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Abstract We explore a two-photon model of a digital clock. The model impli-
cates the use of spacetime algebra to describe Minkowski space on large scales, but
suggests that its scale independent use in special relativity presupposes reference
frames of infinite mass. A close look at the finite-frequency digital clock shows that
either classical special relativity or Dirac propagation emerges from the clock de-
pending on horr the continuum limit is taken. If one smoothly interpolates the tick
sequence the clock remains classical. If one extrapolates the inter-tick behaviour,
wave propâgation is implicated.
Keywords : Special Relativity, Quantum Mechanics.

1 Introduction

At the beginning of the 20'th century, physics changed radically following two sep-
arate revolutions. Special relativity and quantum mechanics not only cha.nged how
physicists predict and calculate the outcomes of experiments, they changed the very
concepts of space, time and object. The two revolutions took place in distinct are-
nas. Special relativity was about events in space and time, and how these would
be perceived from different inertial frames of reference. Quantum mechanics was
about submicroscopic objects and how they would evolve in time, usually under
restrictions to small length scales.

Both revolutions involved a gestation period in which the new physics was written
in a language that accentuated the similarities with classical mechanics. Thus,
Minkowski took Einstein's component-viewed special relativity and embedded it
in a four-vector formalism, setting the stage for more modern spacetime algebra
formulations. Similarly old quantum theory with its ad hoc rules, gave way to
matrix mechanics from Heisenberg and ultimately wave mechanics from Schrôdinger.
The latter allowed Hamiltonian mechanics a central place in the study of quantum
systems.

In 1928 Dirac fused the two pictures in the equation that would bear his name.
He essentially took wave propagation from quantum mechanics and embedded it in
Minkowski space.

A curious feature of the two revolutions is that both are related to classical
mechanics through a form of analytic continuation. Minkowski space can be obtained
from a four dimensional Euclidean spâce by a judicious replacement of t by it.
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Fig. 1: Both special relativity and quantum mechanics inherited the representation
of time as a real number. The two revolutions utilized a formal analytic continuation
in two different ways. Minkowski used it to make spacetime pseudo-Euclidean.
Schrôdinger effectively used the same formal replacement to convert the diffusion
equation to a wave equation

Similarly, non-relativistic quantum propagation may be obtained from a diffusion
equation by the same device Fig[l]. In this paper we point out that the two analytic
continuations arise from the same source. The difference between the two is a result
of a difference in the choice of which aspects of time are chosen to be represented
on large scales, the number of events or the inter-event region.

To illustrate this clearly, we build a classical digital two-photon clock and exam-
ine its properties. Over long time-scales we see how Minkowski space is implicated
and why the odd signature of spacetime is a natural consequence of the assump-
tion of infinite mass reference frames. On short time scales we see that the Dirac
equation is implicated. Given the classical context of the clock, this is something
of a surprise. Further investigation reveals that for massive particles, the behaviour
that gives rise to Minkowski spâce on large scales, gives rise to wave propagation on
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(a) A two photon clock. (b) Viewed in a moving frame.

Fig. 2: (a) A two-photon clock at rest provides a chain of spacetime areas. Here
c : 1 and the clock audibly 'ticks' at the crossing points. The corner points in the
paths are considered 'silent' events. The sequeuce of crossing points and a smooth
interpolant between them provides an analog of the world line of the clock in classical
special relativity. (b) In a moving reference frame the areas betvieen events become
rectangular, however the area is preserved and is calculated as the product of the
lengths of the two sides of the rectangles.

small scales.
In the first section we introduce an idealized two-photon clock confined to a

two-dimensional spacetime, Figl2]. We notice that in order for the clock to be
relativistically correct, the sequence of events it produces has to be determined by
a mechanism that relies on the production of a fixed spacetime area in all reference
frames.

The following section develops an algebraic method for counting events using a
transfer matrix. Observing how the transfer matrix handles higher frequency events
gives a direct connection between event counting and the introduction of pseudo-
Euclidean spaces for the description of special relativity.

Section 4 extends the model to a four dimensional spacetime and the final section
reviews and discusses the results.

2 A Planar Two -Photon Clock

Classical mechanics starts with the assumption that time is a real number, but both
special relativity and quantum mechanics essentially replace t by i,t. Since all mea-
sured time intervals in Nature are frnite we shall start with a finite frequency digital
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Reference Clocks

Fig. 3: To interpolate between ticks of the two.photon clock, we assume we have
access to higher frequency two'photon clocks to partition the inter-event time. We
associate the high-frequency clocks with a spacetime frame.

clock and explicitly take the limit of infinite frequency to see what peculiarities arise
when we take the limit. The purpose of this is to see whether there is a geometrical
origin for the i in Minkowski space.

We note that any clock, regardless of size, must involve accelerations to facil-
itate periodicity. In a relativistic universe with a finite upper bound on speeds,
high frequency small-scale clocks necessarily involve rapid accelerations and these
accelerations are likely to be intrinsic to time measurement.

Consider a hypothetical 2-photon planar clock in a two dimensional spacetime
as in Fig.[2(a)]. The clock 'ticks' at the crossing points of the two photons and
keeps time by simply counting ticks. Thus a clock that begins and ends at specifrc
crossing points as in the figure counts time discretely according to the number of
ticks. In Fig.[Z(a)] the first tick is at the origin a,nd the second is at t:2. We
are using units in which the speed of light c is 1 and our clock has been chosen
for convenience so that the fundamental period is 4 units. The corners at the odd
integers we call 'silent' events. They are not aligned with the crossing points that
form the event sequence and are not accounted for in an interpolation of the audible
event sequence. However they are important in determining how the clock progresses
between adjacent audible events.

The enclosed areas between ticks are oriented, with successive areas having op
posite orientation as indicated by the two different path colours in Fig.[2(a)]. The
reâson for this shall appear when we consider higher frequency clocks.

To be used as a clock to measure time we imagine embedding the clock in a
spacetime frame. We shall subsequently have to reconcile the discrete nature of the
clock with the continuous labelling of the frame however, for the time being, we shall
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Fig. 4: The time between clock events in the moving reference frame, f is deter-
mined by requiring that the area in the moving frame, L(OCD) is equal to the rest
frame area A(OAB).

€rssume that some higher frequency clocks exist and are used to interpolate between
the ticks of the clock in the frame. So for example, in Fig[2(a)], the two-photon clock
has events on the t-axis only at t e {0,2,4,...} but we assume that the associated
frame has events arbitrarily close together, interpolating between these special times
Fig[3].

For the clock to exhibit a trail of events in arbitrary inertial frames in a fashion
that is consistent with special relativity, the clock needs a rule that will translate the
distance between events into time intervals. Noting that the clock actually counts
spacetime areas tàther than a direct Euclidean length, we can use geometry to see
that the Euclidean spactime area between crossing points is invariant under inertial
transformations Fig[4]. In this figure the triangular area A(OAB) is half the area
of the first half-cycle of the stationary clock ( between t : 0 and t :2) and we see
that A'(OAB) : 1. The area A,(OCD) is half the area of the first half-cycle of the
clock in a frame moving with velocity -u with respect to the clock. In this frame
the first clock event is at (r/, t') where ït : 't)tt . Noting that r' : 2tR - t' , the length
of the line OC is

lOCl : ,f2t" : ,fzt'1t + u) /2

Similarly the length of C D is

lCDl: Jz$' -  tù :  J2t '(1- u)12

The area of A(OCD) is then

L ( O C D ) : t ' 2 ( l - r ' , ) 1 4 .

(1 )

(2)
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Fig. 5: Counting with a Tlansfer matrix. The right hand boundary of the two
photon clock is in one of four states corresponding to being parallel or antiparallel
to the left or right light cone. The left and right densities are signed characteristic
functions that turn on when the boundary is in the appropriate state. The left and
right densities are orthogonal since the boundary can only be in one of the four
states.

Equating the two areas A(OAB): A(OCD) we then get

. 2
1 ' : - f t -21 :1 t  (4 )

V 1 - a -

where "y is the time dilation factor. Notice that it arises from the requirement that
the enclosed spacetime areas between events is invariant under an inertial transfor-
mation. We can calculate the area between events by taking the products of the
lengths of the sides of the projections of the areas onto the two orthogonal light
cones. If those Iengths are / and r respectively for the left and right cones, then the
resulting proper time interval is the geometric mean

t: { i i . (b)

A clock that measures time based on the square root of its inter-event spacetime
area will then always yield its proper time. However, in order to do this there has
to be at least one silent event between audible events in order to determine an area.
The necessity of this off-axis silent event to determine proper time is the first hint
that a continuum limit from finite frequency clocks may involve more than a simple
extension of time intervals to real numbers.

In the next section we formulate the counting of events in the two photon clock
by introducing a transfer matrix.
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3 The two photon clock as a transfer matrix

In the previous section we proposed a 2-photon clock that measured time through
the crossing-point events of the entwined paths of two photons. We noted that the
clock ticks by producing chains of rectangular regions of spacetime, the proper time
being the number of links in the chain multiplied by the proper time corresponding
to a single area. In this section we assemble a matrix method for counting the events
in the chain of areas.

Consider the 'boundary path' of a clock illustrated in Fig[5]. This is just the
right-hand boundary of the chain of areas that constitutes the clock. A boundary
path segment can be in one of four states depending on its direction in spacetime
and its orientation. A column vector with four states

-  r / t \ /o \ / - t \ (0 . ) )  (6 )st€5: t \o / '11/ ' \  o  / ' \  - r  )  I
can represent the path. The states represent an indicator function that registers the
presence or absence of an oriented boundary of a rectangle with the accompanying
orientation Fig.(5). If the two photon clock is in state s* at time /c then the
subsequent state, afber the next event is

Sp4y :  TSp

where 7 is the transfer matrix:

(o  -1  \' : \ r  o )

(7\

(8)

? operating on a state transfers us through the next event and ?2 takes us through
two events, returning to the same direction but opposite orientation. The two-
photon clock ticks cyclically through the set ,S. Thus powers of the transfer matrix
give us the number of ticks of the clock.

If all we have is a single clock, we could use it to sequence events that happen
over time scales much greater than 1 by counting time in unit intervals. We cannot
use it as a reference frame clock to measure events happening on time scales much
less than one, since multiple events could occur between ticks and not be sequenced.
'We 

can however imagine a reference 2-photon clock working in the same way as 7
but at a much higher frequency, say N, where N is an integer much greater than 1.
If 4, is the transfer matrix for the high-frequency N-clock, and it is synchronized
with 7, we must have an equivalence between the N-th power of 4, and ? itself.
Thus we can write

TI : r
giving T, as an i/th root of 7 or

(e)

-  _  (cos( f i )
" -  \  s i n ( ç )

- sin (ft) \
cos (ft) )

2l

(10)



(a) High frequency clocks, synchronized with the
two-photon clock to give events at the integers, in-
terpolate between the integers by mapping the four
states onto a circle and using phase to refine parti
tions of the time interval between clock events. The
resulting paths representing spacetime area bound-
aries, analogous to those in Fig. 1(a) form a pair of
soirals.

" - - - - . . . - - - .1 . .

(b) The planar 2-photon clock shown
in comparison to(a). The events of
the two clocks both consist of crossing
points of paths. The silent events of the
two-photon clock correspond to turning
points in the projection of the spiral
paths onto the plane.

Fig. 6: (a) The reference frame clock (b) Comparison with two-photon paths.

Taking a continuum limit gives a transfer matrix representing a reference clock

with arbitrarily high precision. That is we define 7s as

(::;[i] ;::iL5) )
"* (i) rz * r,'" (i)
*'(i) 12-io,.'" (i)

( 1 1 )

(12)

where 12 is the 2 x 2 identity matrix and oo is the second Pauli matrix. This clock
agrees with our period four clock ? at the integers but uses a rotation matrix to
interpolate between events (nig.[0]). That is Tp(n):7" for integer n.

Note that when we use 7a as an operator on the states sp, these no longer appear
to behave as d'iscrete characteristic functions that indicate presence or absence of a
boundary of a rectangle. Initially, for our two-photon clock, the s6 clearly indicate
that a boundary is in one of four mutually erclus'iue states. However, unless f is
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Fig. 7: Increasing the frequency of events. The Tlansfer matrix can be used to
increase the frequency of events. It does this by 'rotating' the indicator functions
for the four states sr. The first frame shovrs a single boundary of the two.photon
clock and the associated indicator function as a two-component function of t (vertical
lines). The path is in a single state at a given time so only one of the s,c is non-zero.
The second frame shows the result of a two-photon clock running at double the
frequency. The indicator function is still showing the path is always only in a single
state but now the new events are shown rotated from the four states in,9. The third
frame indicates a reference clock running at 10 times the photon-clock freqency and
one can see the emergence of one of the reference spirals of Fig[3].

/ r \
an integer, Tp(t)sp f ^9. For example Tp(ll2)s1 : tl ; ). It appears that our' -  \ ' , /
indicator function is in a 'superposition' stâte. Since we are only using the transfer
matrix to count objects, the 'superposition state' must have a simple interpretation.

Indeed, notice that the original s6 âr€ orthogonal because a boundary can only
be in a single state. State 1 is orthogonal to states 2 and 4. State 2 is orthogonal to
states 1 and 3. However the two dimensional space spanned by ,S is not the coordi-
nate space oJ the boundarybtt an algebraically constructed space whose orientation
has been chosen so that successive events 'rotate' the sp through the elements of ^9
making the role of the states as characteristic functions obvious. Using the transfer
matrix to increase the frequency of events simply uses the extra degree of freedom
in the choice of basis set to map the extra states onto a spiral. Observing Fig[7]
we see that the higher frequency clockT, in eqn(9) behaves just as the twophoton
clock except that it expresses the indicator function as a rotation of. the entire set
S. The orthogonality that is an expression of the fact that the clock must be in a
single state is preserved in the rotated basis. This is illustrated in the second frame
of Fig[7]. There the frequency is doubled and the indicator function for the path
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splits so that the second half of every inter-event interval is rotated by zr/4. This
is just an accommodation of the fact that at this resolution there are eight possible
states and the refined clock visits each sequentially. The last frame of the figure
shows a refrnement of the clock by a factor of 10. At this resolution one can see the
outline of the spiral limit of Fig[6] while still seeing the digital aspect that the clock
has an inner scale between ticks.

"n(t) 
is a"n infinite precision idealization of our two photon clock obtained from

an ensemble of such clocks of higher frequency. It can be used for analog conversion
since ?p( lÉJ ) : TLt) and the two clocks agree at the events at integer times. 76(t)
is a prototype of a frame clock that gives us an arbitrarily large number of events
between integers and justifies the use of the real parameter I to describe position
along the t-axis of the two.photon clock.

One interesting feature of the analog form of our clock is that although we start
with the planar path of Fig[2(a)] as an idealization of a clock mechanism restricted
to a plarre, the refinement of that clock to allow for higher precision automatically
invokes a complex structure that we shall ultimately recognize as Minkowski space.
The planar structure of a real two dimensional spacetime is not big enough to support
a description of synchronized clocks of higher precision than the one $/e started with,
and the result is an erpansion in dimension through the use of compler numbers.

This is, in part, illustrated by the fact that the analog approximation to our
digital clock satisfies a differential equation. If U(t) is a column vector, then using
(11) we see that the analog of the difference equation (7) is

(13)

a version of the zero-momentum Dirac equation in two dimensions. What has hap
pened here is that the periodic structure of our clock has to be accommodated by
any reference clock that would give a synchronized but more refrned partition of the
t-axis. This is accomplished by the transfer matrix that exploits a representation of
complex numbers to map sequences of events onto rotations. The real numbers, by
themselues, do not haue enough structure to encode this periodi,c process.

We can use the analog clock to reproduce event counting from a reference frame
that is moving with constant velocity -u with respect to ?. It is assumed that
u < I and in anticipation of the fact that a clock may tick at different rates in
different frames, we shall need the extra precision of a high frequency 'frame' clock
to detect differing frequency and phase. Flom Fig[2.b] we can see that the column
vector counting states stays in the upper component by a factor of o longer than the
stationary case, with the lower component reducing residency time by a factor of u
(Eqn.(l, 2) ). The transfer matrix will have to reflect this. It will have to modify the
residency times in the two states so the phase of the silent event is shifted (fig[A]).
Consider the reference clock 76 at time e << 1. To lowest order in e we have

#: (;),^u
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Fig. 8: The transfer matrix alters the residency time of the two states according
to the relative velocity of the frame. The residency times are a manifestation of a
Doppler effect of the relative motion of source and frame. For the two-photon clock
of period 4, the upper state has a residency time increased by a factor of (n f2)ue over
the stationary case. Similarly the lower state is decreased by the same proportion.
See equations.(1, 2, 15)

Tn(e) +-fr)
+ (i)r

(

\
TL 2

r , , , ( t ) :  ( - ' , ' * ;ê î ( * )

Increasing the residency time in the upper state and decreasing the residency time

(14)

(  I O J

in the lower state by u gives

r1,a(e): ( '*rV" ,  _r; , ,)  :  t ,  _ 
î ,@" tvo")

If we take the limit of the transfer matrix raised to the power tf e as e goes to
zero we get

-"rri" (rot)

.* (fr) *,"y'i" (#i)
/ n t \ ,  ( " t \: - '  (;J Iz -.y sin (r-J (uo" t i.os) (16)

Let us check this against the sketch in Fig[2(b)]. According to that sketch, for
tr : 0 we should get events at I € {0, 2,4,. . .} and we can see from eqn(16) that this
is the case since for o : 0, ? : I and the odd part ofTy vanishes at the even integers.
Furthermore, the frame clock with relative velocity -o should give us events with
inter-arrival times modified by the Lorentz factor 1, ie. t e {0,21,47,...}. This
also appears to be the case in eqn(16) since the odd component vanishes at precisely
these points, ie.

/  (  rQtn)\  -  , r . ; r ,  / "(?r")  \  -r  s in (" tzr")  \  \
rp1(21n):  ("o ' \  "  / ; : , ; i l \ -T-) , , , , -1i" , \ -r '  /  \

\ rsrn 1 a / cos (-T;/ +ulsin (ry) )
: cos (ntr) 12 (17)



Fig. 9: Minkowski's clock mixes scalar and vector. The vector portion points in the
direction of the f-axis in the inertial frame of reference and its length is modulated
through the clock cycle.

The transfer matrix for our two-photon clock correctly gives us the locus of points
corresponding to events in the frame-clock and it is interesting to see what happens
at the silent events. When u:0 the silent events occur at t e {L,3,5,...} and
for non-zero o we would expect the silent events to occur at t e {1,3'y,5i,...} and
indeed the even term in eqn(16) vanishes there, leaving the odd term

r : *"y(uo, -t i'o). (18)

Notice that if we take the matrix product of this expression with itself we get
-12. I1 we think of i,oo as a unit vector representing time and oz as a unit vector
representing space then r is a unit vector with 7 representing a normalization factor.
The ensemble of all vectors r over all possible values of o (ie. {o : lul < 1}) gives
the locus of points of unit distance from the origin Fig[10]. The region between
the light cone and the hyperbola is the 'unit cell' for our two photon clock. Points
within the unit cell correspond to events that our two-photon clock cannot resolae.
It is interesting to note that the area itself is unbounded and foreshadows the non-
locality of quantum mechanics. Note also that the two unit vectors ioo and o" bave
norms respectively (ioo)2 : -.I2 and (o")': 12 and they are orthogonal under the
symmetric product A. B : (AB + BA)12.

It is interesting to note that our transfer matrix ?3 is very much like a conven-
tional clock with a rotating hand marking time. In eqn(16), had the coefficients
of both trigonometric functions been scalars, the clock would indeed have been a
rotating vector. However note that while the even component is a scalar, the odd
component is a vector. The clock that we subsequently call Minkowski's clock mixes
a scalar and a vector Fig[9].

The reason that Minkowski's clock mixes the two types of objects is that the clock
has to accommodate the Lorentz transformation at events. We can see that the ref-
erence frame clock does this explicitly at all events. Noticing that r in equation(18)
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Fig. 10: An ensemble of reference frames with different relative speeds leads to a
locus of points of first and second events from the two-photon clock.

is the unit vector of the time axis of the two'photon clock in the moving frame,
we should be able to obtain Tu by using a 'rotation' facilitated by the bivector
B : o"(ioy)[15]. In fact we should be able to obtain Tv às

Tu : exPl-8012)TR exPlB?l2l' (1e)

Completing the matrix multiplication it can be seen that this is the case provided

â: arctanh(v)

as might be expected.
If we are working on length scales much greater than one and can ignore dis-

crepancies in event location of the order of one length unit, we can label points in
the plane by treating o, and io, as unit vectors in the z and t directions respec-
tively, labelling points as r : ro"* ifo, giving 12 : fr2 -t2. This is a version
of the Minkowski metric. Our two-photon clock only gives us an event at r when

JP=æ :2nfor integer n. Using the metric under circumstances where the square
root is not an integer is a mathematical convenience appropriate on scales where n
would normally be very large.

To get a perspective on scales, the two-photon clock in the simplified units chosen
ticks at a frequency u: T, T\rrning to the situation for particles, the relation
E : mcT suggests that all inassive particles somehow 'know' their own mass and
the invariant speed c. Since c is common to all particles, if we regard an elementary
particle of mass rn as being a clock described by the two-photon clock model then
the appropriate frequency is the Compton frequency u : s# (nv 102r radians per

second for the electron). The clock-particle generates a sequence of periodic events
with the inter-event 'distance' being a fixed positive number. The events themselves
will be the intersection of two light-like paths as described by the two-photon clock
model. Replacing the units in eqn(15) with standard units gives the transfer matrix

,\.".,-_-

(20)

rM(t) : *, (#) 12 - Tsin (#) (lo. + -o7
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where rn is the particle mass. If we write p: rn"ya and .E : m1c2 the above is

/ mc2t\ / mczt\
Tn ft\: cos I l

\ m-) 
12 - sin 

l-î ) 
(p"o, + iEo)f mcz (22)

and the vector part of the transfer matrix eqn(21) becomes

r -  -1(uo, lc+io) + -(pro"* i ,Eo)lmc2 (n)

so that the invariant squared length is:

,z : (p2c2 - E2) 1m2c4: -1 + E2 : m2c4 + p'"" (24)

Notice here that the energy and momentum are components of an invariant vector
that arises without the usual appeal to conservation principles through dynamics.
Mass and energy here are not background attributes but manifestations of the clock
mechanism that recognizes the fundamental frequency and the invariant spacetime
area.

It is also worthwhile noticing here exactly why, according to this model, con-
ventional treatments of special relativity have to put in the mass-energy relation by
hand. When we extracted the frame clock ?6 eqn.(16), we did this by taking a limit
in which the frequency of events between two ticks of the two-photon clock became
arbitrarily large. We see from (21) that this is effectively an infinite mass limit!

Discussions about the relations between reference frames are discussions about
relations between infinite mass clocks. Finite mass clocks(particles) have a finite
number of events in their paths where reference frame and particle clocks agree.
Our reference frame has been assigned an infinite mass to interpolate between the
ticks of the two-photon clock. However, if we compare two reference frames with
each other through a limit of increasing mass for both frames, the invariant proper
time relation eqn(18) remains as a relation for clocks of all frequencies. The Lorentz
transformation then becomes a relation between frames that has to be augmented
with the addition of a background mass whose behaviour is then deduced by dy-
namics.

Finally, it is worth noting that Minkowski's clock, eqn(22) satisfi,es the Dirac
equation. This may be seen through differentiation, or its relation to the Feynman
chessboard model[6],[9].

4 The embedding in 3-D

We started out with the idea of a planar 2-photon clock. Embedding the clock in
a reference frame of clocks that tick at higher frequency suggested that the planar
mechanism of the clock is neither unique nor necessary. The clock operates using a
local rule that allows the clock to keep proper time via an invariant area, however the
rectangular area itself is just a convenience. The frame version of the clock sketched
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in Fig(6), were we to interpret the spiral as an actual path, is an alternative picture
of a clock that has the same projected densities as the original if the indicator
functions just indicate 'left moving' vs. 'right moving'. Both versions work by
sweeping out a fixed spacetime area per unit time, one over integer time steps the
other at a continuous rate. In both cases the transfer matrix that keeps track of
time evolution does so through projection onto two light-cones corresponding to the
spacetime plane defined by the time axes of the clock and the moving frame. The
generalization of the transfer matrix is then straightforward. Suppose the relative
speed of the frame and the clock is

v :I)tor * usoa I uro" (25)

where the o6 are the Pauli matrices representing unit vectors. We then have the
scalar

,t : (r?+ ul + u2"1t,

and the transfer matrix for an infinitesimal step, eqn(15) becomes

/ r ^_ t l ve  _ i e t ,  \ _ ,  7 r
T1a(e )  :  

l ' "  i r i ,  y !  ; u ,  )  
:  t n -  

i r (o ,8 r * i o r812 )

(26)

(27)

This transfer matrix functions in exactly the same way as the previous version,
except that it codes for a reference frame that moves at constant velocity in a three
dimensional space. The (1,1) and (2,2) blocks code for the Doppler shifts of the
clock, as did the (1, 1) and (2, 2) elements in the two dimensional version. The tick
frequency of the clock is unaffected and only the relative velocity between the clock
and the frame a,ffects the distribution of events. The continuum limit of this may
be taken as in the previous case, using an eigenvalue expansion:

ru(t)

where the a7, and 0 are Kronecker products Qn : oz I ox, 0 : oa 8Iz. The ot and
p are also orthogonal vectors. They are all anticommuting and satisfy lai,ail:6ai,
lcr,,0l:0 and B2 : I+. The analog of the tick matrix 7 eqn(8) is

(2e)

It is this matrix that tra,nsfers us from event to event and pertains to the actual
two-photon clock with period 4. As before, two successive ticks change the sign
of the initial state. Similarly we can look at the transfer matrix and 'read off'
representations of unit vectors for a reference frame in Minkowski space. The space

: Iirq"M(€)'/' - cos (*,)*;t.t (fr) (v*a**v"a" +vd"+il)(2l)

'':(:iil;')
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Fig. L1: Discrete vs. Continuum. The conventional route through relativity to
quantum mechanics is to assume homogeneity and isotropy (top left) both for phys-
ical and mathematical appeal. Adding Einstein's second postulate to fix an invariant
speed leads to an odd spacetime signature and ultimately special and general rela-
tivity on large scales. On small scales classical mechanics fails and a quantization
procedure is necessary to make contact with the Dirac equation. The picture sug-
gested by the two photon clock is that everything above the dotted line is a form of
infinite mass limit. The odd spacetime signature is a manifestation of a local rule
for frnite clocks made global by the infinite mass limit (lower lefb in figure moving
up). The relation to the Dirac equation is easier to see if you start from the discrete
perspective, since 'quantization' in this picture arises from the fact that frnite mass
objects are finite frequency clocks.

vectors are the 06 and the time vector is iB. The spacetime signature is then

[-,*, *, *]. Use of these vectors provides a coordinate system with integer spacing
at u :0 that corresponds to events of a two photon clock. Giving these vectors
real coefficients interpolates between events based on 'large scales'in comparison to
the tick sequence. This gives a background frame for the smooth paths of classical
particles. Alternatively, keeping the discrete aspect of the vectors and interpolating
based on the time interval between ticks allows a very direct path to the Dirac
equation, as we shall illustrate in a subsequent paper.

5 Discussion

Any clock, regardless of size, requires some component that accelerates in order
to work.The two-photon clock in this paper is a 'minimalist' clock that provides a
periodic process giving rise to discrete events. It is minimalist in the sense that it
keeps time by using a single local rule of area invariance and calculates the area
from only two linear elements of a pair of simple paths. Two successive events then
conform to special relativity by being tied to paths that cross periodically, enclosing
an invariant area. Using this simple clock, we can take a high frequency limit to
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Fig. 12: The clock picture of the relation between special relativity and quantum
mechanics. Comparing this to Figure 1, the clock model delays the continuum limit
that initiates the conventional picture.

produce a reference frame clock corresponding to an object with arbitrarily large
mass. The transfer matrix that counts events at higher frequency does so by simply
rotating a three value {0, t1} characteristic function in a two-dimensional space,
essentially mapping inter-arrival times onto a spiral (nig[Z]). We can then ertract
the unit uectors of the rest-frame of the parti.cle as elements of the transfer matrix.

This route to Minkowski space is longer than the conventional invocation on
the basis of a comparison of ds2 for a light wave-front from two different frames.
However, the virtue of this approach is that it give a clearer picture of the role of
differential operators and world-lines in both relativity and quantum mechanics.

As suggested by Fig[11], the conventional route implicitly invokes homogeneity
and isotropy at the start by using differential operators. This, in combination with
the invariant speed c gives rise to the Lorcntz transformation which is then aug-
mented through dynamics to give special, and ultimately, general relativity. The
Dirac equation is then reached from special relativity by a quantization procedure.
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Minkowski Silênt Minkourski

Fig. L3: Minkowski's clock works by encoding both the frequency of events and the
direction of the proper time axis. This encoding includes a form of 'wave propaga-
tion' between events. In terms of clocks, this wave propagation is a manifestation of
the indefinite number of silent ticks between audible ticks in the continuum limit.
If audible ticks in a path are made silent, in the sense of not being observed, the
spacetime area between events is scaled up to observational levels, providing a basis
for quantum propagation.

In contrast, the above paper starts with clocks that are frequency limited. It can
be seen that to get to the Lorentz tra,nsformation, an infinite mass limit is needed
Fig[12]. With that limit as an attribute of a reference frilne, the finite frequency
clock satisfies a form of the Dirac equation without any appeal to quantum mechanics
(eqn.(13)). The connection to quantum mechanics should not be a complete surprise
since the requirement that clocks be finite frequency is itself a form of quantization.
For example if we wrap Minkowski's clock on a cylinder and require that the events
lost due to time dilation are integer in number, we get the Bohr angular momentum
quantization rule:

L :  n h  n : 1 , 2 , . . . (30)

to first order in u2. This rule played a significa.nt pa.rt in old quantum theory and the
evolution of modern non-relativistic quantum mechanics. However, here it appears
as a consequence of finite frequency relativistic clocks. Notice however it only makes
sense in the context of a real particle if. we do not require the audible euents around
the cylinder to be heard,. If we did we would have 'which way' information about
the paths and the clock would stay 'classical'. If the intervening ticks are silent, the
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t û t

(a) Classical Limit. (b) Qua,ntum Limit.

Fig. 14: (a) The classical limit of Minkowski's clock keeps the intermediate events
audible. As a result, the continuum limit shrinks the width of the clock so that in
the continuum limit it becomes a smooth worldline or a clock with infrnite frequency.
Since the frequency is the analog of mass, this is an infinite mass limit and becomes a
'reference frame clock'in the conventional approach. (b) In the 'quantum'limit, the
audible events between observations are made silent, so the spacetime area between
first and last event expands. Silent events far from the classical worldline are then
part ofthe clock and the continuum limit expands, rather than contracts the analog
of the classical worldline.

Bohr rule just expands the region between the ticks of a clock! Fig[13] Ultimately
the difference between quantum and classical behaviour is the form of continuum
limit used, one that scales up the region between audible ticks or one that scales it
down Fig[14].

6 Conclusions

The objective of this paper was to uncover a statistical mechanics underneath
Minkowski space. In doing so we have seen that the Dirac equation appears to
be implicated as a result of finite frequency clocks. For this reason the model inter-
sects the work of many authors seeking a better understanding of the Dirac equation.
Feynman's Chessboard model is visible in the transfer matrix (19) [1]-[10]. The 'zig-

zag' model of Penrose[ll] is evident in the Kronecker product version of the transfer
matrtx(27). The use of zitterbewegung as the basis on which the Dirac equation
rests has been emphasized by Hestenes[l2] and advocates of geometric algebra [15].
The use of discrete processes to show the parallel emergence of probability density
functions and wavefunctions has been shown by Dubois[13, 14]. The replacement of
world-lines by chains of areas is reminiscent of 'F}actal Spacetime' approaches that
exploit the fact that the uncertainty principle implies paths with fractal dimension
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D :2 [16]-[19]. The use of events as the alternate convergence and divergence of
paths is reminicent of nilpotent quantum mechanics [20].Finally, the partitioning of
spacetime into cells by the two photon clock, giving rise to an ensemble average that
shares characteristics with wavefunctions is reminicient of the Bohmian pilot-wave
picture where the quantum potential that helps guide a particle is created by the
particle itself [21].

Although many approaches intersect in this model, they do so primarily from
the perspective of quantum mechanics where quantization and mass are put in by
hand. The novelty of this picture is that it assigns a different logical status to
the relationship between quantum mechanics and special relativity. 'Events' in this
picture are discrete and the conventional kinematics of special relativity are seen
as idealizations corresponding to infinite mass objects. In this view 'spacetime'

is a smoothed idealization arising from massive particles rather than an abstract
container, and quantum propagation results from a scaling up of a clock mechanism
to observer scales Fig[14].
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