') + iQ of the
complex connection V in the complex tangent bundle (T(S2 x Sr;, j an J). Notice
that in a continuous quasi-simple representation of SL(2,R), the matrices J and i
act diagonally with eigenvalues in the purely imaginary discrete spectrum iZ. For
the balanced steady-state free-precision and the pair (V1, V2) of quantum entangled
momentum mappings, the curvature tensor R reduces to the identity mapping

R:  (W1,Wz)  *  Wr  AWz

Multiplication by the imaginary unit i in Cft corresponds to left multiplication by
J, and similarly multiplication by -i corresponds to left multiplication by j, to give
rise to the almost complex structure i gn J of the compact Fock-Kâhler manifold
Sz x Sz .-- Cfr x Aft ([+f]). Therefore the focal points are the intersection of the
tangent lines of the conic passing through the absolute circular points. Due to the
involution of complex conjugation u) * tÙ, it is this property which characterizes
projectively a focal point. Notice, however, that the compact complex manifold
53 x 53 is not a Kâhlerian manifold.

6 Canonical Complex Line Bundles and Focal Points

Let Ls denote the canonical holomorphic line bundle of the Riemannian sphere
52 = Pr(C) under its standard atlas consisting of two coordinate charts, and Zç its
antiholomorphic counterpart. As real vector bundles, .Lç and i6 have dimension 2.
They can be constructed by taking trivial bundles over the northern and southern
hemispheres of 52 .--+ lR3 and 52 .-+ IR3, respectively, with two trivializations of the
fiber over the points on the equator. Gluing the trivial bundles together along the
equator results in the mapping

Sr  +  O(2 ,R)

which is sending any element of Ce of absolute value 1 to the operation of right-
handed multiplication with the phase factor. A similar argument holds for the
left-handed mutiplication with the inverse phase factor

Sr  -  O(2 ,1R) .

The homotopy classes of these mappings generate the homotopy group

r{O(2,R)) = Z.

Jointly together, the twisted action

ll x 1l -* O(2,JR) x O(2,JR)
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completes the bottom line of the seesaw pair detachment diagram supra, and inserts
principal Z,2bundle of the Villarceau bounded Môbius strips into the Hopf principal
bundle Sr - S: -----+ Szi see Figure 5.

north prle tih*t

, r.15" tqx'un

cqual{rnal
Irxllr

*{-I" turur

*xrth p$k librc

Fig. 5: Post-Kepplerian orbiton/spinon dynamics: The trc I tr6 canonical line bundle
methodology of the Fock-Kâhler manifold 52 x 52 '* Aft x Cft gives rise to the Hopf
fibration Sr * Ss , Sz and the circular traces of the Villarceau bounded Môbius Zz

bundle. The seesaw pair configuration acts on the Villarceau phase circles of the round
sphere Sr = Spin(3,]R) through phase shifting. @ W. Schempp

A closely related perspective on the canonical line bundles .L6 and Zç comes

from looking at the associated unit circle bundles. Any fi.ber of -Lç carries â scalar

product, since it forms a line through the origin in Crt. The unit circle in each fiber

generates a bundle of phase circles 51 over the Riemann surface JF1(C) called the

Hopf bundle:

4 : 53 -----+ Pr(C)

The total manifold Ss = Spin(3,]R) consists of all the unit vectors in Crt, the base

manifold F1(C) can be described in terms of lines through the origin. The pre-image

{ri-t(rr), q-L(€2)}
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of theabsolutecircularpoints {er,ezl1 undertheHopf projector4isapair  of  l inked
phase circles in the sphere $ = Spin(3,]R), which form the famous Hopf link of
Clifford parallel Villa^rceau phase circles of the first and second kind in R4 ([39]).
An analogous argument holds for the line bundle 26. The lin-e bundles .Lç and
Z6 implement in the axisymmetric Fock-Kâhler manifold Sz x Sz '-* Cft x Cft the
post-Kepplerian perenigricon effect.

Cantar of Mas 
{

,/
//'' Ct :btL 

-J

.t/

Fig. 6: Post-Kepplerian orbiton/spinon dynamics: The tangential Hopf link of three
stationa^ry trajectories of a relativistic bina^ry pulsar surrounding the center of mass. The
positions indicate the local phase advance at perenigricon. The local phase shift at pereni-
gricon derives from the twisted action 1l x 1f ------+ O(2,R) x O(2, lR) on the seesaw pair
detachment diagram. @ W. Schempp

Let ?10(52,,Ls) denote the Riemann-Roch vector space over the field C of holo-
morphic sections of trç over the compact symplectic manifold 52 -' Crt, and fto(Sr, Z6)
the corresponding Riemann-Roch vector space over C of antiholomorphic sections
of Zç over the compact symplectic manifold 52 .- Crt under the reverse orientation.
In terms of sheaf theory, ?lo(Sr,.Lç) and flo(Sr, Z6) are known as the cohomology
gïoups of 52 and 52 with coefficients in the sheaf of germs of holomorphic a.nd anti-
holomorphic sections of the holomorphic and antiholomorphic line bundles .Ls and
Zç, respectively ([43], [19]). A holomorphic plane is referred to as self-dual, and a
antiholomorphic plane as anti-self-dual.
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4ô0

Fig. 7: Laboratory of post-Kepplerian orbiton/spinon dynamics: A gas cloud on its way
towards the supermassive black hole at the center Sagittarius A* of the Milky Way galaxy.

The cloud becomes elongated because of the tidal force acting on it, especially as it nears
the perenigricon where it is violently shea,red and the trajectories of different branches of
the cloud diverge. The diagram displays the angular offsets from the central black hole

in right ascension and declination in units of milliarcseconds, and the post-Kepplerian

equilibrium state. @ W. Schempp

In view of the horizontal try'-level quantization condition ([35])

] at*o?lo(S, x 52,.Lç 6l Za) : (.nr + t)2 (N e N),

tfre criticat point condition of the energy functional through the Euler-Lagrange
equations of contact geometry yields in terms of the canonically compleffied differ-
ential operators

*?&

**û0,{*
€ûo

^a
d _ _ -

du

= Ô
i ) :  -=- :

iJù

r ,a  .ô .  r ,a  . -4.
, \  ô,  
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Ar)  

:  
t \  A,  

-  t ' . t  
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where 'u :  ï *  ig  €  Cp,  and

r ,a .a.  r ,a . ,ô.
t \U+rAr) : t \a"+z, t  * )

the Cauchy-Riemann equations for the germs of holomorphic and respectively anti-
holomorphic functions on the planar affine coadjoint orbit model Lie(,A/)./CoAd(lÔ.
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In the case of continuously differentiable functions, Stokes' formula adds to the map
ping rc the linear gradient kernel of Kâhler type (1,0)

1.4
= . du n do (tu6 € Ce).
z7r?, u - uo

The switching of gradient recalled echoes determines the performance of clinical
magnetic resonance scanners.

Due to the diagonal action of -ii under the metaplectic representation of
Mp(2,R) with eigenvalues in the discrete set Z 2 z'1(O(2,1R.)), it admits at at-
tachment the Kepplerian energy level N : 0 of the lowest positive weight I of even
functions in the complex Schwartz vector space S(lR). This is in correspondence to
the unique focal point which is the center of the circular Kepplerian contact tra-
jectory counted twice. The Kepplerian energy level N : 1 admits at detachment
the lowest positive weight I of odd functions in the Schwartz space S(lR). For the
diagonal Mp(2, IR) action o{iJ , the corresponditg highest weights are - } and - f , re-
spectively. The characterization of focal points in terms of orthogonality involutions
provide contact geometrically 4 different entangled foci of the corresponding non-
circular central Kepplerian contact trajectory of quantum cohomology; see Figure 4.

Theorem 3. The quantum entangled foci are pairui,se conjugate poi,nts'in symmetric
posi,tion with respect to the center. Two of the focal points are real and located on
the first ares, and the other two are non*real and located on the second anes. Their
momenta can be read off from the quantum entangled momentum mappi,ngs (Vt, Vz).

Let a ) 0 denote the major and b ) 0 the minor semi-axis of the central
Kepplerian contact trajectory. In terms of the linear excenticity tffi, the
corresponding foci admit the homogeneous coordinates

(t ,0,+tE -.rp),  1t ,+tt /o,  - t ,o) (a > ô > 0)

in the complex projective plane IP2(C).

Corollary 1. The two real orimaginary foci deterrnine the other two in terms of the
linear ercentricity.

The holomorphic focal realization follows by the convolutional contour integral
over the germ of the Nth-order derivative of the Cauchy reproducing kernel

/N)  N!  1
, { (N) -  

nl '  1.  _. ;una, (u. '6 € Cp, N e {0'  1}) .

It results from the polarization identification map rc of the Hopf principal fibration
quantum gate 51 .--+ 53 -----+ 52 by a focal shift of order N e {0,1} linearization.
Remarkably, the Cauchy integral formula along a null-homological path pops up in
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1831 within the field of celestial mechanics. Indeed, the lithographic treatise of the
member of the Acad"émi,e de Turin, Augustin Louis Cauchy, Professor of Astronomy
at the Sorbonne, has been entitled "Sur Ia mécani,que céleste et sur un nouueau calcul
appelé calcul des li,m'i.tes". Equivalently, because the metaplectic representation of
Mp(2,1R) projects the almost complex structure J onto the Fourier cotranform Fs
and i onto the Fourier transform fe of cyclic spectrum

-7,i'I

by the design of a Fourier filter-bank of order 4. Tlansition from fn to the sym-
plectic Fourier transform allows to reduce the order to 2. This is the reason for the
pun "blackholography" of adapting the quantum holographic reconstruction proce-
dure to the high resolution imaging of the surrounding cosmological laboratories of
black holes; see Figure 8. Due to the the seesaw pair detachment configuration, the
tangential Hopf link implies for the post-Kepplerian orbiton/spinon dynamics:

Corollary 2. The stat'ionary contact trujectories admi,t a local phase shi'ft at pereni-
gricon.

There is a discrete phase shift analogy to the Gouy effect of phase coherent optics
which is explained by means of the Maslov index.

7 Spectral Theory and the Third Kepplerian Law

The orbiton/spinon dynamics of the balanced steady-state free-precession combined
with the automorphic scattering theory yields the extremally weighted, irreducible
Lie(SL(2,IR.)) eigenmodt:Je 22 x V,2 gradu,ation

/ ^ - ^ - \
\ M - z & M t , M a & M :  )

of the complex vector space of tempered Schwartz distributions

S'(R)oS'(R) =s'( lR@R)

on the real symplectic plane iR O R = Cn. The action of the projective orthogonal
group PO(3, 1, JR) induces the third Kepplerian law outlined in the great Harrnonices
Mundiof.1619: According to the hyperbolic distance of inversive plane geometry, the
third power of the major semi-axis o ) 0 of the Kepplerian ellipse is proportional
to the product of the square of the timing of oriented revolution

{ 1 ,

r :* (z e lR')

t l



and the mâss ?7r,s of the central object. The seesaw pair configuration implies the
spectral decomposition of the complex vector space 5'(R @ R). It follows the ratio
orb,ium, the reciprocal Schwarzschild-Kepplerian proportions of Heisenberg rotations

which permits to derive the mass of the object located at the focus of the Kepplerian
ellipse and hence to incontrovertibly establish the existence of the supermassive black
hole SagittariusA* in the center of the Milky Way galaxy ([11], [13]).

Keppler, the radical Copernican, iù/as so excited by the ecstatic truth of his
fundamental discovery that he immediately added the following lines of enthusiasm
to the introduction of Book Y of Harmonices Mundi of 1619:

Now, since the dawn eight rnonths ago, s'ince the broad daylight three months ago,
and s'ince a few days ago, uhen the full Sun i,lluminated my wonderful speculat'ions,
nothàng holds me back. I gield freelg to the sacred frenzy; I dare frankly to confess
that I haue stolen the golden uessels of the Egyptians to build, a tabemacle for my
God far from the bounds of Egypt. If you pardon me, I shall rejoice; if you reproach
rne, I shall endure. The d,ie'is cast, and I am writing the book - to be read either now
or by posterity, it matters not. I can wait a century for a reader, as God himself
has wai,ted sin thousand years for a witness.

Actually, Keppler had to wait much more than a century for the acceptance of
his astrophysical breakthrough.

8 Quantum Entanglement and Spin Echoes

According to the projective classification of involutive motions as central collineations
in the metaplectic geometry of the affine coadjoint orbit model Lie(,Â/)'/CoAd(lf)
of the real Heisenberg Lie group ,l\/ within the ambient conformally projectivized
dual vector space PLie(I|*, the main difference between the phenomena of gradi-
ent recalled echo and spin echo consists in the fact, that the gradient recalled echo
occurs by complex conjugation inside the same tomographic slice, whereas quan-
tum entangled spin echoes are phase coherently created by unipolar stereographic
projection across the foliation of planar coadjoint orbits from the cogredient to the
associated contragedient orbit of ,M in l,ie1Âf * of inverse central Larmor label.

In terms of the realization of the affine coadjoint orbit model Lie(Al). lCoAd(,A/)
of ,A/ by the Hopf principal fibration quantum gate over the complex projective line
Fl(C) = 52, the visualizaion of quantum entangled spin echoes is geometrically per-
formed by the concept of Clifford parallelism of flat equatorial tori based Villarceau
phase circles of the first and second kind; see Figure 5. The Hopf links consisting
of the linked Villarceau phase circles which are coherently embedded into the round
sphere Ss = O(4,R)/O(3,R) = Spin(3,R) = SU(2,C) visualize the phenomenon of
quantum entangled spin echoes.

f rnoT2 a3 I
I o,t ' *rf' l
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Fig. 8: Projective differential geometry: The Kepplerian orbiton/spinon dynamics of

balanced steady-state free-precession. The ray-tracing simulation based on the data
from observations illustrates the highly excentric planar trajectoriess of the nuclear stellar
cluster steadily precessing around the central supermassive black hole SagittariusA* of

the galaxis. Due to the cosmic dust, the interpolatory data of the focal bundle of inversive
planes are obtained by long term high resolution observation by a laser guide stellar
adaptive optics system in the near-infrared-region. A mirror in the telescope moves
constantly to correct for the effect of turb,l"fr? in tt 

" 
earth's atmosphere. @ W. Schempp
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Fig. 9: Kepplerian orbiton/spinon dynamics: The third Kepplerian law of planetary

motion followed the first and second law in the great Harrnonices Mundi of 1619. It

determined the control fundament for the surrounding cosmological laboratories of black
holes. The incomprehension of later generations have left Keppler's work on the cosmic

harmonies in the obscurity he foresaw in the Proemium to Book Five Astronomicus E
Metaphysi,cus. It is a wonderful experience to recognize that the sophisticated ordering
principles of the Kepplerian Harmoniis absolutissimi,s motuurn cælest'ium is realized by
means of the magnetic resonânce scanner.
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I Conclusions

It is an amazingfact that there are roughly 1020 rotating black holes in the observable
universe (127), [46)). The extension of the Copernican revolution which replaced the
geocentric model by the heliocentric system replaces the sun by the supermassive
black hole Sagittarius A* at the center of the Milky Way galaxy.

The unitarily Lie(SL(2,JR)) derived two-sheeted metaplectic representation of
the metaplectic Lie group Mp(2,IR) provides a projective geometrical orbiton/spinon
test of Kepplerian spectral type to establish in the vein of quantum blackholography
the existence of the supermassive black hole, known as SagittariusA*, at the center
of the Milky Way galaxy. It may not be the most massive, nor the most energetic,
but it is by far the closest, only 8 kpc away, and therefore accessible. Its mass
is about 4.4 x 106 M6. Reinhard Genzel describes this result of 16 years of high
resolution monitoring nuclear stellar clusters as follows:

From the analgsis of the orbi,ts of more than two dozen stars and from nleosure-
ments of the size and mot'ion of the central compact rad,'io source, SagittariusA*,
current euidence is presented that this radio source must be a massiue black hole of
about 4.4 x 106M6, begond any reasonable doubt.

Unfortunately, the center of the Galaxis is located behind 30-50 magnitudes of
visual extinction and characterized by an extreme source density at all wavelengths,
which create great observational difficulties in measuring the mean spectral energy
distribution of SagittariusA*. The observations at near-infrared wavelengths need
quantum holography as an efficient technique for image reconstruction. Indeed, the
point spread function can be conceived as a tracial coefficient frrnction of the irre.
ducible unitary linear representations of the real Heisenberg Lie group ,A/ associated
to the affne coadjoint orbit models Lie(,Â/)-/CoAd(^0. The technique of quantum

holographic reconstruction is one of the features common to imaging the nuclear
stellar cluster of the supermassive black hole Sagittarius A* at the center of the
Milky Way galaxy and clinical magnetic resonance tomography ([34]).

One of the stars in the stellar cluster, designated as 52, is some 15 times more
massive and seven times larger than the sun. The loci defining its trajectory trace
a perfect Kepplerian ellipse with one real focus at the position of the supermassive
black hole ([27], [46]). It was located at perenigricon a mere lT light hours away from
the central black hole which is roughly three times the distance between the sun and
Pluto., while traveling with a speed in excess of 5000 km/s. These measurements
were the most extreme ones ever made for such a trajectory and velocity; see Figure
8.

The 4.4x 106 Mo of the supermassive central black hole Sagittarius A* is relatively
small as compared to the recently observed 17 x 10s M6 of the over--supermassive
black hole in the center of the compact lenticular galaxy NGC 1277 ([42]). The
symplectic spinor has been observed by high resolution Hubble Space Telescope
imaging. The distance of NGC 1277 to the Milky Way galaxy is about 220 x 106
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light years.
Supermassive black holes have generally been recognized as the most destruc-

tive force in nature. But in recent years, they have undergone â dramatic shift in
paradigm. These objects may have been critical to the formation of structure in
the early universe, spawning bursts of star formation and nucleating proto-galactic
condensations. Possibly half of all the radiation generated after the big bang may
be attributed to them, whose number is known to exceed 300 million ([a6]).

The discovery of radio pulsars in compact trajectories around SagittariusA*
would permit an unprecedented and detailed investigation of the relativistic space-
time of this supermassive black hole. Once a pulsar is detected in a compact tra-
jectory around Sagittarius A*, continuous timing will allow more measurements and
tests as the timing baseline grows with time. After timing one trajectory, all Kep
plerian parameters will be well known and also the post-Kepplerian perenigricon
advance will be measured with high precision. This will already provide a good esti-
mate of the mass rns of Sagittarius A*. Timing a few more of the trajectories would
then allow the determination of additional post-Kepplerian parameters. These pa-
rameters permit a robust determination of Sagittarius An mass and the inclination
of the pulsar trajectory with respect to the line of sight ([3], [8], [23], 124),126]).

From the mathematical point of view it is highly instructive to see how the
Poincaré models of conformal non-Euclidean metrical geometry of strictly negative
curvature fit projectively to the affine coadjoint orbit model Lie(,V)-/CoAd(Â/) of
quantum entanglement in the ambient conformally projectivized dual vector space
PLie(,A/)" associated with the three-dimensional real Heisenberg Lie group Â/ ry

Cn @ lR. As opposed to the tesselations of hyperbolic geometry, there exists only a
finite number of tilings in the Euclidean and elliptic geometries ([2]).
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